
Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

Computer Architecture & Organization (6CS4-04)

 Computer Science and Engineering Department

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

Mission of the Department

● To impart outcome based education for emerging technologies in the field of computer

science and engineering.

● To provide opportunities for interaction between academia and industry.

● To provide platform for lifelong learning by accepting the change in technologies.

● To develop aptitude of fulfilling social responsibilities.

Program Outcomes (PO):

• Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

• Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

• Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

• Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

• Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

• The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

• Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

• Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

• Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

• Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

• Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

• Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Program Educational Objectives (PEO):

PEO1: To provide students with the fundamentals of Engineering Sciences with more

emphasis in computer science and engineering by way of analyzing and exploiting

engineering challenges.

PEO2: To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

PEO3: To inculcate professional and ethical attitude, effective communication skills,

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

engineering issues with social issues.

PEO4: To provide students with an academic environment aware of excellence,leadership,

written ethical codes and guidelines, and the self-motivated life-long learning needed for a

successful professional career.

PEO5: To prepare students to excel in Industry and Higher education by educating Students

along with High moral values and Knowledge.

Program Specific Outcome (PSO):

PSO: Ability to interpret and analyze network specific and cyber security issues, automation

in real word environment.

PSO2: Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

COURSE OUTCOMES: After Completion of the course, Students will be able to:

CO1: Identification of registers, micro-operations and basic computer organizations & design
CO2: Identification of computer architecture and processing
CO3: Introduction and applications of computer arithmetic operations

CO4 : Knowledge of computer Memory organization

Mapping Between CO and PO

CO-PO Mapping

Computer Architecture 6CS4-04

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

Co1: Ability to

understand the

functional units of the

processor and various

micro operations. 2 2 2 1 1 1 1 1 1 2 1 3

Co2: Analyze different

architectural and

organizational design

issues that can affect the

performance of a

computer. 3 3 3 2 2 1 1 1 1 2 1 3

Co3. Examine the

airthmetic problems and

principles of computer

design. 3 2 2 2 2 1 1 1 1 2 1 3

Co4. Describe and

examine the concept of

cache memory, Virtual

memory and I/O

organization. 3 2 2 2 1 1 1 1 1 1 1 3

Mapping Between CO and PSO:

CO-PSO Mapping

Computer Architecture 6CS4-04

 PSO1 PSO2

Co1: Ability to understand the functional units of the processor and various micro operations.

1 1

Co2: Analyze different architectural and organizational design issues that can affect the

performance of a computer.
2 1

Co3. Examine the airthmetic problems and principles of computer design.
2 1

Co4. Describe and examine the concept of cache memory, Virtual memory and I/O

organization.

1 1

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

 Computer Architecture and Organization (6CS4-04)

LECTURE PLAN:
Unit

No./

Total

Lecture

Reqd. Topics

Lect.

Reqd.

Lect.

No.

Unit-I

(10)

1. Objective, scope and outcome of the course. Basic computer data types,

Complements, Fixed point representation, Register Transfer 1 1

2. Micro-operations:

2a. Floating point representation, Register Transfer language 1 2

2b. Register Transfer, Bus and Memory Transfers (Tree-State Bus Buffers,

Memory Transfer) 1 3

2c. Arithmetic Micro-Operations, Logic Micro-Operations 1 4

2d. Shift Micro-Operations, Arithmetic logical shift unit 1 5

3. Basic Computer Organization and Design Instruction codes 1 6

4. Computer registers, computer instructions 1 7

5. Timing and Control, Instruction cycle, 1 8

6. Memory-Reference Instructions, Input-output and interrupt 1 9

7. Complete computer description, Design of Basic computer, design of

Accumulator Unit 1 10

BC-1 Von Neuman Architecture 1 11

Unit-II

(7)

1. Introduction, machine language, Assembly language 1 12

2. Assembler, Program loops 1 13

3. Programming Arithmetic and logic operations 1 14

4. Subroutines and I-O Programming 1 15

5. Control Memory 1 16

6. Address Sequencing 1 17

7. Micro program Example 1 18

8. Design of control unit 1 19

UNIT

III (8)

1. Introduction General Register Organization 1 20

2. Stack Organization, Instruction Format 1 21

3. Addressing Modes, Data transfer and manipulation 1 22

4. Program Control, Reduced Instruction set computer (RISC) pipeline 1 23

5. Vector Processing and Flynn's taxonomy 1 24

6. Parallel processing, pipeline 1 25

7. Arithmetic pipeline, Instruction pipeline 1 26

8. RISC pipeline, Vector Processing and Array Processing 1 27

Unit-

IV (8)

1. Introduction, Addition and subtraction 1 28

2. Multiplication Algorithms (Booth Multiplication Algorithm) 1 29

3. Division Algorithms, Floating Point Arithmetic operations 1 30

4. Decimal Arithmetic Unit, Input-Output Organization 1 31

5. Input-Output Interface, Asynchronous Data Transfer 1 32

6. Modes of Transfer, Priority Interrupt 1 33

7. DMA, Input-Output Processor (IOP) 1 34

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

8. CPU-IOP Communication, Serial communication 1 35

BC-2 Interaction of computer with hardware 1 36

Unit- V

(8)

1. Memory Hierarchy 1 37

2.Main Memory, Auxiliary memory 1 38

3. Associative memory, 1 39

4. Cache Memory, Virtual Memory 1 40

5. Microprocessor: Characteristics of microprocessor 1 41

6. Interconnection Structure 1 42

7. Inter-processer Arbitration, Intercrosses communication and

synchronization 1 43

8. Cache Coherence, Shared Memory Multiprocessor 1 44

BC-3
Different Operating System Architectures and their relation to Computer

System Architectures 1 45

This schedule is tentative and is subject to minimal changes during teaching.

1 Programming the Basic Computer

Computer Organization

PROGRAMMING THE BASIC COMPUTER

Introduction

Machine Language

Assembly Language

Assembler

Program Loops

Programming Arithmetic and Logic Operations

Subroutines

Input-Output Programming

2 Programming the Basic Computer

Computer Organization

INTRODUCTION

Symbol Hexa code Description

Those concerned with computer architecture should
have a knowledge of both hardware and software
because the two branches influence each other.

m: effective address
M: memory word (operand)

 found at m

Introduction

AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m+1
ISZ 6 or E Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC, carry to E
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off

Instruction Set of the Basic Computer

3 Programming the Basic Computer

Computer Organization

MACHINE LANGUAGE

Program
 A list of instructions or statements for directing
 the computer to perform a required data
 processing task

Various types of programming languages
 - Hierarchy of programming languages

•  Machine-language
 - Binary code
 - Octal or hexadecimal code

•  Assembly-language (Assembler)
 - Symbolic code

•  High-level language (Compiler)

Machine Language

4 Programming the Basic Computer

Computer Organization

COMPARISON OF PROGRAMMING LANGUAGES

 0 0010 0000 0000 0100
 1 0001 0000 0000 0101

 10 0011 0000 0000 0110
 11 0111 0000 0000 0001

 100 0000 0000 0101 0011
 101 1111 1111 1110 1001
 110 0000 0000 0000 0000

•  Binary Program to Add Two Numbers

Location Instruction Code 000 2004
 001 1005
 002 3006
 003 7001
 004 0053
 005 FFE9
 006 0000

•  Hexa program
Location Instruction

•  Program with Symbolic OP-Code

000 LDA 004 Load 1st operand into AC
001 ADD 005 Add 2nd operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 1st operand
005 FFE9 2nd operand (negative)
006 0000 Store sum here

Location Instruction Comments

•  Assembly-Language Program

•  Fortran Program

INTEGER A, B, C
DATA A,83 / B,-23
C = A + B
END

Machine Language

 ORG 0 /Origin of program is location 0
 LDA A /Load operand from location A
 ADD B /Add operand from location B
 STA C /Store sum in location C
 HLT /Halt computer

A, DEC 83 /Decimal operand
B, DEC -23 /Decimal operand
C, DEC 0 /Sum stored in location C

 END /End of symbolic program

5 Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE
Syntax of the BC assembly language
 Each line is arranged in three columns called fields
 Label field
 - May be empty or may specify a symbolic
 address consists of up to 3 characters
 - Terminated by a comma
 Instruction field
 - Specifies a machine or a pseudo instruction
 - May specify one of
 * Memory reference instr. (MRI)
 MRI consists of two or three symbols separated by spaces.
 ADD OPR (direct address MRI)
 ADD PTR I (indirect address MRI)
 * Register reference or input-output instr.
 Non-MRI does not have an address part
 * Pseudo instr. with or without an operand
 Symbolic address used in the instruction field must be

 defined somewhere as a label
 Comment field
 - May be empty or may include a comment

Assembly Language

6 Programming the Basic Computer

Computer Organization

PSEUDO-INSTRUCTIONS

ORG N
 Hexadecimal number N is the memory loc.
 for the instruction or operand listed in the following line
END
 Denotes the end of symbolic program
DEC N
 Signed decimal number N to be converted to the binary
HEX N
 Hexadecimal number N to be converted to the binary

Example: Assembly language program to subtract two numbers
ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

/ Origin of program is location 100
/ Load subtrahend to AC
/ Complement AC
/ Increment AC
/ Add minuend to AC
/ Store difference
/ Halt computer
/ Minuend
/ Subtrahend
/ Difference stored here
/ End of symbolic program

MIN,
SUB,
DIF,

Assembly Language

7 Programming the Basic Computer

Computer Organization

TRANSLATION TO BINARY

ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

MIN,
SUB,
DIF,

100 2107
101 7200
102 7020
103 1106
104 3108
105 7001
106 0053
107 FFE9
108 0000

Symbolic Program Location Content
Hexadecimal Code

Assembly Language

8 Programming the Basic Computer

Computer Organization

ASSEMBLER - FIRST PASS -
Assembler
 Source Program - Symbolic Assembly Language Program
 Object Program - Binary Machine Language Program
Two pass assembler
 1st pass: generates a table that correlates all user defined
 (address) symbols with their binary equivalent value
 2nd pass: binary translation

First pass

Assembler

First pass

LC := 0

Scan next line of code Set LC

Label no

yes

yes
no ORG

Store symbol
 in address-
 symbol table
 together with
 value of LC

END

Increment LC

Go to
 second
 pass

no

yes

9 Programming the Basic Computer

Computer Organization

ASSEMBLER - SECOND PASS -

Machine instructions are translated by means of table-lookup procedures;
 (1. Pseudo-Instruction Table, 2. MRI Table, 3. Non-MRI Table
 4. Address Symbol Table)

Assembler

Second pass

LC <- 0

Scan next line of code
Set LC

yes

yes

ORG Pseudo
 instr.

yes END no

Done

yes

MRI

no

Valid
 non-MRI

 instr.

no
Convert
 operand
 to binary
 and store
 in location
 given by LC

no
DEC or
 HEX

Error in
 line of
 code

Store binary
 equivalent of
 instruction
 in location
 given by LC

yes

no
Get operation code
 and set bits 2-4

Search address-
 symbol table for
 binary equivalent
 of symbol address
 and set bits 5-16

I

Set
 first
 bit to 0

Set
 first
 bit to 1

yes no

Assemble all parts of
 binary instruction and
 store in location given by LC

Increment LC

Second Pass

10 Programming the Basic Computer

Computer Organization

PROGRAM LOOPS

DIMENSION A(100)
INTEGER SUM, A
SUM = 0
DO 3 J = 1, 100
SUM = SUM + A(J) 3

ORG 100
LDA ADS
STA PTR
LDA NBR
STA CTR
CLA
ADD PTR I
ISZ PTR
ISZ CTR
BUN LOP
STA SUM
HLT
HEX 150
HEX 0
DEC -100
HEX 0
HEX 0
ORG 150
DEC 75

DEC 23
END

/ Origin of program is HEX 100
/ Load first address of operand
/ Store in pointer
/ Load -100
/ Store in counter
/ Clear AC
/ Add an operand to AC
/ Increment pointer
/ Increment counter
/ Repeat loop again
/ Store sum
/ Halt
/ First address of operands
/ Reserved for a pointer
/ Initial value for a counter
/ Reserved for a counter
/ Sum is stored here
/ Origin of operands is HEX 150
/ First operand

/ Last operand
/ End of symbolic program

LOP,

ADS,
PTR,
NBR,
CTR,
SUM,

Program Loops

Loop: A sequence of instructions that are executed many times,
 each with a different set of data
Fortran program to add 100 numbers:

. . .

Assembly-language program to add 100 numbers:

11 Programming the Basic Computer

Computer Organization

PROGRAMMING ARITHMETIC AND LOGIC OPERATIONS

 - Software Implementation
 - Implementation of an operation with a program
 using machine instruction set
 - Usually when the operation is not included
 in the instruction set

 - Hardware Implementation
 - Implementation of an operation in a computer
 with one machine instruction

 Software Implementation example:

 * Multiplication
 - For simplicity, unsigned positive numbers
 - 8-bit numbers -> 16-bit product

Programming Arithmetic and Logic Operations

Implementation of Arithmetic and Logic Operations

12 Programming the Basic Computer

Computer Organization

FLOWCHART OF A PROGRAM - Multiplication -

X holds the multiplicand
Y holds the multiplier
P holds the product

Example with four significant digits

0000 1111
0000 1011 0000 0000
0000 1111 0000 1111
0001 1110 0010 1101
0000 0000 0010 1101
0111 1000 1010 0101
1010 0101

Programming Arithmetic and Logic Operations

cil

CTR ← - 8
 P ← 0

E ← 0

AC ← Y

Y ← AC

cir EAC

E
P ← P + X

E ← 0

AC ← X

cil EAC

X ← AC

CTR ← CTR + 1

=1 =0

CTR =0 Stop ≠ 0

X =
Y =

P

13 Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE PROGRAM - Multiplication -

ORG 100
CLE
LDA Y
CIR
STA Y
SZE
BUN ONE
BUN ZRO
LDA X
ADD P
STA P
CLE
LDA X
CIL
STA X
ISZ CTR
BUN LOP
HLT
DEC -8
HEX 000F
HEX 000B
HEX 0
END

/ Clear E
/ Load multiplier
/ Transfer multiplier bit to E
/ Store shifted multiplier
/ Check if bit is zero
/ Bit is one; goto ONE
/ Bit is zero; goto ZRO
/ Load multiplicand
/ Add to partial product
/ Store partial product
/ Clear E
/ Load multiplicand
/ Shift left
/ Store shifted multiplicand
/ Increment counter
/ Counter not zero; repeat loop
/ Counter is zero; halt
/ This location serves as a counter
/ Multiplicand stored here
/ Multiplier stored here
/ Product formed here

LOP,

ONE,

ZRO,

CTR,
X,
Y,
P,

Programming Arithmetic and Logic Operations

14 Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE PROGRAM
- Double Precision Addition -

LDA AL
ADD BL
STA CL
CLA
CIL
ADD AH
ADD BH
STA CH
HLT

/ Load A low
/ Add B low, carry in E
/ Store in C low
/ Clear AC
/ Circulate to bring carry into AC(16)
/ Add A high and carry
/ Add B high
/ Store in C high

Programming Arithmetic and Logic Operations

15 Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE PROGRAM
- Logic and Shift Operations -

•  Logic operations
- BC instructions : AND, CMA, CLA
- Program for OR operation

LDA A
CMA
STA TMP
LDA B
CMA
AND TMP
CMA

/ Load 1st operand
/ Complement to get A’
/ Store in a temporary location
/ Load 2nd operand B
/ Complement to get B’
/ AND with A’ to get A’ AND B’
/ Complement again to get A OR B

•  Shift operations - BC has Circular Shift only
- Logical shift-right operation - Logical shift-left operation
 CLE CLE
 CIR CIL

- Arithmetic right-shift operation

CLE
SPA
CME
CIR

/ Clear E to 0
/ Skip if AC is positive
/ AC is negative
/ Circulate E and AC

Programming Arithmetic and Logic Operations

16 Programming the Basic Computer

Computer Organization

SUBROUTINES

- A set of common instructions that can be used in a program many times.
- Subroutine linkage : a procedure for branching
 to a subroutine and returning to the main program

ORG 100
LDA X
BSA SH4
STA X
LDA Y
BSA SH4
STA Y
HLT
HEX 1234
HEX 4321

HEX 0
CIL
CIL
CIL
CIL
AND MSK
BUN SH4 I
HEX FFF0
END

/ Main program
/ Load X
/ Branch to subroutine
/ Store shifted number
/ Load Y
/ Branch to subroutine again
/ Store shifted number

/ Subroutine to shift left 4 times
/ Store return address here
/ Circulate left once

/ Circulate left fourth time
/ Set AC(13-16) to zero
/ Return to main program
/ Mask operand

X,
Y,

SH4,

MSK,

100
101
102
103
104
105
106
107
108

109
10A
10B
10C
10D
10E
10F
110

Loc.

Subroutines

Subroutine

Example

17 Programming the Basic Computer

Computer Organization

SUBROUTINE PARAMETERS AND DATA LINKAGE

ORG 200
LDA X
BSA OR
HEX 3AF6
STA Y
HLT
HEX 7B95
HEX 0
HEX 0
CMA
STA TMP
LDA OR I
CMA
AND TMP
CMA
ISZ OR
BUN OR I
HEX 0
END

/ Load 1st operand into AC
/ Branch to subroutine OR
/ 2nd operand stored here
/ Subroutine returns here

/ 1st operand stored here
/ Result stored here
/ Subroutine OR
/ Complement 1st operand
/ Store in temporary location
/ Load 2nd operand
/ Complement 2nd operand
/ AND complemented 1st operand
/ Complement again to get OR
/ Increment return address
/ Return to main program
/ Temporary storage

X,
Y,
OR,

TMP,

200
201
202
203
204
205
206
207
208
209
20A
20B
20C
20D
20E
20F
210

Loc.
Example: Subroutine performing LOGICAL OR operation; Need two parameters

Subroutines

Linkage of Parameters and Data between the Main Program and a Subroutine
 - via Registers

 - via Memory locations
 - ….

18 Programming the Basic Computer

Computer Organization

SUBROUTINE - Moving a Block of Data -

BSA MVE
HEX 100
HEX 200
DEC -16
HLT
HEX 0
LDA MVE I
STA PT1
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE
LDA MVE I
STA CTR
ISZ MVE
LDA PT1 I
STA PT2 I
ISZ PT1
ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I
--
--
--

/ Main program
/ Branch to subroutine
/ 1st address of source data
/ 1st address of destination data
/ Number of items to move

/ Subroutine MVE
/ Bring address of source
/ Store in 1st pointer
/ Increment return address
/ Bring address of destination
/ Store in 2nd pointer
/ Increment return address
/ Bring number of items
/ Store in counter
/ Increment return address
/ Load source item
/ Store in destination
/ Increment source pointer
/ Increment destination pointer
/ Increment counter
/ Repeat 16 times
/ Return to main program

MVE,

LOP,

PT1,
PT2,
CTR,

•  Fortran subroutine
SUBROUTINE MVE (SOURCE, DEST, N)
DIMENSION SOURCE(N), DEST(N)
DO 20 I = 1, N
DEST(I) = SOURCE(I)
RETURN
END

20

Subroutines

19 Programming the Basic Computer

Computer Organization

INPUT OUTPUT PROGRAM

 Program to Input one Character(Byte)

SKI
BUN CIF
INP
OUT
STA CHR
HLT
--

 / Check input flag
 / Flag=0, branch to check again
 / Flag=1, input character
 / Display to ensure correctness
 / Store character

 / Store character here

CIF,

CHR,

LDA CHR
SKO
BUN COF
OUT
HLT
HEX 0057

/ Load character into AC
/ Check output flag
/ Flag=0, branch to check again
/ Flag=1, output character

/ Character is "W"

COF,

CHR,

Input Output Program

Program to Output a Character

20 Programming the Basic Computer

Computer Organization

CHARACTER MANIPULATION

--
SKI
BUN FST
INP
OUT
BSA SH4
BSA SH4
SKI
BUN SCD
INP
OUT
BUN IN2 I

/ Subroutine entry

/ Input 1st character

/ Logical Shift left 4 bits
/ 4 more bits

/ Input 2nd character

/ Return

IN2,
FST,

SCD,

Subroutine to Input 2 Characters and pack into a word

Input Output Program

21 Programming the Basic Computer

Computer Organization

PROGRAM INTERRUPT

Tasks of Interrupt Service Routine

 - Save the Status of CPU
 Contents of processor registers and Flags

 - Identify the source of Interrupt
 Check which flag is set

 - Service the device whose flag is set
 (Input Output Subroutine)

 - Restore contents of processor registers and flags

 - Turn the interrupt facility on

 - Return to the running program
 Load PC of the interrupted program

Input Output Program

22 Programming the Basic Computer

Computer Organization

INTERRUPT SERVICE ROUTINE

-
BUN SRV
CLA
ION
LDA X
ADD Y
STA Z

STA SAC
CIR
STA SE
SKI
BUN NXT
INP
OUT
STA PT1 I
ISZ PT1
SKO
BUN EXT
LDA PT2 I
OUT
ISZ PT2
LDA SE
CIL
LDA SAC
ION
BUN ZRO I
-
-
-
-

/ Return address stored here
/ Branch to service routine
/ Portion of running program
/ Turn on interrupt facility

/ Interrupt occurs here
/ Program returns here after interrupt

/ Interrupt service routine
/ Store content of AC
/ Move E into AC(1)
/ Store content of E
/ Check input flag
/ Flag is off, check next flag
/ Flag is on, input character
/ Print character
/ Store it in input buffer
/ Increment input pointer
/ Check output flag
/ Flag is off, exit
/ Load character from output buffer
/ Output character
/ Increment output pointer
/ Restore value of AC(1)
/ Shift it to E
/ Restore content of AC
/ Turn interrupt on
/ Return to running program
/ AC is stored here
/ E is stored here
/ Pointer of input buffer
/ Pointer of output buffer

ZRO,

SRV,

NXT,

EXT,

SAC,
SE,
PT1,
PT2,

 0
 1
100
101
102
103
104

200

Loc.

Input Output Program

P
ag

e1

Unit-III

Part-1: MICROPROGRAMMED CONTROL

Contents:

 Control memory
 Address Sequencing
 Microprogram Example
 Design of Control Unit

Introduction:

 The function of the control unit in a digital computer is to initiate sequence of microoperations.
 Control unit can be implemented in two ways

o Hardwired control
o Microprogrammed control

 Hardwired Control:

 When the control signals are generated by hardware using conventional logic design techniques, the control
unit is said to be hardwired.

 The key characteristics are
o High speed of operation
o Expensive
o Relatively complex
o No flexibility of adding new instructions

 Examples of CPU with hardwired control unit are Intel 8085, Motorola 6802, Zilog 80, and any RISC CPUs.

Microprogrammed Control:

 Control information is stored in control memory.
 Control memory is programmed to initiate the required sequence of micro-operations.
 The key characteristics are

o Speed of operation is low when compared with hardwired
o Less complex
o Less expensive
o Flexibility to add new instructions

 Examples of CPU with microprogrammed control unit are Intel 8080, Motorola 68000 and any CISC CPUs.

1. Control Memory:

 The control function that specifies a microoperation is called as control variable.
 When control variable is in one binary state, the corresponding microoperation is executed. For the other

binary state the state of registers does not change.
 The active state of a control variable may be either 1 state or the 0 state, depending on the application.
 For bus-organized systems the control signals that specify microoperations are groups of bits that select

the paths in multiplexers, decoders, and arithmetic logic units.
 Control Word: The control variables at any given time can be represented by a string of 1’s and 0's called a

control word.
 All control words can be programmed to perform various operations on the components of the system.
 Microprogram control unit: A control unit whose binary control variables are stored in memory is called a

microprogram control unit.
 The control word in control memory contains within it a microinstruction.
 The microinstruction specifies one or more micro-operations for the system.
 A sequence of microinstructions constitutes a microprogram.
 The control unit consists of control memory used to store the microprogram.
 Control memory is a permanent i.e., read only memory (ROM).
 The general configuration of a micro-programmed control unit organization is shown as block diagram below.

P
ag

e2

 The control memory is ROM so all control information is permanently stored.
 The control memory address register (CAR) specifies the address of the microinstruction and the control data

register (CDR) holds the microinstruction read from memory.
 The next address generator is sometimes called a microprogram sequencer. It is used to generate the next

micro instruction address.
 The location of the next microinstruction may be the one next in sequence or it may be located somewhere

else in the control memory.
 So it is necessary to use some bits of the present microinstruction to control the generation of the address of

the microinstruction.
 Sometimes the next address may also be a function of external input conditions.
 The control data register holds the present microinstruction while next address is computed and read from

memory. The data register is times called a pipeline register.

 A computer with a microprogrammed control unit will have two separate memories: a main memory and a

control memory
 The microprogram consists of microinstructions that specify various internal control signals for execution of

register microoperations
 These microinstructions generate the microoperations to:

 fetch the instruction from main memory

 evaluate the effective address

 execute the operation

 return control to the fetch phase for the next instruction

2. Address Sequencing:

 Microinstructions are stored in control memory in groups, with each group specifying a routine.
 Each computer instruction has its own microprogram routine to generate the microoperations.
 The hardware that controls the address sequencing of the control memory must be capable of sequencing the

microinstructions within a routine and be able to branch from one routine to another
 Steps the control must undergo during the execution of a single computer instruction:

o Load an initial address into the CAR when power is turned on in the computer. This address is usually
the address of the first microinstruction that activates the instruction fetch routine – IR holds
instruction

o The control memory then goes through the routine to determine the effective address of the operand
– AR holds operand address

o The next step is to generate the microoperations that execute the instruction by considering the
opcode and applying a mapping process.

 The transformation of the instruction code bits to an address in control memory where the
routine of instruction located is referred to as mapping process.

o After execution, control must return to the fetch routine by executing an unconditional branch
 In brief the address sequencing capabilities required in a control memory are:

o Incrementing of the control address register.
o Unconditional branch or conditional branch, depending on status bit conditions.
o A mapping process from the bits of the instruction to an address for control memory.

P
ag

e3

o A facility for subroutine call and return.
 The below figure shows a block diagram of a control memory and the associated hardware needed for

selecting the next microinstruction address.

 The microinstruction in control memory contains a set of bits to initiate microoperations in computer registers

and other bits to specify the method by which the next address is obtained.
 In the figure four different paths form which the control address register (CAR) receives the address.

o The incrementer increments the content of the control register address register by one, to select the
next microinstruction in sequence.

o Branching is achieved by specifying the branch address in one of the fields of the microinstruction.
o Conditional branching is obtained by using part of the microinstruction to select a specific status bit in

order to determine its condition.
o An external address is transferred into control memory via a mapping logic circuit.
o The return address for a subroutine is stored in a special register, that value is used when the

micoprogram wishes to return from the subroutine.

Conditional Branching:

 Conditional branching is obtained by using part of the microinstruction to select a specific status bit in order to
determine its condition.

 The status conditions are special bits in the system that provide parameter information such as the carry-out
of an adder, the sign bit of a number, the mode bits of an instruction, and i/o status conditions.

 The status bits, together with the field in the microinstruction that specifies a branch address, control the
branch logic.

P
ag

e4

 The branch logic tests the condition, if met then branches, otherwise, increments the CAR.
 If there are 8 status bit conditions, then 3 bits in the microinstruction are used to specify the condition and

provide the selection variables for the multiplexer.
 For unconditional branching, fix the value of one status bit to be one load the branch address from control

memory into the CAR.

Mapping of Instruction:

 A special type of branch exists when a microinstruction specifies a branch to the first word in control memory
where a microprogram routine is located.

 The status bits for this type of branch are the bits in the opcode.
 Assume an opcode of four bits and a control memory of 128 locations. The mapping process converts the 4-bit

opcode to a 7-bit address for control memory shown in below figure.

 Mapping consists of placing a 0 in the most significant bit of the address, transferring the four

operation code bits, and clearing the two least significant bits of the control address register.
 This provides for each computer instruction a microprogram routine with a capacity of four microinstructions.

Subroutines:

 Subroutines are programs that are used by other routines to accomplish a particular task and can be called
from any point within the main body of the microprogram.

 Frequently many microprograms contain identical section of code.
 Microinstructions can be saved by employing subroutines that use common sections of microcode.
 Microprograms that use subroutines must have a provision for storing the return address during a subroutine

call and restoring the address during a subroutine return.
 A subroutine register is used as the source and destination for the addresses

3. Microprogram Example:

 The process of code generation for the control memory is called microprogramming.
 The block diagram of the computer configuration is shown in below figure.
 Two memory units:

 Main memory – stores instructions and data

 Control memory – stores microprogram
 Four processor registers

 Program counter – PC

 Address register – AR

 Data register – DR

 Accumulator register - AC
 Two control unit registers

 Control address register – CAR

 Subroutine register – SBR

 Transfer of information among registers in the processor is through MUXs rather than a bus.

P
ag

e5

 The computer instruction format is shown in below figure.

 Three fields for an instruction:

 1-bit field for indirect addressing

 4-bit opcode

 11-bit address field

 The example will only consider the following 4 of the possible 16 memory instructions

 The microinstruction format for the control memory is shown in below figure.

P
ag

e6

 The microinstruction format is composed of 20 bits with four parts to it

 Three fields F1, F2, and F3 specify microoperations for the computer [3 bits each]

 The CD field selects status bit conditions [2 bits]

 The BR field specifies the type of branch to be used [2 bits]

 The AD field contains a branch address [7 bits]
 Each of the three microoperation fields can specify one of seven possibilities.
 No more than three microoperations can be chosen for a microinstruction.
 If fewer than three are needed, the code 000 = NOP.
 The three bits in each field are encoded to specify seven distinct microoperations listed in below table.

 Five letters to specify a transfer-type microoperation

 First two designate the source register

 Third is a ‘T’

 Last two designate the destination register
AC ← DR F1 = 100 = DRTAC

 The condition field (CD) is two bits to specify four status bit conditions shown below

 The branch field (BR) consists of two bits and is used with the address field to choose the address of the

next microinstruction.

P
ag

e7

 Each line of an assembly language microprogram defines a symbolic microinstruction and is divided into five

parts
1. The label field may be empty or it may specify a symbolic address. Terminate with a colon (:).
2. The microoperations field consists of 1-3 symbols, separated by commas. Only one symbol from each

field. If NOP, then translated to 9 zeros
3. The condition field specifies one of the four conditions
4. The branch field has one of the four branch symbols
5. The address field has three formats

a. A symbolic address – must also be a label
b. The symbol NEXT to designate the next address in sequence
c. Empty if the branch field is RET or MAP and is converted to 7 zeros

 The symbol ORG defines the first address of a microprogram routine.
 ORG 64 – places first microinstruction at control memory 1000000.

Fetch Routine:

 The control memory has 128 locations, each one is 20 bits.
 The first 64 locations are occupied by the routines for the 16 instructions, addresses 0-63.
 Can start the fetch routine at address 64.
 The fetch routine requires the following three microinstructions (locations 64-66).
 The microinstructions needed for fetch routine are:

 It’s Symbolic microprogram:

 It’s Binary microprogram:

P
ag

e8

4. Design of control Unit:

 The control memory out of each subfield must be decoded to provide the distinct microoperations.
 The outputs of the decoders are connected to the appropriate inputs in the processor unit.
 The below figure shows the three decoders and some of the connections that must be made from their

outputs.

 The three fields of the microinstruction in the output of control memory are decoded with a 3x8 decoder to

provide eight outputs.
 Each of the output must be connected to proper circuit to initiate the corresponding microoperation as

specified in previous topic.
 When F1 = 101 (binary 5), the next pulse transition transfers the content of DR (0-10) to AR.
 Similarly, when F1= 110 (binary 6) there is a transfer from PC to AR (symbolized by PCTAR). As shown

in Fig, outputs 5 and 6 of decoder F1 are connected to the load input of AR so that when either
one of these outputs is active, information from the multiplexers is transferred to AR.

 The multiplexers select the information from DR when output 5 is active and from PC when
output 5 is inactive.

 The transfer into AR occurs with a clock transition only when output 5 or output 6 of the decoder is
active.

 For the arithmetic logic shift unit the control signals are instead of coming from the logical gates,
now these inputs will now come from the outputs of AND, ADD and DRTAC respectively.

Microprogram Sequencer:

 The basic components of a microprogrammed control unit are the control memory and the circuits that select
the next address.

 The address selection part is called a microprogram sequencer.
 The purpose of a microprogram sequencer is to present an address to the control memory so that a

microinstruction may be read and executed.
 The next-address logic of the sequencer determines the specific address source to be loaded into the control

address register.
 The block diagram of the microprogram sequencer is shown in below figure.
 The control memory is included in the diagram to show the interaction between the sequencer and the

memory attached to it.
 There are two multiplexers in the circuit.

o The first multiplexer selects an address from one of four sources and routes it into control address
register CAR.

o The second multiplexer tests the value of a selected status bit and the result of the test is applied to
an input logic circuit.

 The output from CAR provides the address for the control memory.

P
ag

e9

 The content of CAR is incremented and applied to one of the multiplexer inputs and to the subroutine register
SBR.

 The other three inputs to multiplexer come from
o The address field of the present microinstruction
o From the out of SBR
o From an external source that maps the instruction

 The CD (condition) field of the microinstruction selects one of the status bits in the second multiplexer.
 If the bit selected is equal to 1, the T variable is equal to 1; otherwise, it is equal to 0.
 The T value together with two bits from the BR (branch) field goes to an input logic circuit.
 The input logic in a particular sequencer will determine the type of operations that are available in the unit.

 The input logic circuit in above figure has three inputs I0, I1, and T, and three outputs, S0, S1, and L.
 Variables S0 and S1 select one of the source addresses for CAR. Variable L enables the load input in SBR.
 The binary values of the selection variables determine the path in the multiplexer.
 For example, with S1,S0 = 10, multiplexer input number 2 is selected and establishes transfer path from SBR to

CAR.
 The truth table for the input logic circuit is shown in Table below.

 Inputs I1 and I0 are identical to the bit values in the BR field.
 The bit values for S1 and S0 are determined from the stated function and the path in the multiplexer that

establishes the required transfer.
 The subroutine register is loaded with the incremented value of CAR during a call microinstruction (BR = 01)

provided that the status bit condition is satisfied (T = 1).
 The truth table can be used to obtain the simplified Boolean functions for the input logic circuit:

 S1=I1

 S0=I1I0+I’1T
 L = I’1T I0

