‘;\
JELRC
JECRC Foundation SUBJECT- COMPILER DESIGN

SEMESTER- 5™ SEM

VISSION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards academic,
professional, cultural and social enrichment of the lives of individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research
aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of
focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and
imaginatively gifted leaders can emerge in a range of professions.

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and make
competent engineers & professionals with high ethical values prepared for lifelong learning.

MISION OF THE DEPARTMENT

M1l: To impart outcome based education for emerging technologies
in the field of computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by
accepting the change intechnologies.

M4: To develop aptitude of fulfilling social responsibilities

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural
sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations. The engineer and society: Apply reasoning informed
by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer. CO2: Examine syntax
and semantic analyzer by understanding grammars.

CO3: Illustrate storageallocation and its organization & analyze
symboltable organization.

CO4: Analyze code optimization, code generation & compare various compilers.

CO-PO Mapping

19)SaWsS

109lgns

9p0d

d/1/1

02

T0d

¢Od

€0d

¥0Od

GOd

90d

LOd
80d

60d

0TOd
1T0d

¢10d

COMPILER DESIGN

5CS4 - 02

1. Compare
different phases of
compiler and
design lexical

analyzer.

2. Examine syntax
and semantic
analyzer and
illustrate storage
allocation and its

organization

3. Analyze symbol
table organization,
code optimization

and code generator

4.Compare and

evaluate various
compilers and

analyzers

PROGRAM EDUCATIONAL OBJECTIVES:

1.

PSO

To provide students with the fundamentals of Engineering Sciences with more
emphasis in Computer Science &Engineering by way of analyzing and exploiting
engineering challenges.

To train students with good scientific and engineering knowledge so as to
comprehend, analyze, design, and create novel products and solutions for the real life
problems.

To inculcate professional and ethical attitude, effective communication skKills,
teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to
relate engineering issues with social issues.

To provide students with an academic environment aware of excellence, leadership,
written ethical codes and guidelines, and the self motivated life-long learning needed
for a successful professional career.

To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

PSOL. Ability to interpret and analyze network specific and cyber security issues, automation in

real word environment.

PSO2. Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

SYLLABUS

Credit: 3
3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-02: Compiler Design

Max. Marks: 150(IA:30, ETE:120)

End Term Exam: 3 Hours

SN

Contents

Hours

1

Introduction:Objective, scope and outcome of the course.

01

2

Introduction: Objective, scope and outcome of the course.
Compiler, Translator, Interpreter definition, Phase of compiler,
Bootstrapping, Review of Finite automata lexical analyzer, Input,
Recognition of tokens, Idea about LEX: A lexical analyzer
generator, Error handling.

06

Review of CFG Ambiguity of grammars: Introduction to parsing.
Top down parsing, LL grammars & passers error handling of LL
parser, Recursive descent parsing predictive parsers, Bottom up
parsing, Shift reduce parsing, LR parsers, Construction of SLR,
Conical LR & LALR parsing tables, parsing with ambiguous
grammar. Operator precedence parsing, Introduction of automatic

parser generator: YACC error handling in LR parsers.

10

Syntax directed definitions; Construction of syntax trees, S-
Attributed Definition, L-attributed definitions, Top down
translation. Intermediate code forms using postfix notation, DAG,
Three address code, TAC for various control structures,
Representing TAC wusing triples and quadruples, Boolean
expression and control structures.

10

Storage organization; Storage allocation, Strategies, Activation
records, Accessing local and non-local names in a block structured
language, Parameters passing, Symbol table organization, Data
structures used in symbol tables.

08

Definition of basic block control flow graphs; DAG
representation of basic block, Advantages of DAG, Sources of
optimization, Loop optimization, Idea about global data flow
analysis, Loop invariant computation, Peephole optimization,
Issues in design of code generator, A simple code generator, Code
generation from DAG.

07

LECTURE PLAN:
Subject: Compiler Design (5CS4 - 02) Year/Sem: 1/

Unit
No./
Total Topics Lect. Req.
lec.
Req.

Compiler, Translator, Interpreter definition, Phase of compiler

Introduction to one pass & Multipass compilers, Bootstrapping

Unit-1
(6) Review of Finite automata lexical analyzer, Input, buffering,

Recognition of tokens, Idea about LEX:, GATE Questions

A lexical analyzer generator, Error Handling, Unit Test

Review of CFG Ambiguity of grammars, Introduction to parsing

Bottom up parsing Top down Parsing Technique

Shift reduce parsing, Operator Precedence Parsing

Unit-2 | Recursive descent parsing predictive parsers

(17) | LL grammars & passers error handling of LL parser

Conical LR & LALR parsing tables

parsing with ambiguous grammar, GATE Questions

Introduction of automatic parser generator: YACC error handling in LR parsers, Unit
Test

Syntax directed definitions; Construction of syntax trees

L-attributed definitions, Top down translation

Unit 3- | Specification of a type checker, GATE Questions

(7 Intermediate code forms using postfix notation and three address code,

Representing TAC using triples and quadruples, Translation of assignment statement.

Boolean expression and control structures, Unit Test

Storage organization, Storage allocation, Strategies, Activation records,

Unit 4- | Accessing local and non local names in a block structured language

(4) Parameters passing, Symbol table organization, GATE Questions

Data structures used in symbol tables, Unit Test

Definition of basic block control flow graphs,

DAG representation of basic block, Advantages of DAG,

Unit 5- | Sources of optimization, Loop optimization Idea about global data flow analysis, Loop
(6) invariant computation, Loop invariant computation, Tutorial

Peephole optimization, GATE Questions, Tutorial

Issues in design of code generator, A simple code generator, Code generation from
DAG., UNIT TEST, Revision

R R, N |RrRrPr|IRPr|IRP|IRP[R|IRP|IN|Rr|RPR|RP| RPN WIR|RP|IMDNAON|R[RIN|RP|R

JECRC Fou;dation JEER[

JAIPUR ENGINEERING COLLEGE
AND RESEARCH CENTRIE

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem — 3"/ 5thsem
Subject — Compiler Design
Unit—5

Code Generator: Introduction

+Code generator converts the Intermediate
representation of source code into a form that can
be readily executed by the machine.

“*A code generator is expected to generate a correct
code.

+*Designing of code generator should be done in
such a way so that it can be easily implemented,
tested and maintained.

source
—_—

program

front
end

code
generator

target

program

intermediate ! code ' intermediate
_ . | —
code | optimizer | code
symbol table

Fig. 4.1 Position of code generator

Code Generator: Issues

1. Input to the Code Generator
2. Target Programs

3. Memory Management

4. Instruction Selection

5. Register Allocation

6. Choice of Evaluation Order

7. Approaches to Code Generation

1. Input to the Code Generator
<+ The input to code generator is the intermediate code

generated by the front end, along with information in the
symbol table that determines the run-time addresses of
the data-objects denoted by the names In the
iIntermediate representation.

+ Intermediate codes may be represented mostly In
quadruples, triples, Iindirect triples, Postfix notation,
syntax trees, DAG's etc.

+» Assume that they are free from all of syntactic and state
semantic errors, the necessary type checking has taken
place and the type-conversion operators have been
iInserted wherever necessary. s

2. Target program

» The target program is the output of the code generator.

» The output may be absolute machine language, relocatable machine
language, assembly language.

» Absolute machine language as output has advantages that it can be
placed in a fixed memory location, so CPU can access it faster.

» Relocatable machine language as an output allows subprograms and
subroutines to be compiled separately. Relocatable object modules can
be linked together and loaded by linking loader. But there is added
expense of linking and loading.

v Assembly language: for code generation assembly language is very
important. it will generate the code easily.

3. Memory management

» Mapping the names in the source program to the addresses of data
objects is done by the front end and the code generator.

» A name in the three address statements refers to the symbol table
entry for name.

» Then from the symbol table entry, a relative address can be
determined for the name

4. Instruction Selection

< Selecting best instructions will improve the
efficiency of the program.

»* It iIncludes the ihstructions that should be
complete and uniform.

>* Instruction speeds and machine idioms also plays
a major role when efficiency is considered.

s> But if we do not care about the efficiency of the
target program then Iinstruction selection is
straight-forward.

5. Register allocation

+ Register can be accessed faster than memory.

v Use of registers make the computations faster in comparison to that of
memory, so efficient utilization of registers is important. The use of
registers are subdivided into two sub-problems:

v Registerallocation = In register allocation, we select the set of
variables that will reside in register. [specify which register contain
which value|

v Register assignment=> In Register assignment, we pick the register
that contains variable| specify which variable contain which register]

6. Choice of Evaluation Order

< The code generator decides the order in which
the instruction will be executed.

< The order of computations affects the efficiency of
the target code.

<« Among many computational orders, some will
require only fewer registers to hold the
iIntermediate results.

10

7. Approaches to Code Generation

+» Code generator must always generate the correct
code.

>+ It iIs essential because of the number of special
cases that a code generator might face.

» Some of the design goals of code generator are:

Correct
Easily maintainable
Testable

Maintainable

10

11

Code Optimization

It 1s a program transformation technique

It tries to improve the intermediate code by making
It consume fewer resources
(1.e. CPU, Memory)

Improves the speed of execution of machine code

12

Objectives of the Code Optimization

The optimized code must be correct

It must not change the meaning of the program

Optimization should improve the performance of the

program

The optimization process should
overall compiling process

Nol

delay

the

13

Types of Code Optimization

l

Machine Independent optimization

* [t improves the intermediate code

* The code does not involve any CPU
registers or absolute memory

locations

l

Machie Dependent optimization

* [t improves the target code (Based
on the target machine architecture)

* It mvolves CPU registers and may
have absolute memory references

rather than relative references

15

TECHNIQUES OF MACHINE
DEPENDENT OPTIMIZATION

i u

16

Common Sub-expression Elimination

* Instances of identical expressions are replaced with a single
evaluation
. After:
Belore:
= * -
=b * c + g; tmp = b C;

a
d=Db * ¢ * & >a=tmp+g;

d = tmp * e

19

Loop Optimization

= |loop Optimization s 11«

— 171 ' NE ———i :}"1;" '-f- 11 ‘-.7:t|
] Witl ;
» Decreasing the number of inst

mprovsas thie running 1

23

- —

Loop Optimization
Techniques:

Frequency Reduchtion (Code Motion)

——

Induction-variable elimination

Strength reduclion

Loop Unrolling

Loop fusion{loop Jamming)

24

Freguenc

Motion)

Reduction (Code

= M Irecguan [e r—~tiens ; 2y 4 .
Jecreased. A fement or expressior
J Isicd o ye i thhooust
semantics of the pr T |

= Example:

b2 jr:‘ i I =3 1‘;) |
whiich can o
ifte=ecCciinng the

Code before optimization | Code affer optimization

while (i< 1 00)

{

a = Sin({x)/Cos(x) +i;
i+

H

f = Sin{x)/TCosix):
while (i< 100)

4

=%t +1i;

i e
’

25

- Induction-variable elimination

= Example:

| Code before Oplimization Code after Optimization

voadf (void) vondf (void)

miil 12, 13; inHI

for (il =0,i2=0,13=0; |1 <SIEE:i1++) for(il =01l <SEE i14++)alil]=Db[il}:
afi2++) = bi3++]; retum:

;emm }

26

Strength Reduction

= |In this fechnique As the name suggests, if involves
reducing the strength of expressions.

= This tfechnique replaces the expensive and costly
operators with the simple and cheaper ones.

Code before Code affter Optimizaftion

Optimization
B=AXx2 B=A+ A

Here, The expression "A x 2" isreplaced with the
expression A + A7

This is because the cost of multiplication operator is
higher than that of addition operator.

27

Loop Unrolling

= | oop unrolling is
helps 1 o tirmizs
DAsSICAlly rern
ncreasss ihe

= Example:

ntrol instruct

nstformation techniqus that

3
ution ime of a program. We
e I1eralions | JoRSIgl ||§|r'.f:1

speed by eliminating loop

>p test instructions

Code before optimization | Code affter optimization

for {int i=0; 1<5; i++)

printf{"Pankaj\n');

printf(Pankaj\n’):
printf("Pankaj\n");
printf('Pankaj\n"):
printf("Pankaj\n’):
printf("Pankaj\n"):

28

Loop fusion(Loop Jamming)

!

| |
IN a single loop. It reduces the ime 1aken (o complie

= Example:

Code before oplimization | Code after optimization

for(int iI=0; 1<5; i++) for(int i=0; i<S; i++)
a=j+35; {

for(int i=0; i<5; i++) a=i+2J5;
b=i+10 b=i+10;

}

jamming 1s the combining the two or more 100pPsS

29

JECRC Foundation JEER[

JAIFUR ENGINEERING COLLEGE
AND RESEARCH CENTRE

NAME OF FACULTY (POST, DEPTT.)

1D/, TIAIDILHID

