
Computer Graphics & Multimedia (5CS4-04) 

   Computer Science and Engineering Department 

 

Vision of the Department 

To become renowned Centre of excellence in computer science and engineering and make 

competent engineers & professionals with high ethical values prepared for lifelong learning. 

 

Mission of the Department 

● To impart outcome based education for emerging technologies in the field of computer 

science and engineering.   

● To provide opportunities for interaction between academia and industry.   

● To provide platform for lifelong learning by accepting the change in technologies. 

● To develop aptitude of fulfilling social responsibilities. 

 

Program Outcomes (PO): 

• Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems.  

• Problem analysis: Identify, formulate, research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences.  

• Design/development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and 

environmental considerations.  

• Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions.  

• Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations.  

• The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice.  

• Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development.  



• Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice.  

• Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings.  

• Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, and 

give and receive clear instructions.  

• Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a 

member and leader in a team, to manage projects and in multidisciplinary 

environments.  

• Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 

change.  

 

Program Educational Objectives (PEO): 

PEO1:  To provide students with the fundamentals of Engineering  Sciences with more 

emphasis     in computer science and engineering by way of analyzing  and exploiting 

engineering challenges. 

 

PEO2:  To train students with good scientific and engineering knowledge so as to comprehend, 

analyze, design, and create novel products and solutions for the real life problems. 

 

PEO3:  To inculcate professional and ethical attitude, effective communication skills, 

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate 

engineering issues with social issues. 

 

PEO4:  To provide students with an academic environment aware of excellence,leadership, 

written ethical codes and guidelines, and the self-motivated life-long learning needed for a 

successful professional career. 

 

PEO5:  To prepare students to excel in Industry and Higher education by educating Students 

along with High moral values and Knowledge. 

 

 

Program Specific Outcome (PSO): 

PSO: Ability to interpret and analyze network specific and cyber security issues, automation 

in real word environment. 

PSO2: Ability to Design and Develop Mobile and Web-based applications under realistic 

constraints. 

 



Course Outcome (CO): 

CO1: Implement geometric images using graphical input techniques 

CO2: Design and develop images with the help of 2D & 3D transformations. 

CO3: Identify visible surfaces for generation of realistic graphics display and curves 

representation. 

CO4: Analyse multimedia and animation techniques. 

 

CO-PO Mapping  

Computer Graphics & Multimedia Techniques 5CS4-04 

  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

CO1 : Implement 

geometric images 

using graphical input 

techniques 

3 2 3 2 2 1 1 1 1 2 1 3 

CO2: Design and 

develop images with 

the help of 2D & 3D 

transformations. 

3 2 3 2 2 2 1 1 1 2 1 3 

CO3: Identify visible 

surfaces for 

generation of realistic 

graphics display and 

curves representation. 

3 3 3 3 2 2 1 2 1 2 1 3 

CO4: Analyse 

multimedia and 

animation techniques. 
3 3 3 3 3 2 2 1 1 2 2 3 

 

 

 

CO-PSO Mapping 

 CO’s PSO1 PSO2 

CO1: Implement geometric images using graphical input 

techniques 
2 2 

CO2: Design and develop images with the help of 2D & 3D 

transformations. 
2 2 

CO3: Identify visible surfaces for generation of realistic 

graphics display and curves representation. 
2 2 

CO4: Analyse multimedia and animation techniques. 2 2 

 



 

 

 

 

 

 

 

 

 



Lecture Plan of Computer Graphics & Multimedia Techniques ( CGMT)   

5CS4-04 
 

 
Unit 

No./ 

Total 

lec. 

Req. 

Topics  
Lect. 

Req. 

Unit-

1(1) 

Introduction: Objective, scope and outcome of the course. 
1 

Unit-2 

(6) 

Basic of Computer Graphics 1 

Applications of computer graphic, Display devices 2 

Random and Raster scan systems 1 

Graphics input devices, Graphics software and standards 2 

Unit-

3(7) 

Points,lines,circles and ellipses as primitives, scan conversion algorithms for primitives 3 

Fill area primitives including scan- line polygon filling, inside-outside test, boundary and 

flood-fill 

2 

character generation, line attributes, area-fill attributes, character attributers. Aliasing, and 

introduction to Anti Aliasing (No anti aliasing algorithm) 

2 

Unit- 

4(8)- 

Transformations (translation, rotation, scaling), matrix representation 1 

homogeneous coordinates, composite transformations, reflection  and  shearing 1 

viewing   pipeline   and coordinates system 2 

window-to-viewport  transformation,  clipping  including point clipping 2 

line clipping (cohen-sutherland,liang-  bersky, NLN), polygon clipping 2 

Unit- 

5(8) 

3D display methods, polygon surfaces, tables, equations, meshes, curved lies and surfaces 2 

quadric surfaces, spline representation, cubic spline interpolation methods, Bazier curves 

and surfaces 
2 

B-spline curves and surfaces.3D scaling, rotation and translation, composite 

transformation 
2 

viewing pipeline and coordinates, parallel and perspective transformation 1 

view volume and general (parallel and perspective) projection transformations. 1 

Unit-

6(6) 

Light sources – basic illumination models – halftone patterns and dithering techniques 
1 



 

Properties of light – Standard primaries and chromaticity diagram 2 

Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – 

HSV colour model – HLS colour model 
2 

Colour selection. 1 

Unit- 

7(6) 

Design of Animation sequences – animation function – raster animation – key frame 

systems – motion specification – morphing – tweening 3 

Tiling  the  plane  –  Recursively  defined curves – Koch curves – C curves – Dragons – 

space filling curves –fractals – Grammar based models – fractals – turtle graphics – ray 

tracing. 

 

3 

 
Total No. of Lecture 

 
42 

 

This schedule is tentative and is subject to minimal changes during teaching. 
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Unit-3 – 2D Transformation & Viewing 

Transformation 

Changing Position, shape, size, or orientation of an object on display is known as transformation. 
 

Basic Transformation 

 Basic transformation includes three transformations Translation, Rotation, and Scaling. 

 These three transformations are known as basic transformation because with combination of these 

three transformations we can obtain any transformation. 
 

Translation 
 

 
Fig. 3.1: - Translation. 

 It is a transformation that used to reposition the object along the straight line path from one coordinate 

location to another. 

 It is rigid body transformation so we need to translate whole object. 

 We translate two dimensional point by adding translation distance 𝒕𝒙 and 𝒕𝒚 to the original coordinate 

position (𝒙, 𝒚) to move at new position (𝒙′, 𝒚′) as: 

𝒙′  = 𝒙 + 𝒕𝒙 & 𝒚′ = 𝒚 + 𝒕𝒚 

 Translation distance pair (𝒕𝒙,𝒕𝒚) is called a Translation Vector or Shift Vector. 

 We can represent it into single matrix equation in column vector as; 

𝑷′ = 𝑷 + 𝑻 

𝒙′ 

[𝒚′] = 
𝒙 

[𝒚] + 
𝒕𝒙 

[𝒕𝒚
] 

 We can also represent it in row vector form as: 

𝑷′ = 𝑷 + 𝑻 

[𝒙′ 𝒚′] = [𝒙 𝒚] + [𝒕𝒙 𝒕𝒚] 

 Since column vector representation is standard mathematical notation and since many graphics package 

like GKS and PHIGS uses column vector we will also follow column vector representation. 

 Example: - Translate the triangle [A (10, 10), B (15, 15), C (20, 10)] 2 unit in x direction and 1 unit in y 

direction. 

We know that 

𝑃′ = 𝑃 + 𝑇 

𝑃′ = [𝑃] + 
𝑡𝑥 

(𝒙′, 𝒚′) 

𝒕𝒚 

(𝒙, 𝒚) 

𝒕𝒙 
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[
𝑡
𝑦
] 
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For point (10, 10) 

𝐴′ = [
10

] + [
2

] 
10 1 

𝐴′ = [
12

] 
11 

For point (15, 15) 
𝐵′ = [

15
] + [

2
] 

15 1 

𝐵′ = [
17

] 
16 

For point (10, 10) 
𝐶′ = [

20
] + [

2
] 

10 1 

𝐶′ = [
22

] 
11 

 Final coordinates after translation are [A’ (12, 11), B’ (17, 16), C’ (22, 11)]. 

Rotation 

 It is a transformation that used to reposition the object along the circular path in the XY - plane. 

 To generate a rotation we specify a rotation angle 𝜽 and the position of the Rotation Point  (Pivot  

Point) (𝒙𝒓,𝒚𝒓) about which the object is to be rotated. 

 Positive value of rotation angle defines counter clockwise rotation and negative value of rotation angle 

defines clockwise rotation. 

 We first find the equation of rotation when pivot point is at coordinate origin(𝟎, 𝟎). 
 

 

Fig. 3.2: - Rotation. 

 From figure we can write. 

𝒙 = 𝒓 𝐜𝐨𝐬 ∅ 

𝒚 = 𝒓 𝐬𝐢𝐧 ∅ 

and 

𝒙′  = 𝒓 𝐜𝐨𝐬(𝜽 + ∅) = 𝒓 𝐜𝐨𝐬 ∅ 𝐜𝐨𝐬 𝜽 − 𝒓 𝐬𝐢𝐧 ∅ 𝐬𝐢𝐧 𝜽 

𝒚′  = 𝒓 𝐬𝐢𝐧(∅ + 𝜽) = 𝒓 𝐜𝐨𝐬 ∅ 𝐬𝐢𝐧 𝜽 + 𝒓 𝐬𝐢𝐧 ∅ 𝐜𝐨𝐬 𝜽 

 Now replace 𝒓 𝐜𝐨𝐬 ∅ with 𝒙 and 𝒓 𝐬𝐢𝐧 ∅ with 𝒚 in above equation. 

𝒙′  = 𝒙 𝐜𝐨𝐬 𝜽 − 𝒚 𝐬𝐢𝐧 𝜽 

𝒚′  = 𝒙 𝐬𝐢𝐧 𝜽 + 𝒚 𝐜𝐨𝐬 𝜽 

 We can write it in the form of column vector matrix equation as; 

𝑷′ = 𝑹 ∙ 𝑷 

(𝒙′, 𝒚′) 

(𝒙, 𝒚) 

𝜽 

∅ 
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[   ] [ 

4 3 8 

𝒙′   
=   

𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧 𝜽 
∙ 

𝒙 

𝒚′ 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 
]
 

[𝒚] 

 Rotation about arbitrary point is illustrated in below figure. 
 

 
Fig. 3.3: - Rotation about pivot point. 

 Transformation equation for rotation of a point about pivot point (𝒙𝒓,𝒚𝒓) is: 

𝒙′ = 𝒙𝒓 + (𝒙 − 𝒙𝒓) 𝐜𝐨𝐬 𝜽 − (𝒚 − 𝒚𝒓) 𝐬𝐢𝐧 𝜽 

𝒚′ = 𝒚𝒓 + (𝒙 − 𝒙𝒓) 𝐬𝐢𝐧 𝜽 + (𝒚 − 𝒚𝒓) 𝐜𝐨𝐬 𝜽 

 These equations are differing from rotation about origin and its matrix representation is also different. 

 Its matrix equation can be obtained by simple method that we will discuss later in this chapter. 

 Rotation is also rigid body transformation so we need to rotate each point of object. 

 Example: - Locate the new position of the triangle [A (5, 4), B (8, 3), C (8, 8)] after its rotation by 90o 

clockwise about the origin. 

As rotation is clockwise we will take 𝜃 = −90°. 

𝑃′ = 𝑅 ∙ 𝑃 

𝑃′  = [
cos(−90) − sin(−90) 5 8 8 

sin(−90) cos(−90) 
] [ ]

 
𝑃′  = [ 

0 1
] [

5 8 8
] 

−1 0    4 3 8 

𝑃′  = [ 
4 3 8 

] 
−5 −8 −8 

 Final coordinates after rotation are [A’ (4, -5), B’ (3, -8), C’ (8, -8)]. 

Scaling 
 

 
Fig. 3.4: - Scaling. 

(𝒙′, 𝒚′) 

(𝒙, 𝒚) 

𝜽 

∅ 

(𝒙𝒓, 𝒚𝒓) 
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= 
𝒙 

 It is a transformation that used to alter the size of an object. 

 This operation is carried out by multiplying coordinate value (𝒙, 𝒚) with scaling factor (𝒔𝒙, 𝒔𝒚) 

respectively. 

 So equation for scaling is given by: 

𝒙′  = 𝒙 ∙ 𝒔𝒙 

𝒚′  = 𝒚 ∙ 𝒔𝒚 

 These equation can be represented in column vector matrix equation as: 

𝑷′ = 𝑺 ∙ 𝑷 
𝒙′ 𝒔 𝟎 [   ] [ ∙ 

𝒙 

𝒚′ 𝟎 𝒔𝒚
] 

[𝒚] 

 Any positive value can be assigned to(𝒔𝒙, 𝒔𝒚). 

 Values less than 1 reduce the size while values greater than 1 enlarge the size of object, and object  

remains unchanged when values of both factor is 1. 

 Same values of 𝒔𝒙 and 𝒔𝒚 will produce Uniform Scaling. And different values of 𝒔𝒙 and 𝒔𝒚 will produce 

Differential Scaling. 

 Objects transformed with above equation are both scale and repositioned. 

 Scaling factor with value less than 1 will move object closer to origin, while scaling factor with value  

greater than 1 will move object away from origin. 

 We can control the position of object after scaling by keeping one position fixed called Fix point (𝒙𝒇, 𝒚𝒇) 

that point will remain unchanged after the scaling transformation. 

 
Fig. 3.5: - Fixed point scaling. 

    Equation for scaling with fixed point position as (𝒙𝒇, 𝒚𝒇) is: 

𝒙′  = 𝒙𝒇 + (𝒙 − 𝒙𝒇)𝒔𝒙 𝒚′  = 𝒚𝒇 + (𝒚 − 𝒚𝒇)𝒔𝒚 

𝒙′  = 𝒙𝒇 + 𝒙𝒔𝒙 − 𝒙𝒇𝒔𝒙 𝒚′  = 𝒚𝒇 + 𝒚𝒔𝒚 − 𝒚𝒇𝒔𝒚 

𝒙′  = 𝒙𝒔𝒙 + 𝒙𝒇(𝟏 − 𝒔𝒙) 𝒚′ = 𝒚𝒔𝒚 + 𝒚𝒇(𝟏 − 𝒔𝒚) 

 Matrix equation for the same will discuss in later section. 

 Polygons are scaled by applying scaling at coordinates and redrawing while other body like circle and 

ellipse will scale using its defining parameters. For example ellipse will scale using its semi major axis, 

semi minor axis and center point scaling and redrawing at that position. 

 Example: - Consider square with left-bottom corner at (2, 2) and right-top corner at (6, 6) apply the 

transformation which makes its size half. 

As we want size half so value of scale factor are 𝑠𝑥 = 0.5, 𝑠𝑦 = 0.5 and Coordinates of square are [A (2,  

2), B (6, 2), C (6, 6), D (2, 6)]. 

𝑃′ = 𝑆 ∙ 𝑃 

Fixed Point 
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𝒙 𝒚 

𝑃′ = [
𝑠𝑥 0 

] [
2 6 6 2

] 
0 𝑠𝑦 2 2 6 6 

𝑃′  = [
0.5 0 

] [
2 6 6 2

]
 

0 0.5 

𝑃′ = [1 3 3 
1 1 3 

2 2 6 6 
1

]
 

3 
 Final coordinate after scaling are [A’ (1, 1), B’ (3, 1), C’ (3, 3), D’ (1, 3)]. 

Matrix Representation and homogeneous coordinates 

 Many graphics application involves sequence of geometric transformations. 

 For example in design and picture construction application we perform Translation, Rotation, and scaling 

to fit the picture components into their proper positions. 

 For efficient processing we will reformulate transformation sequences. 

 We have matrix representation of basic transformation and we can express it in the general matrix form 

as: 

𝑷′ = 𝑴𝟏 ∙ 𝑷 + 𝑴𝟐 

Where 𝑷 and 𝑷′ are initial and final point position, 𝑴𝟏 contains rotation and scaling terms and 𝑴𝟐 

contains translation al terms associated with pivot point, fixed point and reposition. 

 For efficient utilization we must calculate all sequence of transformation in one step and for that reason 

we reformulate above equation to eliminate the matrix addition associated with translation terms in 

matrix 𝑴𝟐. 

 We can combine that thing by expanding 2X2 matrix representation into 3X3 matrices. 

 It will allows us to convert all transformation into matrix multiplication but we need to represent vertex 
position (𝒙, 𝒚) with homogeneous coordinate triple (𝒙𝒉, 𝒚𝒉, 𝒉) Where 𝒙 = 𝒙𝒉 , 𝒚 = 𝒚𝒉 thus we can also 

write triple as (𝒉 ∙ 𝒙, 𝒉 ∙ 𝒚, 𝒉). 
𝒉 𝒉 

 For two dimensional geometric transformation we can take value of 𝒉 is any positive number so we can 

get infinite homogeneous representation for coordinate value (𝒙, 𝒚). 

 But convenient choice is set 𝒉 = 𝟏 as it is multiplicative identity, than (𝒙, 𝒚) is represented as (𝒙, 𝒚, 𝟏). 

 Expressing coordinates in homogeneous coordinates form allows us to represent all geometric 

transformation equations as matrix multiplication. 

 Let’s see each representation with 𝒉 = 𝟏 

Translation 

𝑷′ = 𝑻(𝒕 ,𝒕 ) ∙ 𝑷 

𝒙′ 𝟏 𝟎 𝒕𝒙 𝒙 
[𝒚′] = [𝟎 𝟏 𝒕𝒚] [𝒚] 

𝟏 𝟎 𝟎 𝟏 𝟏 
NOTE: - Inverse of translation matrix is obtain by putting −𝒕𝒙 & − 𝒕𝒚 instead of 𝒕𝒙 & 𝒕𝒚. 

Rotation 

𝑷′ = 𝑹(𝜽) ∙ 𝑷 

𝒙′ 𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧 𝜽 𝟎 𝒙 
[𝒚′] = [𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝟎] [𝒚] 

𝟏 𝟎 𝟎 𝟏 𝟏 
NOTE: - Inverse of rotation matrix is obtained by replacing 𝜽 by −𝜽. 

Scaling 

𝑷′ = 𝑺(𝒔𝒙,𝒔𝒚) ∙ 𝑷 
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𝒔 

𝒙′ 𝒔𝒙 𝟎 𝟎 𝒙 
[𝒚′] = [ 𝟎 𝒔𝒚 𝟎] [𝒚] 

𝟏 𝟎 𝟎 𝟏 𝟏 

NOTE: - Inverse of scaling matrix is obtained by replacing 𝒔𝒙 & 𝒔𝒚 by 𝟏 
𝒙 

& 𝟏 respectively. 
𝒔𝒚 

Composite Transformation 

 We can set up a matrix for any sequence of transformations as a composite transformation matrix by 

calculating the matrix product of individual transformation. 

 For column matrix representation of coordinate positions, we form composite transformations by 

multiplying matrices in order from right to left. 
 

Translations 

 Two successive translations are performed as: 

𝑷′ = 𝑻(𝒕𝒙𝟐, 𝒕𝒚𝟐) ∙ {𝑻(𝒕𝒙𝟏, 𝒕𝒚𝟏) ∙ 𝑷} 

𝑷′  = {𝑻(𝒕𝒙𝟐, 𝒕𝒚𝟐) ∙ 𝑻(𝒕𝒙𝟏, 𝒕𝒚𝟏)} ∙ 𝑷 

𝟏 𝟎 𝒕𝒙𝟐 𝟏 𝟎 𝒕𝒙𝟏 

𝑷′ = [𝟎 𝟏 𝒕𝒚𝟐] [𝟎 𝟏 𝒕𝒚𝟏] ∙ 𝑷 
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 
𝟏 𝟎 𝒕𝒙𝟏 + 𝒕𝒙𝟐 

𝑷′  = [𝟎 𝟏 𝒕𝒚𝟏 + 𝒕𝒚𝟐] ∙ 𝑷 

𝟎 𝟎 𝟏 
𝑷′ = 𝑻(𝒕𝒙𝟏 + 𝒕𝒙𝟐, 𝒕𝒚𝟏 + 𝒕𝒚𝟐) ∙ 𝑷} 

Here 𝑷′ and 𝑷 are column vector of final and initial point coordinate respectively. 

 This concept can be extended for any number of successive translations. 

Example: Obtain the final coordinates after two translations on point 𝑝(2,3) with translation vector 

(4, 3) and (−1, 2) respectively. 
 

𝑃′ = 𝑇(𝑡𝑥1 + 𝑡𝑥2, 𝑡𝑦1 + 𝑡𝑦2) ∙ 𝑃 
 

1 0 𝑡𝑥1 + 𝑡𝑥2 1 0 4 + (−1) 2 
𝑃′ = [0 1 𝑡𝑦1  + 𝑡𝑦2] ∙ 𝑃 = [0 1 3 + 2 ] ∙ [3] 

0 0 1 0 0 1 1 

1 0 3 2 5 
𝑃′ = [0 1 5] ∙ [3] = [8] 

0 0 1 1 1 

Final Coordinates after translations are 𝑝,(5, 8). 

Rotations 

 Two successive Rotations are performed as: 

𝑷′  =  𝑹(𝜽𝟐) ∙ {𝑹(𝜽𝟏) ∙ 𝑷} 

𝑷′  =  {𝑹(𝜽𝟐) ∙ 𝑹(𝜽𝟏)} ∙ 𝑷 
𝐜𝐨𝐬 𝜽𝟐 − 𝐬𝐢𝐧 𝜽𝟐 𝟎 𝐜𝐨𝐬 𝜽𝟏 −𝐬𝐢𝐧 𝜽𝟏 𝟎 

𝑷′ = [𝐬𝐢𝐧 𝜽𝟐 𝐜𝐨𝐬 𝜽𝟐 𝟎] [𝐬𝐢𝐧 𝜽𝟏 𝐜𝐨𝐬 𝜽𝟏 𝟎] ∙ 𝑷 
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 

𝐜𝐨𝐬 𝜽𝟐 𝐜𝐨𝐬 𝜽𝟏 − 𝐬𝐢𝐧 𝜽𝟐 𝐬𝐢𝐧 𝜽𝟏 − 𝐬𝐢𝐧 𝜽𝟏 𝐜𝐨𝐬 𝜽𝟐 − 𝐬𝐢𝐧 𝜽𝟐 𝐜𝐨𝐬 𝜽𝟏 𝟎 
𝑷′ = [𝐬𝐢𝐧 𝜽𝟏 𝐜𝐨𝐬 𝜽𝟐 + 𝐬𝐢𝐧 𝜽𝟐 𝐜𝐨𝐬 𝜽𝟏 𝐜𝐨𝐬 𝜽𝟐 𝐜𝐨𝐬 𝜽𝟏 − 𝐬𝐢𝐧 𝜽𝟐 𝐬𝐢𝐧 𝜽𝟏 𝟎] ∙ 𝑷 

𝟎 𝟎 𝟏 
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𝐜𝐨𝐬(𝜽𝟏 + 𝜽𝟐) −𝐬𝐢𝐧(𝜽𝟏 + 𝜽𝟐) 𝟎 
𝑷′  = [𝐬𝐢𝐧(𝜽𝟏 + 𝜽𝟐) 𝐜𝐨𝐬(𝜽𝟏 + 𝜽𝟐) 𝟎] ∙ 𝑷 

𝟎 𝟎 𝟏 
𝑷′ = 𝑹(𝜽𝟏 + 𝜽𝟐) ∙ 𝑷 

Here 𝑷′ and 𝑷 are column vector of final and initial point coordinate respectively. 

 This concept can be extended for any number of successive rotations. 

Example: Obtain the final coordinates after two rotations on point 𝑝(6,9) with rotation angles are 30𝑜 and 

60𝑜 respectively. 

𝑃′ = 𝑅(𝜃1 + 𝜃2) ∙ 𝑃 

𝑐𝑜𝑠(𝜃1 + 𝜃2) −𝑠𝑖𝑛(𝜃1 + 𝜃2) 0 
𝑃′  = [𝑠𝑖𝑛(𝜃1 + 𝜃2) 𝑐𝑜𝑠(𝜃1 + 𝜃2) 0] ∙ 𝑃 0

  0 1 
𝑐𝑜𝑠(30 + 60) −𝑠𝑖𝑛(30 + 60) 0 

𝑃′  = [𝑠𝑖𝑛(30 + 60) 𝑐𝑜𝑠(30 + 60) 0] ∙ 𝑃 0
  0 1 

0 −1 0 6 −9 
𝑃′ = [1 0 0] ∙ [9] = [ 6 ] 

0 0 1 1 1 

Final Coordinates after rotations are 𝑝,(−9, 6). 

 
Scaling 

 Two successive scaling are performed as: 

𝑷′  = 𝑺(𝒔𝒙𝟐, 𝒔𝒚𝟐) ∙ {𝑺(𝒔𝒙𝟏, 𝒔𝒚𝟏) ∙ 𝑷} 

𝑷′  = {𝑺(𝒔𝒙𝟐, 𝒔𝒚𝟐) ∙ 𝑺(𝒔𝒙𝟏, 𝒔𝒚𝟏)} ∙ 𝑷 

𝒔𝒙𝟐 𝟎 𝟎 𝒔𝒙𝟏 𝟎 𝟎 

𝑷′  = [ 𝟎 𝒔𝒚𝟐 𝟎] [ 𝟎 𝒔𝒚𝟏 𝟎] ∙ 𝑷 
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 

𝑷′ = [ 
𝒔𝒙𝟏 ∙ 𝒔𝒙𝟐 𝟎 𝟎 

𝟎 𝒔𝒚𝟏 ∙ 𝒔𝒚𝟐 𝟎] ∙ 𝑷 
𝟎 𝟎 𝟏 

𝑷′ = 𝑺(𝒔𝒙𝟏 ∙ 𝒔𝒙𝟐, 𝒔𝒚𝟏 ∙ 𝒔𝒚𝟐) ∙ 𝑷 

Here 𝑷′ and 𝑷 are column vector of final and initial point coordinate respectively. 

 This concept can be extended for any number of successive scaling. 

Example: Obtain the final coordinates after two scaling on line 𝑝𝑞 [𝑝(2,2), 𝑞(8, 8)] with scaling factors are 

(2, 2) and (3, 3) respectively. 
 

𝑃′ = 𝑆(𝑠𝑥1 ∙ 𝑠𝑥2, 𝑠𝑦1 ∙ 𝑠𝑦2) ∙ 𝑃 
 

 
𝑃′ = [ 

𝑠𝑥1 ∙ 𝑠𝑥2 0 0 
0 𝑠𝑦1 ∙ 𝑠𝑦2 0] ∙ 𝑃 = [ 

0 0 1 

2 ∙ 3 0 0 
0 2 ∙ 3 0] ∙ 𝑃 
0 0 1 

6 0 0 2 8 12 48 
𝑃′ = [0 6 0] ∙ [2 8] = [12 48] 

0 0 1 1 1 1 1 

Final Coordinates after rotations are 𝑝,(12, 12) and 𝑞,(48, 48). 

General Pivot-Point Rotation 
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(a) 
Original Position 
of Object and 

Pivot Point. 

(b) 
Translation of Object 
so that Pivot Point 
(𝒙𝒓, 𝒚𝒓) is at Origin. 

(c) 
Rotation 

about 
Origin. 

(d) 
Translation of Object so 
that Pivot Point is Return 

to Position (𝒙𝒓, 𝒚𝒓) . 
 

Fig. 3.6: - General pivot point rotation. 

 For rotating object about arbitrary point called pivot point we need to apply following sequence of 

transformation. 

1. Translate the object so that the pivot-point coincides with the coordinate origin. 

2. Rotate the object about the coordinate origin with specified angle. 

3. Translate the object so that the pivot-point is returned to its original position (i.e. Inverse of step-1). 

 Let’s find matrix equation for this 

𝑷′ = 𝑻(𝒙𝒓, 𝒚𝒓) ∙ [𝑹(𝜽) ∙ {𝑻(−𝒙𝒓, −𝒚𝒓) ∙ 𝑷}] 

𝑷′ = {𝑻(𝒙𝒓, 𝒚𝒓) ∙ 𝑹(𝜽) ∙ 𝑻(−𝒙𝒓, −𝒚𝒓)} ∙ 𝑷 
𝟏 𝟎 𝒙𝒓 𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧 𝜽 𝟎 𝟏 𝟎 −𝒙𝒓 

𝑷′ = [𝟎 𝟏 𝒚𝒓] [𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝟎] [𝟎 𝟏 −𝒚𝒓] ∙ 𝑷 
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 
𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧 𝜽 𝒙𝒓(𝟏 − 𝐜𝐨𝐬 𝜽) + 𝒚𝒓 𝐬𝐢𝐧 𝜽 

𝑷′ =  [𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝒚𝒓(𝟏 − 𝐜𝐨𝐬 𝜽) − 𝒙𝒓 𝐬𝐢𝐧 𝜽] ∙ 𝑷 
𝟎 𝟎 𝟏 

𝑷′ = 𝑹(𝒙𝒓, 𝒚𝒓𝜽) ∙ 𝑷 

Here 𝑷′ and 𝑷 are column vector of final and initial point coordinate respectively and (𝒙𝒓, 𝒚𝒓) are the 

coordinates of pivot-point. 

 Example: - Locate the new position of the triangle [A (5, 4), B (8, 3), C (8, 8)] after its rotation by 90o 

clockwise about the centroid. 

Pivot point is centroid of the triangle so: 

𝑥   = 
5 + 8 + 8 

=  7 , 𝑦 
 

 = 
4 + 3 + 8 

= 5
 

 
 

𝑟 3 𝑟 3 

As rotation is clockwise we will take 𝜃 = −90°. 
𝑃′ = 𝑅(𝑥 , 𝑦 ,𝜃) ∙ 𝑃 

𝑟 𝑟 

cos 𝜃 − sin 𝜃 𝑥𝑟(1 − cos 𝜃) + 𝑦𝑟 sin 𝜃 5 8 8 
𝑃′  = [sin 𝜃 cos 𝜃 𝑦𝑟(1 − cos 𝜃) − 𝑥𝑟 sin 𝜃] [4 3 8] 

0 0 1 1 1 1 
cos(−90) − sin(−90) 7(1 − cos(−90)) + 5 sin(−90) 5 8 8 

𝑃′ = [sin(−90) cos(−90) 5(1 − cos(−90)) − 7 sin(−90)] [4 3 8] 
0 0  1 1 1 1 

0 1 7(1 − 0) − 5(1) 5 8 8   

𝑃′ = [−1 0 5(1 − 0) + 7(1)] [4 3 8]   

0 0 
0 1 

1 1 1 1 
2 5 8 8 

𝑃′ = [−1 0 12] [4 3 8] 
0 0 1 1 1 1 

(𝒙𝒓, 𝒚𝒓) (𝒙𝒓, 𝒚𝒓) 
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11 13 18 
𝑃′  = [ 7 4 4 ] 

1 1 1 
 Final coordinates after rotation are [A’ (11, 7), B’ (13, 4), C’ (18, 4)]. 

General Fixed-Point Scaling 
 

(a) 
Original Position 
of Object and 

Fixed Point 

(b) 
Translate Object so 

that Fixed Point 

(𝒙𝒇, 𝒚𝒇) is at Origin 

(c) 
Scale Object with 
Respect to Origin 

(d) 
Translate Object so that 

Fixed Point is Return to 

Position (𝒙𝒇, 𝒚𝒇) . 

 

Fig. 3.7: - General fixed point scaling. 

 For scaling object with position of one point called fixed point will remains same, we need to apply 

following sequence of transformation.

1. Translate the object so that the fixed-point coincides with the coordinate origin. 

2. Scale the object with respect to the coordinate origin with specified scale factors. 

3. Translate the object so that the fixed-point is returned to its original position (i.e. Inverse of step-1). 

 Let’s find matrix equation for this

𝑷′ = 𝑻(𝒙𝒇, 𝒚𝒇) ∙ [𝑺(𝒔𝒙, 𝒔𝒚) ∙ {𝑻(−𝒙𝒇, −𝒚𝒇) ∙ 𝑷}] 

𝑷′ = {𝑻(𝒙𝒇, 𝒚𝒇) ∙ 𝑺(𝒔𝒙, 𝒔𝒚) ∙ 𝑻(−𝒙𝒇, −𝒚𝒇)} ∙ 𝑷 

𝟏 𝟎 𝒙𝒇 𝒔𝒙 𝟎 𝟎 𝟏 𝟎 −𝒙𝒇 

𝑷′ = [𝟎 𝟏 𝒚𝒇] [ 𝟎 𝒔𝒚 𝟎] [𝟎 𝟏 −𝒚𝒇] ∙ 𝑷 

𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 

𝒔𝒙 𝟎 𝒙𝒇(𝟏 − 𝒔𝒙) 

𝑷′  = [ 𝟎 𝒔𝒚 𝒚𝒇(𝟏 − 𝒔𝒚)] ∙ 𝑷 

𝟎 𝟎 𝟏 

𝑷′ = 𝑺(𝒙𝒇, 𝒚𝒇, 𝒔𝒙, 𝒔𝒚) ∙ 𝑷 

Here 𝑷′ and 𝑷 are column vector of final and initial point coordinate respectively and (𝒙𝒇, 𝒚𝒇) are the 

coordinates of fixed-point. 

 Example: - Consider square with left-bottom corner at (2, 2) and right-top corner at (6, 6) apply the

transformation which makes its size half such that its center remains same. 

Fixed point is center of square so: 

𝑥   = 2 + 
6 − 2 

, 𝑦 
 

 = 2 + 
6 − 2 

 
 

𝑓 2 𝑓 2 

As we want size half so value of scale factor are 𝑠𝑥 = 0.5, 𝑠𝑦 = 0.5 and Coordinates of square are [A (2,  

2), B (6, 2), C (6, 6), D (2, 6)]. 

𝑃′ = 𝑆(𝑥𝑓, 𝑦𝑓, 𝑠𝑥, 𝑠𝑦) ∙ 𝑃 

𝑠𝑥 0 𝑥𝑓(1 − 𝑠𝑥) 2 6 6 2 
𝑃′  = [ 0 𝑠𝑦 𝑦𝑓(1 − 𝑠𝑦)] [2 2 6 6] 

0 0 1 1 1 1 1 

(𝒙𝒇, 𝒚𝒇) (𝒙𝒇, 𝒚𝒇) 



Unit-3 – 2D Transformation & Viewing 

11  

 

 

 

0.5 0 4(1 − 0.5) 2 6 6 2 
𝑃′ = [ 0 0.5 4(1 − 0.5)] [2 2 6 6] 

0 0 1 1 1 1 1 
0.5 0 2 2 6 6 2 

𝑃′ = [ 0 0.5 2] [2 2 6 6] 
0 0 1 1 1 1 1 

3 5 5 3 
𝑃′ = [3 3 5 5] 

1 1 1 1 

 Final coordinate after scaling are [A’ (3, 3), B’ (5, 3), C’ (5, 5), D’ (3, 5)]

General Scaling Directions 
 

𝒔𝟐 

 
 
 
 
 
 
 
 

𝒔𝟏 
 

Fig. 3.8: - General scaling direction. 

 Parameter 𝒔𝒙 and 𝒔𝒚 scale the object along 𝒙 and 𝒚 directions. We can scale an object in other directions 

by rotating the object to align the desired scaling directions with the coordinate axes before applying the 

scaling transformation.

 Suppose we apply scaling factor 𝒔𝟏 and 𝒔𝟐 in direction shown in figure than we will apply following 

transformations.

1. Perform a rotation so that the direction for 𝒔𝟏 and 𝒔𝟐 coincide with 𝒙 and 𝒚 axes. 

2. Scale the object with specified scale factors. 

3. Perform opposite rotation to return points to their original orientations. (i.e. Inverse of step-1). 

 Let’s find matrix equation for this

𝑷′ = 𝑹−𝟏(𝜽) ∙ [𝑺(𝒔𝟏, 𝒔𝟐) ∙ {𝑹(𝜽) ∙ 𝑷}] 

𝑷′ = {𝑹−𝟏(𝜽) ∙ 𝑺(𝒔𝟏, 𝒔𝟐) ∙ 𝑹(𝜽)} ∙ 𝑷 
𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 𝟎 𝒔𝒙 𝟎 𝟎 𝐜𝐨𝐬 𝜽 − 𝐬𝐢𝐧 𝜽 𝟎 

𝑷′ = [− 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝟎] [ 𝟎 𝒔𝒚 𝟎] [𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝟎] ∙ 𝑷 
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 

𝒔𝟏 𝐜𝐨𝐬𝟐 𝜽 + 𝒔𝟐 𝐬𝐢𝐧𝟐 𝜽 (𝒔𝟐 − 𝒔𝟏) 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 𝟎 
𝑷′  =  [(𝒔𝟐 − 𝒔𝟏) 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 𝒔𝟏 𝐬𝐢𝐧𝟐 𝜽 + 𝒔𝟐 𝐜𝐨𝐬𝟐 𝜽 𝟎] ∙ 𝑷 

𝟎 𝟎 𝟏 

Here 𝑷′ and 𝑷 are column vector of final and initial point coordinate respectively and 𝜽 is the angle 

between actual scaling direction and our standard coordinate axes. 

Other Transformation 

 Some package provides few additional transformations which are useful in certain applications. Two 

such transformations are reflection and shear.
 

Reflection 

 A reflection is a transformation that produces a mirror image of an object.

𝒙 

𝒚 

𝜽 
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 The mirror image for a two –dimensional reflection is generated relative to an axis of reflection by 

rotating the object 180o about the reflection axis.

 Reflection gives image based on position of axis of reflection. Transformation matrix for few positions 

are discussed here.

Transformation matrix for reflection about the line 𝒚 = 𝟎 , 𝒕𝒉𝒆 𝒙 𝒂𝒙𝒊𝒔. 

 

 

Fig. 3.9: - Reflection about x - axis. 

 This transformation keeps x values are same, but flips (Change the sign) y values of coordinate 

positions.

1 0 0 
[0 −1 0] 
0 0 1 

Transformation matrix for reflection about the line 𝒙 = 𝟎 , 𝒕𝒉𝒆 𝒚 𝒂𝒙𝒊𝒔. 

 

 

Fig. 3.10: - Reflection about y - axis. 

 This transformation keeps y values are same, but flips (Change the sign) x values of coordinate 

positions.

−1 0 0 
[ 0 1 0] 

0 0 1 

Transformation matrix for reflection about the 𝑶𝒓𝒊𝒈𝒊𝒏. 

y 
1 Original 

Position 

2 3 

x 
2’ 3’ 

1’ 

Reflected 

Position 

y 

Reflected 

Position 

1’ 1 Original 

Position 

3’ 2’ 2 3 

x 
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3’ 

Reflected 

Position 

y 
Original 

3  Position 

1 
2

 

1’ x 

2’ 

 
 

Fig. 3.11: - Reflection about origin. 

 This transformation flips (Change the sign) x and y both values of coordinate positions.

−1 0 0 
[ 0 −1 0] 

0 0 1 

Transformation matrix for reflection about the line 𝒙 = 𝒚 . 
 

y 
Original 
Position 

3 

2 1 

1’ 

3’ 

 

2’ 

 

x=y line 
 
 
 
 
 
 

Reflected 

Position 

 

x 

 
Fig. 3.12: - Reflection about x=y line. 

 This transformation interchange x and y values of coordinate positions.

0 1 0 
[1 0 0] 
0 0 1 
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x=-y line 3 y 

1 2 

3’ 1’ 
Original 

Position 

2’ 

Reflected 

Position 

Transformation matrix for reflection about the line 𝒙 = −𝒚 . 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 
 

 

Fig. 3.12: - Reflection about x=-y line. 

 This transformation interchange x and y values of coordinate positions.

0 −1 0 
[−1 0 0] 

0 0 1 

 Example: - Find the coordinates after reflection of the triangle [A (10, 10), B (15, 15), C (20, 10)] about x 

axis.
1 0 0 10 15 20 

𝑃′ = [0 −1 0] [10 15 10 ] 
0 0 1 1 1 1 
10 15 20 

𝑃′ = [−10 −15 −10] 
1 1 1 

 Final coordinate after reflection are [A’ (10, -10), B’ (15, -15), C’ (20, -10)]

Shear 

 A transformation that distorts the shape of an object such that the transformed shape appears as if the 

object were composed of internal layers that had been caused to slide over each other is called shear.

 Two common shearing transformations are those that shift coordinate x values and those that shift y 

values.

Shear in 𝒙 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 . 
 
 

Before 
Y Shear 

 

After 

Y Shear 

 
 
 
 
 

X X 

 
 

Fig. 3.13: - Shear in x-direction. 
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 Shear relative to 𝑥 − 𝑎𝑥𝑖𝑠 that is 𝑦 = 0 line can be produced by following equation:

𝒙′  = 𝒙 + 𝒔𝒉𝒙 ∙ 𝒚 , 𝒚′ = 𝒚 

 Transformation matrix for that is:

𝟏 𝒔𝒉𝒙 𝟎 
[𝟎 𝟏 𝟎] 
𝟎 𝟎 𝟏 

Here 𝒔𝒉𝒙 is shear parameter. We can assign any real value to 𝒔𝒉𝒙. 

 We can generate 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 shear relative to other reference line 𝑦 = 𝑦𝑟𝑒𝑓 with following equation:

𝒙′  = 𝒙 + 𝒔𝒉𝒙 ∙ (𝒚 − 𝒚𝒓𝒆𝒇) , 𝒚′ = 𝒚 

 Transformation matrix for that is:

𝟏 𝒔𝒉𝒙 −𝒔𝒉𝒙 ∙ 𝒚𝒓𝒆𝒇 
[𝟎 𝟏 𝟎 ] 
𝟎 𝟎 𝟏 

 Example: - Shear the unit square in x direction with shear parameter ½ relative to line 𝑦 = −1. 

Here 𝑦𝑟𝑒𝑓 = −1 and 𝑠ℎ𝑥 = 0.5

Coordinates of unit square are [A (0, 0), B (1, 0), C (1, 1), D (0, 1)]. 

1 𝑠ℎ𝑥 −𝑠ℎ𝑥 ∙ 𝑦𝑟𝑒𝑓 0 1 1 0 
 
 
 
 
 
 
 
 

0.5 1.5 2 1 
𝑃′  = [ 0 0 1 1] 

1 1 1 1 
 Final coordinate after shear are [A’ (0.5, 0), B’ (1.5, 0), C’ (2, 1), D’ (1, 1)] 

Shear in 𝒚 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 .

 

Before 
Y Shear 

 
 
 
 
 

X 

 
 

Fig. 3.14: - Shear in y-direction. 

 Shear relative to 𝑦 − 𝑎𝑥𝑖𝑠 that is 𝑥 = 0 line can be produced by following equation:

𝒙′  = 𝒙 , 𝒚′ = 𝒚 + 𝒔𝒉𝒚 ∙ 𝒙 

 Transformation matrix for that is:

𝟏 𝟎 𝟎 
[𝒔𝒉𝒚 𝟏 𝟎] 

𝟎 𝟎 𝟏 
Here 𝒔𝒉𝒚 is shear parameter. We can assign any real value to 𝒔𝒉𝒚. 

Y After 

Shear 

X 

𝑃′ = [0 1 0 ] [0 0 1 1] 
0 0 1 1 1 1 1 
1 0.5 −0.5 ∙ (−1) 0 1 1 0 

𝑃′ = [0 1 0 ] [0 0 1 1] 
0 0 1 1 1 1 1 
1 0.5 0.5 0 1 1 0 

𝑃′ = [0 1 0 ] [0 0 1 1] 
0 0 1 1 1 1 1 
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 We can generate 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 shear relative to other reference line 𝑥 = 𝑥𝑟𝑒𝑓 with following equation:

𝒙′ = 𝒙, 𝒚′ = 𝒚 + 𝒔𝒉𝒚 ∙ (𝒙 − 𝒙𝒓𝒆𝒇) 

 Transformation matrix for that is:

𝟏 𝟎 𝟎 
[𝒔𝒉𝒚 𝟏 −𝒔𝒉𝒚 ∙ 𝒙𝒓𝒆𝒇] 

𝟎 𝟎 𝟏 
 Example: - Shear the unit square in y direction with shear parameter ½ relative to line 𝑥 = −1. 

Here 𝑥𝑟𝑒𝑓 = −1 and 𝑠ℎ𝑦 = 0.5

Coordinates of unit square are [A (0, 0), B (1, 0), C (1, 1), D (0, 1)]. 
1 0 0 0 1 1 0 

𝑃′ = [𝑠ℎ𝑦 1 −𝑠ℎ𝑦 ∙ 𝑥𝑟𝑒𝑓] [0 0 1 1] 
 
 
 
 
 
 
 

0 1 1 
𝑃′ = [0.5 1 2 

1 1 1 

0 
1.5] 
1 

 Final coordinate after shear are [A’ (0, 0.5), B’ (1, 1), C’ (1, 2), D’ (0, 1.5)]

The Viewing Pipeline 

 Window: Area selected in world-coordinate for display is called window. It defines what is to be viewed.

 Viewport: Area on a display device in which window image is display (mapped) is called viewport. It 

defines where to display.

 In many case window and viewport are rectangle, also other shape may be used as window and 

viewport.

 In general finding device coordinates of viewport from word coordinates of window is called as viewing 

transformation.

 Sometimes we consider this viewing transformation as window-to-viewport transformation but in 

general it involves more steps.

Fig. 3.1: - A viewing transformation using standard rectangles for the window and viewport. 

 Now we see steps involved in viewing pipeline.

0 0 1 1 1 1 1 
1 0 0 0 1 1 0 

𝑃′ = [0.5 1 −0.5 ∙ (−1)] [0 0 1 1] 
0 0 1 1 1 1 1 
1 0 0 0 1 1 0 

𝑃′ = [0.5 1 0.5] [0 0 1 1] 
0 0 1 1 1 1 1 
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Transformations 

 
 

 

MC WC VC NVC DC 
 

     

 
 
 

 

Fig. 3.2: - 2D viewing pipeline. 

 As shown in figure above first of all we construct world coordinate scene using modeling coordinate 

transformation.

 After this we convert viewing coordinates from world coordinates using window to viewport 

transformation.

 Then we map viewing coordinate to normalized viewing coordinate in which we obtain values in 

between 0 to 1.

 At last we convert normalized viewing coordinate to device coordinate using device driver software 

which provide device specification.

 Finally device coordinate is used to display image on display screen.

 By changing the viewport position on screen we can see image at different place on the screen.

 By changing the size of the window and viewport we can obtain zoom in and zoom out effect as per 

requirement.

 Fixed size viewport and small size window gives zoom in effect, and fixed size viewport and larger 

window gives zoom out effect.

 View ports are generally defines with the unit square so that graphics package are more device 

independent which we call as normalized viewing coordinate.

Viewing Coordinate Reference Frame 
 

Fig. 3.3: - A viewing-coordinate frame is moved into coincidence with the world frame in two steps: (a) 

translate the viewing origin to the world origin, and then (b) rotate to align the axes of the two systems. 

 We can obtain reference frame in any direction and at any position.

 For handling such condition first of all we translate reference frame origin to standard reference frame 

origin and then we rotate it to align it to standard axis.

 In this way we can adjust window in any reference frame.

 this is illustrate by following transformation matrix:

Map Viewing 

Coordinate to 

Normalized Viewing 

Coordinates using 

Window-Viewport 

Specifications 
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𝐌𝐰𝐜,𝐯𝐜 = 𝐑𝐓 

 Where T is translation matrix and R is rotation matrix.

Window-To-Viewport Coordinate Transformation 
 Mapping of window coordinate to viewport is called window to viewport transformation.

 We do this using transformation that maintains relative position of window coordinate into viewport.

 That means center coordinates in window must be remains at center position in viewport.

 We find relative position by equation as follow:
𝐱𝐯 − 𝐱𝐯𝐦𝐢𝐧 

 

𝐱𝐯𝐦𝐚𝐱 − 𝐱𝐯𝐦𝐢𝐧 

𝐲𝐯 − 𝐲𝐯𝐦𝐢𝐧 
 

𝐲𝐯𝐦𝐚𝐱 − 𝐲𝐯𝐦𝐢𝐧 

= 
𝐱𝐰 − 𝐱𝐰𝐦𝐢𝐧 

𝐱𝐰𝐦𝐚𝐱 − 𝐱𝐰𝐦𝐢𝐧 

= 
𝐲𝐰 − 𝐲𝐰𝐦𝐢𝐧 

𝐲𝐰𝐦𝐚𝐱 − 𝐲𝐰𝐦𝐢𝐧 

 Solving by making viewport position as subject we obtain:

𝐱𝐯  = 𝐱𝐯𝐦𝐢𝐧  + (𝐱𝐰  − 𝐱𝐰𝐦𝐢𝐧)𝐬𝐱 

𝐲𝐯   = 𝐲𝐯𝐦𝐢𝐧  + (𝐲𝐰  − 𝐲𝐰𝐦𝐢𝐧)𝐬𝐲 

 Where scaling factor are :

𝐬𝐱 
 

𝐬𝐲 

= 
𝐱𝐯𝐦𝐚𝐱 − 𝐱𝐯𝐦𝐢𝐧 

𝐱𝐰𝐦𝐚𝐱 − 𝐱𝐰𝐦𝐢𝐧 

= 
𝐲𝐯𝐦𝐚𝐱 − 𝐲𝐯𝐦𝐢𝐧 

𝐲𝐰𝐦𝐚𝐱 − 𝐲𝐰𝐦𝐢𝐧 

 We can also map window to viewport with the set of transformation, which include following sequence 

of transformations:

1. Perform a scaling transformation using a fixed-point position of (xWmin,ywmin) that scales the window 

area to the size of the viewport. 

2. Translate the scaled window area to the position of the viewport. 

 For maintaining relative proportions we take (sx = sy). in case if both are not equal then we get stretched 

or contracted in either the x or y direction when displayed on the output device.

 Characters are handle in two different way one way is simply maintain relative position like other 

primitive and other is to maintain standard character size even though viewport size is enlarged or 

reduce.

 Number of display device can be used in application and for each we can use different window-to- 

viewport transformation. This mapping is called the workstation transformation.

 

Fig. 3.4: - workstation transformation. 
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P2 

P1 

P6 

P9 
 

Window 

 As shown in figure two different displays devices are used and we map different window-to-viewport on 

each one.

Clipping Operations 
 Generally, any procedure that identifies those portions of a picture that are either inside or outside of a 

specified region of space is referred to as a clipping algorithm, or simply clipping. The region against 

which an object is to clip is called a clip window.

 Clip window can be general polygon or it can be curved boundary.

Application of Clipping 

 It can be used for displaying particular part of the picture on display screen.

 Identifying visible surface in 3D views.

 Antialiasing.

 Creating objects using solid-modeling procedures.

 Displaying multiple windows on same screen.

 Drawing and painting.

Point Clipping 
 In point clipping we eliminate those points which are outside the clipping window and draw points which 

are inside the clipping window.

 Here we consider clipping window is rectangular boundary with edge (xwmin,xwmax,ywmin,ywmax).

 So for finding wether given point is inside or outside the clipping window we use following inequality:

𝒙𝒘𝒎𝒊𝒏  ≤ 𝒙 ≤ 𝒙𝒘𝒂𝒎𝒙 

𝒚𝒘𝒎𝒊𝒏  ≤ 𝒚  ≤ 𝒚𝒘𝒂𝒎𝒙 

 If above both inequality is satisfied then the point is inside otherwise the point is outside the clipping 

window.

Line Clipping 
 Line clipping involves several possible cases.

1. Completely inside the clipping window. 

2. Completely outside the clipping window. 

3. Partially inside and partially outside the clipping window. 
 
 
 

 

P4 P10 

 

Window 

 
 

P3 P5 

P8 
 

P5 P8 

 

P7 

 
P7 

 

Before Clipping 

(a) 

After Clipping 

(b) 

Fig. 3.5: - Line clipping against a rectangular window. 

P2 

P1 

P6 
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 Line which is completely inside is display completely. Line which is completely outside is eliminated from 

display. And for partially inside line we need to calculate intersection with window boundary and find 

which part is inside the clipping boundary and which part is eliminated.

 For line clipping several scientists tried different methods to solve this clipping procedure. Some of them 

are discuss below.

Cohen-Sutherland Line Clipping 
 This is one of the oldest and most popular line-clipping procedures.

Region and Region Code 
 In this we divide whole space into nine region and assign 4 bit code to each endpoint of line depending 

on the position where the line endpoint is located.
 

 
1001 

 
1000 

 
1010 

 

 
0001 

 

 
0000 

 

 
0010 

 
0101 

 
0100 

 
0110 

Fig. 3.6: - Workstation transformation. 

 Figure 3.6 shows code for line end point which is fall within particular area.

 Code is deriving by setting particular bit according to position of area. 

Set bit 1: For left side of clipping window.

Set bit 2: For right side of clipping window. 

Set bit 3: For below clipping window. 

Set bit 4: For above clipping window. 

 All bits as mention above are set means 1 and other are 0.

Algorithm 
Step-1: 

Assign region code to both endpoint of a line depending on the position where the line endpoint is located. 

 
Step-2: 

If both endpoint have code ‘0000’ 

Then line is completely inside. 

Otherwise 

Perform logical ending between this two codes. 

 
If result of logical ending is non-zero 

Line is completely outside the clipping window. 

Otherwise 

Calculate the intersection point with the boundary one by one. 

Divide the line into two parts from intersection point. 

Recursively call algorithm for both line segments. 



Unit-3 – 2D Transformation & Viewing 

21  

 

 

 
 

Step-3: 

Draw line segment which are completely inside and eliminate other line segment which found completely 

outside. 
 

Intersection points calculation with clipping window boundary 
 For intersection calculation we use line equation “𝑦 = 𝑚𝑥 + 𝑏”.

 ‘𝑥′ is constant for left and right boundary which is:

o for left “𝑥 = 𝑥𝑤𝑚𝑖𝑛” 

o for right “𝑥 = 𝑥𝑤𝑚𝑎𝑥” 

 So we calculate 𝑦 coordinate of intersection for this boundary by putting values of 𝑥 depending on 

boundary is left or right in below equation.

𝒚 = 𝒚𝟏 + 𝒎(𝒙 − 𝒙𝟏) 

 ′𝑦′ coordinate is constant for top and bottom boundary which is:

o for top “𝑦 = 𝑦𝑤𝑚𝑎𝑥” 

o for bottom “𝑦 = 𝑦𝑤𝑚𝑖𝑛” 

 So we calculate 𝑥 coordinate of intersection for this boundary by putting values of 𝑦 depending on 

boundary is top or bottom in below equation.

𝒙 = 𝒙𝟏 + 
𝒚 − 𝒚𝟏 

𝒎 

Liang-Barsky Line Clipping 

 Line clipping approach is given by the Liang and Barsky is faster than cohen-sutherland line clipping. 

Which is based on analysis of the parametric equation of the line which are as below.

𝒙 = 𝒙𝟏 + 𝒖∆𝒙 

𝒚 = 𝒚𝟏 + 𝒖∆𝒚 

Where 0 ≤ 𝑢 ≤ 1 ,∆𝑥 = 𝑥2 − 𝑥1 and ∆𝑦 = 𝑦2 − 𝑦1. 

Algorithm 
1. Read two end points of line 𝑃1(𝑥1, 𝑦1) and 𝑃2(𝑥2, 𝑦2) 
2. Read two corner vertices, left top and right bottom of window: (𝑥𝑤𝑚𝑖𝑛, 𝑦𝑤𝑚𝑎𝑥) and (𝑥𝑤𝑚𝑎𝑥, 𝑦𝑤𝑚𝑖𝑛) 
3. Calculate values of parameters 𝑝𝑘 and 𝑞𝑘 for 𝑘 = 1, 2, 3, 4 such that, 

𝑝1 = −∆𝑥, 𝑞1  = 𝑥1 − 𝑥𝑤𝑚𝑖𝑛 
𝑝2 = ∆𝑥, 𝑞2  = 𝑥𝑤𝑚𝑎𝑥 − 𝑥1 

𝑝3 = −∆𝑦, 𝑞3 = 𝑦1  − 𝑦𝑤𝑚𝑖𝑛 

𝑝4 = ∆𝑦, 𝑞4 = 𝑦𝑤𝑚𝑎𝑥 − 𝑦1 

4. If 𝑝𝑘 = 0 for any value of 𝑘 = 1, 2, 3, 4 then, 

Line is parallel to 𝑘𝑡ℎ boundary. 
 

If corresponding 𝑞𝑘 < 0 then, 
Line is completely outside the boundary. Therefore, discard line segment and Go to Step 
10. 

Otherwise 
Check line is horizontal or vertical and accordingly check line end points with 
corresponding boundaries. 

 
If line endpoints lie within the bounded area 

Then use them to draw line. 
Otherwise 
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𝑟 = 
𝑞𝑘 

, 𝑓𝑜𝑟 𝑘 = 1,2,3,4 
𝑘 𝑝𝑘 

Use boundary coordinates to draw line. And go to Step 8. 
5. For 𝑘 = 1,2,3,4 calculate 𝑟𝑘 for nonzero values of 𝑝𝑘 and 𝑞𝑘 as follows: 

 
 

6. Find 𝑢1 𝑎𝑛𝑑 𝑢2 as given below: 

𝑢1  = max{0, 𝑟𝑘|𝑤ℎ𝑒𝑟𝑒 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑝𝑘  < 0} 

𝑢2  = min{1, 𝑟𝑘|𝑤ℎ𝑒𝑟𝑒 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑝𝑘  > 0} 
7. If 𝑢1 ≤ 𝑢2 then 

Calculate endpoints of clipped line: 
𝑥1

′  = 𝑥1  + 𝑢1∆𝑥 
𝑦1

′  = 𝑦1  + 𝑢1∆𝑦 

𝑥2
′  = 𝑥1 + 𝑢2∆𝑥 

𝑦2
′  = 𝑦1  + 𝑢2∆𝑦 

Draw line (𝑥1
′, 𝑦1

′, 𝑥2
′, 𝑦2

′); 

 
 

Advantages 
1. More efficient. 

2. Only requires one division to update 𝑢1 and 𝑢2. 
3. Window intersections of line are calculated just once. 

Nicholl-Lee-Nicholl Line Clipping 

 By creating more regions around the clip window the NLN algorithm avoids multiple clipping of an 

individual line segment.

 In Cohen-Sutherlan line clipping sometimes multiple calculation of intersection point of a line is done 

before actual window boundary intersection or line is completely rejected.

 These multiple intersection calculation is avoided in NLN line clipping procedure.

 NLN line clipping perform the fewer comparisons and divisions so it is more efficient.

 But NLN line clipping cannot be extended for three dimensions while Cohen-Sutherland and Liang-Barsky 

algorithm can be easily extended for three dimensions.

 For given line we find first point falls in which region out of nine region shown in figure below but three 

region shown in figure by putting point are only considered and if point falls in other region than we 

transfer that point in one of the three region.

 
 
 
 
 

P 
 
 
 
 

P1 in Window 

(a) 

 
P1 in Edge Region 

(b) 

 

P1 in Corner Region 

(c) 
 

Fig. 3.7: - Three possible position for a line endpoint p1 in the NLN line-clipping algorithm. 

 We can also extend this procedure for all nine regions.

 Now for p1 is inside the window we divide whole area in following region:

8. Stop. 

P1 

   

  

 
P1 

 

   

 

   

 

 
1 
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Fig. 3.8: - Clipping region when p1 is inside the window. 

 Now for p1 is in edge region we divide whole area in following region:

Fig. 3.9: - Clipping region when p1 is in edge region. 

 Now for p1 is in corner region we divide whole area in following region:

Fig. 3.10: - Two possible sets of clipping region when p1 is in corner region. 

 Regions are name in such a way that name in which region p2 falls is gives the window edge which 

intersects the line.

 For example region LT says that line need to clip at left and top boundary.

 For finding that in which region line 𝒑𝟏𝒑𝟐 falls we compare the slope of the line to the slope of the 

boundaries:

𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝑩𝟏 < 𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝟐 < 𝑠𝑙𝑜𝑝𝑒 𝒑𝟏𝒑𝑩𝟐 

Where 𝒑𝟏𝒑𝑩𝟏 and 𝒑𝟏𝒑𝑩𝟐 are boundary lines. 

 For example p1 is in edge region and for checking whether p2 is in region LT we use following equation.
 

𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝑻𝑹 < 𝒔𝒍𝒐𝒑𝒆 𝒑𝟏𝒑𝟐 < 𝑠𝑙𝑜𝑝𝑒 𝒑𝟏𝒑𝑻𝑳 

𝒚𝑻 − 𝒚𝟏 
< 

𝒚𝟐 − 𝒚𝟏 
< 

𝒚𝑻 − 𝒚𝟏 
   

𝒙𝑹 − 𝒙𝟏 𝒙𝟐 − 𝒙𝟏 𝒙𝑳 − 𝒙𝟏 

 After checking slope condition we need to check weather it crossing zero, one or two edges.

 This can be done by comparing coordinates of 𝑝2 with coordinates of window boundary.

 For left and right boundary we compare 𝑥 coordinates and for top and bottom boundary we compare 𝑦

coordinates. 

 If line is not fall in any defined region than clip entire line.
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 Otherwise calculate intersection.

 After finding region we calculate intersection point using parametric equation which are:

 𝒙 = 𝒙𝟏 + (𝒙𝟐 − 𝒙𝟏)𝒖

 𝒚 = 𝒚𝟏 + (𝒚𝟐 − 𝒚𝟏)𝒖

 For left or right boundary 𝑥 = 𝑥𝑙 𝑜𝑟 𝑥𝑟 respectively, with 𝑢 = (𝑥𝑙/𝑟 – 𝑥1)/ (𝑥2 – 𝑥1), so that 𝑦 can be 

obtain from parametric equation as below:

 𝒚 = 𝒚𝟏 + 𝒚𝟐−𝒚𝟏 (𝒙𝑳 − 𝒙𝟏)
𝟐 𝟏 

 Keep the portion which is inside and clip the rest.

Polygon Clipping 
 For polygon clipping we need to modify the line clipping procedure because in line clipping we need to 

consider about only line segment while in polygon clipping we need to consider the area and the new 

boundary of the polygon after clipping.

Sutherland-Hodgeman Polygon Clipping 

 For correctly clip a polygon we process the polygon boundary as a whole against each window edge.

 This is done by whole polygon vertices against each clip rectangle boundary one by one.

 Beginning with the initial set of polygon vertices we first clip against the left boundary and produce new 

sequence of vertices.

 Then that new set of vertices is clipped against the right boundary clipper, a bottom boundary clipper 

and a top boundary clipper, as shown in figure below.

Fig. 3.11: - Clipping a polygon against successive window boundaries. 
 
 
 

in out 
 
 

Fig. 3.12: - Processing the vertices of the polygon through boundary clipper. 

 There are four possible cases when processing vertices in sequence around the perimeter of a polygon.
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Fig. 3.13: - Clipping a polygon against successive window boundaries. 

 As shown in case 1: if both vertices are inside the window we add only second vertices to output list.

 In case 2: if first vertices is inside the boundary and second vertices is outside the boundary only the 

edge intersection with the window boundary is added to the output vertex list.

 In case 3: if both vertices are outside the window boundary nothing is added to window boundary.

 In case 4: first vertex is outside and second vertex is inside the boundary, then adds both intersection 

point with window boundary, and second vertex to the output list.

 When polygon clipping is done against one boundary then we clip against next window boundary.

 We illustrate this method by simple example.
 
 

Window 

 
 
 

2 

 
 
 
 
 
 
 

 

Fig. 3.14: - Clipping a polygon against left window boundaries. 

 As shown in figure above we clip against left boundary vertices 1 and 2 are found to be on the outside of 

the boundary. Then we move to vertex 3, which is inside, we calculate the intersection and add both 

intersection point and vertex 3 to output list.

 Then we move to vertex 4 in which vertex 3 and 4 both are inside so we add vertex 4 to output list, 

similarly from 4 to 5 we add 5 to output list, then from 5 to 6 we move inside to outside so we add 

intersection pint to output list and finally 6 to 1 both vertex are outside the window so we does not add 

anything.

 Convex polygons are correctly clipped by the Sutherland-Hodgeman algorithm but concave polygons 

may be displayed with extraneous lines.

 For overcome this problem we have one possible solution is to divide polygon into numbers of small 

convex polygon and then process one by one.

 Another approach is to use Weiler-Atherton algorithm.

Weiler-Atherton Polygon Clipping 

 In this algorithm vertex processing procedure for window boundary is modified so that concave polygon 

also clip correctly.

 This can be applied for arbitrary polygon clipping regions as it is developed for visible surface 

identification.

 Main idea of this algorithm is instead of always proceeding around the polygon edges as vertices are 

processed we sometimes need to follow the window boundaries.

 Other procedure is similar to Sutherland-Hodgeman algorithm.

 For clockwise processing of polygon vertices we use the following rules:

o For an outside to inside pair of vertices, follow the polygon boundary. 

o For an inside to outside pair of vertices, follow the window boundary in a clockwise direction. 

 We illustrate it with example:
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(a) (b) 

Fig. 3.14: - Clipping a concave polygon (a) with the Weiler-Atherton algorithm generates the two se 

 As shown in figure we start from v1 and move clockwise towards v2 and add intersection point and next 

point to output list by following polygon boundary, then from v2 to v3 we add v3 to output list.

 From v3 to v4 we calculate intersection point and add to output list and follow window boundary.

 Similarly from v4 to v5 we add intersection point and next point and follow the polygon boundary, next 

we move v5 to v6 and add intersection point and follow the window boundary, and finally v6 to v1 is 

outside so no need to add anything.

 This way we get two separate polygon section after clipping.
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