
             SUBJECT- COMPILER DESIGN                            

SEMESTER- 5TH SEM 

 

VISSION AND MISSION OF INSTITUTE  

To become a renowned center of outcome based learning and work towards academic, 

professional, cultural and social enrichment of the lives of individuals and communities  

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research 

aptitude by project based learning.  

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of 

focus and provide platform to gain knowledge and  solutions.  

M3: Offer opportunities for interaction between academia and industry.  

M4: Develop human potential to its fullest extent so that intellectually capable  and 

imaginatively gifted leaders can emerge in a range of professions.  

 

VISION OF THE DEPARTMENT 

To become renowned Centre of excellence in computer science and engineering and  make 

competent engineers & professionals with high ethical values prepared for  lifelong learning.  

MISION OF THE DEPARTMENT  

M1: To impart outcome based education for emerging technologies

 in the field of computer science and engineering.  

M2: To provide opportunities for interaction between academia and industry.  

M3: To provide platform for lifelong learning by

 accepting the change  in technologies.  

M4: To develop aptitude of fulfilling social responsibilities  

 



PROGRAM OUTCOMES  

Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems.  

Problem analysis: Identify, formulate, research literature, and analyze complex engineering 

problems reaching substantiated conclusions using first principles of mathematics, natural 

sciences, and engineering sciences.  

Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and  safety, and the cultural, societal, and environmental 

considerations.  

Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of the 

information to provide valid conclusions.  

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT  tools including prediction and modeling to complex engineering activities 

with an understanding of the limitations.  The engineer and society: Apply reasoning informed 

by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the 

consequent responsibilities relevant to the professional engineering practice.  

Environment and sustainability: Understand the impact of the professional engineering 

solutions  in societal and environmental contexts, and demonstrate the knowledge of, and need 

for  sustainable development.  

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms  of the engineering practice.  

Individual and team work: Function effectively as an individual, and as a member or leader in  

diverse teams, and in multidisciplinary settings.  

Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 

effective reports  and design documentation, make effective presentations, and give and receive 

clear instructions.  

 

 

 



Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team,  to manage projects and in multidisciplinary environments.  

 

Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change.  

 

 

COURSE OUTCOME  

CO1: Compare different phases of compiler and design lexical analyzer.  CO2: Examine syntax 

and semantic analyzer by understanding grammars.  

CO3: Illustrate storage allocation and its organization & analyze

 symbol table  organization.  

CO4: Analyze code optimization, code generation & compare various compilers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CO-PO Mapping 

 

 

 

 

 

 

 

 

 

 

 

S
em

ester 

S
u
b
ject 

C
o
d
e
 

L
/T

/P
 

C
O

 

P
O

1
 

P
O

2
 

P
O

3
 

P
O

4
 

P
O

5
 

P
O

6
 

P
O

7
 

P
O

8
 

P
O

9
 

P
O

1
0

 

P
O

1
1

 

P
O

1
2

 
V

 

    V
 

C
O

M
P

IL
E

R
 D

E
S

IG
N

 

5
C

S
4
 -

 0
2
 

 

L 1. Compare 

different phases of 

compiler and 

design lexical 

analyzer. 3 3 3 3 2 1 1 1 1 2 1 3 

L 2. Examine syntax 

and semantic 

analyzer and 

illustrate storage 

allocation and its 

organization 3 3 3 3 1 1 1 1 1 2 2 3 

L 3. Analyze symbol 

table organization, 

code optimization 

and code generator 3 3 3 3 2 1 1 1 1 2 2 3 

L 4.Compare and 

evaluate various 

compilers and 

analyzers 

3 3 3 3 2 1 1 1 1 2 1 3 



 

PROGRAM EDUCATIONAL OBJECTIVES: 

 

1. To provide students with the fundamentals of Engineering Sciences with more 

emphasis in Computer Science &Engineering by way of analyzing and exploiting 

engineering challenges. 

2. To train students with good scientific and engineering knowledge so as to 

comprehend, analyze, design, and create novel products and solutions for the real life 

problems. 

3. To inculcate professional and ethical attitude, effective communication skills, 

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to 

relate engineering issues with social issues.  

4. To provide students with an academic environment aware of excellence, leadership, 

written ethical codes and guidelines, and the self motivated life-long learning needed 

for a successful professional career.  

5. To prepare students to excel in Industry and  Higher  education by Educating Students 

along with High moral values and Knowledge 

 

PSO 

 

PSO1. Ability to interpret and analyze network specific and cyber security issues, automation in 

real word environment. 

PSO2. Ability to Design and Develop Mobile and Web-based applications under realistic 

constraints. 

 

 

 

 

 

 

 

 



SYLLABUS 

 

 

 

 

 

 

 



LECTURE PLAN: 

    Subject: Compiler Design (5CS4 – 02)                                                           Year/Sem: III/V 

 

Unit 

No./ 

Total 

lec. 

Req. 

Topics  Lect. Req. 

Unit-1 

(6) 

Compiler, Translator, Interpreter definition, Phase of compiler 1 

Introduction to one pass & Multipass compilers, Bootstrapping 1 

Review of Finite automata lexical analyzer, Input, buffering, 2 

Recognition of tokens, Idea about LEX:, GATE Questions 1 

A lexical analyzer generator, Error Handling, Unit Test 1 

Unit-2 

(17) 

Review of CFG Ambiguity of grammars, Introduction to parsing 2 

Bottom up parsing Top down Parsing Technique 5 

Shift reduce parsing, Operator Precedence Parsing 2 

Recursive descent parsing predictive parsers 1 

LL grammars & passers error handling of LL parser 1 

Conical LR & LALR parsing tables 3 

parsing with ambiguous grammar, GATE Questions 2 

Introduction of automatic parser generator: YACC error handling in LR parsers, Unit 

Test 
1 

Unit 3-

(7) 

Syntax directed definitions; Construction of syntax trees 1 

L-attributed definitions, Top  down translation 1 

Specification of a type checker, GATE Questions 1 

Intermediate code forms using postfix notation and three address code,  2 

Representing TAC using triples and quadruples, Translation of assignment statement. 1 

Boolean   expression and control structures, Unit Test 1 

Unit 4-

(4) 

Storage organization, Storage allocation, Strategies, Activation records, 1 

Accessing local and non local names in a block structured language 1 

Parameters passing, Symbol table organization, GATE Questions 1 

Data structures used in symbol tables, Unit Test 1 

Unit 5-

(6) 

Definition of basic block control flow graphs, 1 

DAG representation of basic block, Advantages of DAG, 1 

Sources of optimization, Loop optimization Idea about global data flow analysis, Loop 

invariant computation, Loop invariant computation, Tutorial 
2 

Peephole optimization, GATE Questions, Tutorial 1 

 Issues in design of code generator, A simple code generator, Code generation from 

DAG., UNIT TEST, Revision 
1 



Year & Sem – 3rd/ 5th sem  

Subject – Compiler Design  

Unit – 2

1 1

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE



1 2



CONTEXT FREE GRAMMAR

1 3



1 4



1 5



1 6



1 7



1 8



1 9



1 10



1 11



1 12



Ambiguity in CFG

1 13

If a context free grammar G has more than one derivation tree for

some string w ∈ L(G), it is called an ambiguous grammar. There

exist multiple right-most or left-most derivations for some string

generated from that grammar.



Problem

1 14

Check whether the grammar G with

production rules −

X → X+X | X*X |X| a is ambiguous or not.

Solution

Let’s find out the derivation tree for the

string "a+a*a". It has two leftmost

derivations.
Derivation 1 −

X → X+X → a +X → a+ X*X → a+a*X → a+a*a



1 15



1 16



INTRODUCTION TO PARSING

1 17

The parser or syntactic analyzer obtains a string of tokens from the lexical

analyzer and verifies that the string can be generated by the grammar for

the source language. It reports any syntax errors in the program. It also

recovers from commonly occurring errors so that it can continue processing

its input.

Parsing is used to derive a string using the production rules of a

grammar. It is used to check the acceptability of a string. Compiler is

used to check whether or not a string is syntactically correct. A parser

takes the inputs and builds a parse tree.



1 18



TYPES OF PARSERS

1 19



Back-tracking

Top- down parsers start from the root node (start  

symbol) and match the input string against the  

production rules to replace them (if matched).

To understand this, take the following example of  

CFG:

S → rXd | rZd X → oa | ea Z → ai

String →read

1 20



For an input string: read, a top-down parser, will behave like  

this:

It will start with S from the production rules and will match its  

yield to the left-most letter of the input, i.e. ‘r’. The very  

production of S (S → rXd) matches with it. So the top-down  

parser advances to the next input letter (i.e. ‘e’). The parser  

tries to expand non-terminal ‘X’ and checks its production from  

the left (X → oa). It does not match with the next input symbol.  

So the top-down parser backtracks to obtain the next  

production rule of X, (X → ea).

1 21



1 22



LEFT RECURSION

1 23



1 24



1 25



1 26



1 27



1 28



1 29



1 30



EXAMPLE

1 31

Grammar:

E --> i E'

E' --> + i E' |ɛ

-Here non terminals are E and E‘

- String we have to parse is: i+i$



int main()

{

// E is a start symbol.  

E();

// if lookahead = $, it represents the end of the string

// Here l is lookahead.  

if (l == '$')

printf("Parsing Successful");

}

1 32



// Definition of E, as per the given production

E()

{

if (l == 'i') {

match('i');

E'();

}

}

1 33



// Definition of E' as per the given production

E'()

{

if (l == '+') {

match('+');

match('i');

E'();

}

else

return ();

}
1 34



// Match function

match(char t)

{

if (l == t) {

l = getchar();

}

else

printf("Error");

}

1 35



1 36



Why FIRST and FOLLOW in Compiler Design?

Why FIRST?

We saw the need of backtrack in Introduction to Syntax

Analysis, which is really a complex process to implement.

There can be easier way to sort out this problem:

If the compiler would have come to know in advance, that

what is the “first character of the string produced when a

production rule is applied”, and comparing it to the current

character or token in the input string it sees, it can wisely take

decision on which production rule to apply.
1 37



Example

S -> cAd

A -> bc|a

And the input string is “cad”.

Thus, in the example above, if it knew that after

reading character ‘c’ in the input string and applying

S->cAd, next character in the input string is ‘a’, then

it would have ignored the production rule A->bc

(because ‘b’ is the first character of the string

produced by this production rule, not ‘a’ )
1 38



And directly use the production rule A->a (because

‘a’ is the first character of the string produced by

this production rule, and is same as the current

character of the input string which is also ‘a’).

Hence it is validated that if the compiler/parser

knows about first character of the string that can be

obtained by applying a production rule, then it can

wisely apply the correct production rule to get the

correct syntax tree for the given input string.

1 39



Calculation of FIRST Set in Syntax Analysis
Rules to compute FIRST set:

1 40

1.If X is a terminal, then FIRST(X) = { ‘X’ }

2. (i) If X is a non terminal and X-> aα then add a to FIRST{ X }.

(ii) If X-> Є, is a production rule, then add Є to FIRST(X).
3.If X->Y1 Y2 Y3….Yn is a production( Y1,Y2.. Are non terminal),  

a)FIRST(X) = FIRST(Y1 Except Є )

b)If FIRST(Y1) contains Є then FIRST(X) = { FIRST(Y2) Except Є }

c)If FIRST (Yi) contains Є for all i = 1 to n, then add Є to FIRST(X).



Example 1:
Production Rules of Grammar  

E -> TE‘

E' -> +T E'|Є  

T -> F T‘

T' -> *F T' | Є

F -> (E) | id
FIRST sets FIRST(E) = FIRST(T) = { ( , id }  

FIRST(E’) = { +, Є }

FIRST(T) = FIRST(F) = { ( , id }

FIRST(T’) = { *, Є }

FIRST(F) = { ( , id }

1 41



Example 2:

Production Rules of Grammar  

S -> ACB | Cbb | Ba

A -> da | BC  

B -> g | Є

C -> h | Є

FIRST sets

FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C) = { d, g, h, Є,

b, a}

FIRST(A) = { d } U FIRST(B) = { d, g , h, Є }  

FIRST(B) = { g , Є }

FIRST(C) = { h , Є }
1 42



Why FOLLOW?

The parser faces one more problem. Let us

consider below grammar to understand this

problem.

A -> aBb  

B -> c | ε

And suppose the input string is “ab” to parse.

1 43



As the first character in the input is a, the 

parser  applies the rule A->aBb.

1 44



Now the parser checks for the second character of the input  

string which is b, and the Non-Terminal to derive is B, but the  

parser can’t get any string derivable from B that contains b as  

first character.

But the Grammar does contain a production rule B -> ε, if that  

is applied then B will vanish, and the parser gets the input “ab”

, as shown below. But the parser can apply it only when it  

knows that the character that follows B in the production rule  

is same as the current character in the input.

1 45



In RHS of A -> aBb, b follows Non-Terminal B, i.e.

FOLLOW(B) = {b}, and the current input character read

is also b. Hence the parser applies this rule. And it is

able to get the string “ab” from the given grammar.

1 46



So FOLLOW can make a Non-terminal to vanish out if  

needed to generate the string from the parse tree.

Follow(X) to be the set of terminals that can appear  

immediately to the right of Non-Terminal X in some  

sentential form.

1 47



Rules to compute FOLLOW set:

1 48

1) FOLLOW(S) = { $ } // where S is the starting  

Non-Terminal

2) 2) If A -> αBβ is a production, where α,B, and β are any  

grammar symbols, where β ≠ Є then everything in  

FIRST(β) except Є is in FOLLOW(B).

3) If A->αB is a production, then everything in FOLLOW(A) is  

in FOLLOW(B).

4) If A->αBβ is a production and FIRST(β) contains Є, then  

Everything in FOLLOW(A) is in FOLLOW(B).



Production Rules:

E -> TE’

E’ -> +T E’ |Є  

T -> F T’

T’ -> *F T’ | Є
F -> (E) | id

FIRST set

FIRST(E) = FIRST(T) = { ( , id }

FIRST(E’) = { +, Є }

FIRST(T) = FIRST(F) = { ( , id }

FIRST(T’) = { *, Є }

FIRST(F) = { ( , id }

FOLLOW Set

FOLLOW(E) = { $ , ) }

FOLLOW(E’) = FOLLOW(E) = { $, ) }

FOLLOW(T) = { FIRST(E’) – Є } U FOLLOW(E’) U FOLLOW(E) = { + , $ , ) }  

FOLLOW(T’) = FOLLOW(T) = { + , $ , ) }

FOLLOW(F) = { FIRST(T’) – Є } U FOLLOW(T’) U FOLLOW(T) = { *, +, $, ) }
1 49



Production Rules:

S -> aBDh  

B -> cC

C -> bC | Є  

D -> EF

E -> g | Є  

F -> f | Є  

FIRST set

FIRST(S) = { a }
FIRST(B) = { c }

FIRST(C) = { b , Є }

FIRST(D) = FIRST(E) U FIRST(F) = { g, f, Є }  

FIRST(E) = { g , Є }

FIRST(F) = { f , Є }  

FOLLOW Set  

FOLLOW(S) = { $ }

FOLLOW(B) = { FIRST(D) – Є } U FIRST(h) = { g , f , h }  

FOLLOW(C) = FOLLOW(B) = { g , f , h }

FOLLOW(D) = FIRST(h) = { h }
FOLLOW(E) = { FIRST(F) – Є } U FOLLOW(D) = { f , h }  

FOLLOW(F) = FOLLOW(D) = { h }

1 50



PREDICTIVE PARSING

1 51



1 52



Parsing Program- Used to apply correct production from parsing  

table

1 53



MODEL OF PREDICTIVE PARSING

1 54



Construction of Parsing Table

1 55

INPUT- GRAMMAR G

OUTPUT: Parsing Table M

METHOD: Following steps are used for the production rule A -> α

1. For each a in FIRST(α) create an entry A -> α for M[A,a] where a is  

terminal symbol.

2. If FIRST(α) ={ɛ} create an entry M[A,b]= A -> α where b is the  

symbol in FOLLOW(A).

3. If FIRST(α) ={ɛ} and FOLLOW(A)=$ create an entry M[A,$]= A -> α

4. Leftover entries are marked as error entry.



Example:

Production Rules:

E -> TE’

E’ -> +T E’ |Є  

T -> F T’

T’ -> *F T’ | Є
F -> (E) | id

FIRST set

FIRST(E) = FIRST(T) = { ( , id }

FIRST(E’) = { +, Є }

FIRST(T) = FIRST(F) = { ( , id }

FIRST(T’) = { *, Є }

FIRST(F) = { ( , id }

FOLLOW Set

FOLLOW(E) = { $ , ) }

FOLLOW(E’) = FOLLOW(E) = { $, ) }

FOLLOW(T) = { FIRST(E’) – Є } U FOLLOW(E’) U FOLLOW(E) = { + , $ , ) }  

FOLLOW(T’) = FOLLOW(T) = { + , $ , ) }

FOLLOW(F) = { FIRST(T’) – Є } U FOLLOW(T’) U FOLLOW(T) = { *, +, $, ) }
1 56



PARSING TABLE FOR GRAMMAR G

1 57



PREDICTIVE PARSING ALGORITHM

1 58

Repeat  

Begin

Let X be the top stack symbol and a the next input symbol  

if X is a terminal then

if X=a then

POP X from the stack and remove a from input and also advance the input pointer.  

else ERROR()

else / * X is a non terminal *\

if M[X, a]= X->Y1 Y2......Yk then

Begin

POP X from the stack

PUSH Yk .......Y2 Y1 on the stack  

end

else

ERROR()

End

Until X=$ / * Stack has Emptied *\



Example of Parsing a string using Predictive Parser

1 59



Parse Tree

1 60



1 61



1 62



1 63



1 64



1 65



“synch” indicating synchronizing tokens obtained from  

FOLLOW set of the nonterminal.

If the parser looks up entry M[A,a] and finds that it is blank,  

the input symbol a is skipped.

If the entry is synch, the nonterminal on top of the stack is  

popped.

If a token on top of the stack does not match the input  

symbol, then we pop the token from the stack.

6
6

1



1



Example

1



1



LL(1)

1



1



1



EXAMPLE2:

1



1



1



1



1



SR PARSER

1



STACK IMPLEMENTATION OF SR PARSER

1



1



1



1



1



ACTION PERFORMED BY THE SR PARSER

1



RULE FOR SHIFT/REDUCE

1



1



1



PARSE TREE GENERATED BY SR PARSER

1



OPERATOR PRECEDENCE PARSER

1



OPERATOR PRECEDENCE PARSER

1



OPERATOR PRECEDENCE PARSER

1



1



1



1



1



OPERATOR FUNCTION

1



1



1



LR PARSER

1



1



1



1



1



1



1



1



1



1



1



STATE

S

ACTION GOTO

c d $ E B

I0 S

3

S4 1 2

I1 Accept

I2 S

3

S4 5

I3 S

3

S4 6

I4 r3 r3 r3

I5 r1 r1 r1

I6 r2 r2 r2
1



STATE

S

ACTION GOTO

c d $ E B

I0 S3 S4 1 2

I1 Accept

I2 S3 S4 5

I3 S3 S4 6

I4 r3 r3 r3

I5 r1 r1 r1

I6 r2 r2 r2

1



SLR(1)

1



CLR(1)

1



CLR(1)

1



CLR(1)

1



1



PARSE TABLE

1



1



1



1



1



1



1



1



1



1



1



1



1



1



1



1



1



1



1



NAME OF FACULTY (POST, DEPTT.) , JECRC, JAIPUR
13

6

NAME OF FACULTY (POST, DEPTT.) , 

JECRC, JAIPUR

1


