‘;\
JELRC
JECRC Foundation SUBJECT- COMPILER DESIGN

SEMESTER- 5™ SEM

VISSION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards academic,
professional, cultural and social enrichment of the lives of individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research
aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of
focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and
imaginatively gifted leaders can emerge in a range of professions.

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and make
competent engineers & professionals with high ethical values prepared for lifelong learning.

MISION OF THE DEPARTMENT

M1l: To impart outcome based education for emerging technologies
in the field of computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by
accepting the change intechnologies.

M4: To develop aptitude of fulfilling social responsibilities

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural
sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations. The engineer and society: Apply reasoning informed
by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer. CO2: Examine syntax
and semantic analyzer by understanding grammars.

CO3: Illustrate storageallocation and its organization & analyze
symboltable organization.

CO4: Analyze code optimization, code generation & compare various compilers.

CO-PO Mapping

19)SaWsS

109lgns

9p0d

d/1/1

02

T0d

¢Od

€0d

¥0Od

GOd

90d

LOd
80d

60d

0TOd
1T0d

¢10d

COMPILER DESIGN

5CS4 - 02

1. Compare
different phases of
compiler and
design lexical

analyzer.

2. Examine syntax
and semantic
analyzer and
illustrate storage
allocation and its

organization

3. Analyze symbol
table organization,
code optimization

and code generator

4.Compare and

evaluate various
compilers and

analyzers

PROGRAM EDUCATIONAL OBJECTIVES:

1.

PSO

To provide students with the fundamentals of Engineering Sciences with more
emphasis in Computer Science &Engineering by way of analyzing and exploiting
engineering challenges.

To train students with good scientific and engineering knowledge so as to
comprehend, analyze, design, and create novel products and solutions for the real life
problems.

To inculcate professional and ethical attitude, effective communication skKills,
teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to
relate engineering issues with social issues.

To provide students with an academic environment aware of excellence, leadership,
written ethical codes and guidelines, and the self motivated life-long learning needed
for a successful professional career.

To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

PSOL. Ability to interpret and analyze network specific and cyber security issues, automation in

real word environment.

PSO2. Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

SYLLABUS

Credit: 3
3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-02: Compiler Design

Max. Marks: 150(IA:30, ETE:120)

End Term Exam: 3 Hours

SN

Contents

Hours

1

Introduction:Objective, scope and outcome of the course.

01

2

Introduction: Objective, scope and outcome of the course.
Compiler, Translator, Interpreter definition, Phase of compiler,
Bootstrapping, Review of Finite automata lexical analyzer, Input,
Recognition of tokens, Idea about LEX: A lexical analyzer
generator, Error handling.

06

Review of CFG Ambiguity of grammars: Introduction to parsing.
Top down parsing, LL grammars & passers error handling of LL
parser, Recursive descent parsing predictive parsers, Bottom up
parsing, Shift reduce parsing, LR parsers, Construction of SLR,
Conical LR & LALR parsing tables, parsing with ambiguous
grammar. Operator precedence parsing, Introduction of automatic

parser generator: YACC error handling in LR parsers.

10

Syntax directed definitions; Construction of syntax trees, S-
Attributed Definition, L-attributed definitions, Top down
translation. Intermediate code forms using postfix notation, DAG,
Three address code, TAC for various control structures,
Representing TAC wusing triples and quadruples, Boolean
expression and control structures.

10

Storage organization; Storage allocation, Strategies, Activation
records, Accessing local and non-local names in a block structured
language, Parameters passing, Symbol table organization, Data
structures used in symbol tables.

08

Definition of basic block control flow graphs; DAG
representation of basic block, Advantages of DAG, Sources of
optimization, Loop optimization, Idea about global data flow
analysis, Loop invariant computation, Peephole optimization,
Issues in design of code generator, A simple code generator, Code
generation from DAG.

07

LECTURE PLAN:
Subject: Compiler Design (5CS4 - 02) Year/Sem: 1/

Unit
No./
Total Topics Lect. Req.
lec.
Req.

Compiler, Translator, Interpreter definition, Phase of compiler

Introduction to one pass & Multipass compilers, Bootstrapping

Unit-1
(6) Review of Finite automata lexical analyzer, Input, buffering,

Recognition of tokens, Idea about LEX:, GATE Questions

A lexical analyzer generator, Error Handling, Unit Test

Review of CFG Ambiguity of grammars, Introduction to parsing

Bottom up parsing Top down Parsing Technique

Shift reduce parsing, Operator Precedence Parsing

Unit-2 | Recursive descent parsing predictive parsers

(17) | LL grammars & passers error handling of LL parser

Conical LR & LALR parsing tables

parsing with ambiguous grammar, GATE Questions

Introduction of automatic parser generator: YACC error handling in LR parsers, Unit
Test

Syntax directed definitions; Construction of syntax trees

L-attributed definitions, Top down translation

Unit 3- | Specification of a type checker, GATE Questions

(7 Intermediate code forms using postfix notation and three address code,

Representing TAC using triples and quadruples, Translation of assignment statement.

Boolean expression and control structures, Unit Test

Storage organization, Storage allocation, Strategies, Activation records,

Unit 4- | Accessing local and non local names in a block structured language

(4) Parameters passing, Symbol table organization, GATE Questions

Data structures used in symbol tables, Unit Test

Definition of basic block control flow graphs,

DAG representation of basic block, Advantages of DAG,

Unit 5- | Sources of optimization, Loop optimization Idea about global data flow analysis, Loop
(6) invariant computation, Loop invariant computation, Tutorial

Peephole optimization, GATE Questions, Tutorial

Issues in design of code generator, A simple code generator, Code generation from
DAG., UNIT TEST, Revision

R R, N |RrRrPr|IRPr|IRP|IRP[R|IRP|IN|Rr|RPR|RP| RPN WIR|RP|IMDNAON|R[RIN|RP|R

JECRC Fou;dation JEER[

JAIPUR ENGINEERING COLLEGE
AND RESEARCH CENTRIE

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem — 3"/ 5thsem
Subject — Compiler Design
Unit — 2

1

Context-Free Grammar Introduction

Grammar: Grammar is a set of rules which check whether a string belong to a particular
language or not.

Context-Free Grammar:
« Itis a notaton used to specify the syntax of language.

* Context free grammar are used to design parser.

1

CONTEXT FREE GRAMMAR

What are Context Free Grammars?

® In Formal Language Theory , a Context free Grammar(CFG)
is a formal grammar in which every production rule is of the

form

V— w
Where V is a single nonterminal symbol and w is a string of
“ v a~

terminals and/or nonterminals (w can be empty)

® The languages generated by context free grammars are

knows as the context free languages

1

Formal Definition of CFG

A context-free grammar G is a 4-tuple (V. X, R, S), where:

® Vs a finite set: each element v € V is called a non-terminal character or

a variable.

®) is a finite set of terminals, disjoint from , which make up the actual
content of the sentence.

® R is a finite relation from V to (V U Y))* . where the asterisk
represents the Kleene star operation.

If (e,) € R. we write production ax =2 B

B is called a sentential form

« S. the start symbol. used to represent the whole sentence (or
- l
program). It must be an element of V.

1

Production rule notation

® A production rule in R is formalized mathematically as a pair
((X,B) , where O is a non-terminal and B is a string of
variables and nonterminals; rather than using ordered pair
notation, production rules are usually written using an arrow
operator with o as its left hand side and ﬁ as its right hand
side: O =2 B

® It is allowed for B to be the empty string, and in this case it is
customary to denote it by €. The form & —> £ is called an €-

pr(')(lucl 101,

1

Definition: A context-free grammar (CFG) consisting of a finite set of grammar rules is
a quadruple (N, T, P, S) where

* N s a set of non-terminal symbals.

* Tisasetof terminals where N T = NULL,

e Pisasetofrules, P: N— (N UT)* 1e, the left-hand side of the production rule P does have
any right context or left context.

* S s the start symbol.

Example

* The grammar ({A}, {a,b, ¢}, P A)P:A —aA A — abc.

* The grammar ({S, a, b}, {a.b},P.S),P:S—aSa,S —bSb,S — ¢
 The grammar ({S, F}, 10,1}, P, S),P:S -+ 00S | 11K, F - 00F | £

1

Derivation Tree/Parse Tree

Generation of Derivation Tree
A denvation tree or parse tree 18 an ordered rooted tree that graphically represents the

semantic information a string derived from a context-free grammar.

Representation Technique:

. Root vertex: Must be labeled by the start symbol.
2. Vertex: Labeled by a non-terminal symbol.

3. Leaves: Labeled by a terminal symbol or &

1

There are two different approaches to draw a derivation tree:

1. Top-down Approach:
(a) Starts with the starung symbol S

(b) Goes down to tree leaves using productions

2. Bottom-up Approach:
(a) Starts from tree leaves

(b) Proceeds upward to the root which is the starting symbol S

1

Scanned by CamScanner

Types of Derivation Tree

Leftmost and Rightmost Derivation of a String

1. Leftmost derivation - A leftmost derivation is obtained by applying production to

the leftmost variable i each step.

2. Rightﬂl()St derivation - A rightmost denvation is obtained by applying production
to the nghtmost vanable in each step.

1

10

Example

Let any set of production rules in a CFG be
X— X+X | X*X |X| a

over an alphabet {a],

Find the leftmost derivation for the stning
"ata*a”,

Answer:

X — X+X

A=+ atX

X— at+ X*X

X—a+a*X

X—+ ata*a

Step)

Sep)

|
»

Step S

Step 2

Step 4

1

11

Example $tep 1 P
Let any set of production rules in a CFG be
X—X+X | X*X |X| a

over an alphabet {a},

Find the Rightmost derivation for the stnng

Step) . Mep 4
"a_"_a‘uu. i »
Answer:
x — x.x SMep S .
X+ X*a

X~ X+X*a
X —X+a*a

X+ atu*a

Ambiguity in CFG

If a context free grammar G has more than one derivation tree for
some string w € L(G), it is called an ambiguous grammar. There
exist multiple right-most or left-most derivations for some string

generated from that grammar.

13

Problem
Check whether the grammar G with
production rules -

X — X+X | X*X [X| a 1s ambiguous or not.

Solution

Let's find out the derivation tree for the
string "ata*a". It has two leftmost
derivations.

Derivation 1 —

X—> X+X - a+X — at+ X*X - a+a*X — a+a*a

1

14

Parse tree 1 -

1

15

Derivation2 - X — X™X — X+X*X — a+ X*X — a+a*X — a+a*a

Parse tree 2 -

/ o
K> ‘\X/
\ N {
X ' X) oy
N "/ \L/ 2)
7 % ,
\ 2./ G’/

Since there are two parse trees for a single string "a+a*a”, the grammar G is ambiguous.

1

16

INTRODUCTION TO PARSING

he parser or syntactic analyzer obtains a string of tokens from the lexical
analyzer and verifies that the string can be generated by the grammar for
the source language. It reports any syntax errors In the program. It also
recovers from commonly occurring errors so that it can continue processing
Its Input.

Parsing Is used to derive a string using the production rules of a
grammar. It is used to check the acceptability of a string. Compiler Is
used to check whether or not a string Is syntactically correct. A parser
takes the inputs and builds a parse tree.

SOUree

program

>

lexical

analvzer

toke arser | parse
)| parsa _I}._*
PR— |
tree
oernext token
symbol
table

rest of

frontend

mntermediate

’
representation

Fig. 2.1 Position of parser in compiler model

1

18

TYPES OF PARSERS

{Pﬁ&seks

0 L

'l Top DowN BOTT}‘;S&J
PAE SER (SR ?p

\]V \ l/

\ e cunsive Dtscm‘tj h//’;
' N

//’ v . LR Parseh
L.Back'fm«i"ﬂ 1 Po GQCKM: F

P(e,&fc‘h\/e/ LLC')O.]/ Lelo) SERU) R CLH)F
Pcu,,seﬁ‘:, pan.s -:.

Back-tracking
Top- down parsers start from the root node (start
symbol) and match the input string against the
production rules to replace them (if matched).

To understand this, take the following example of
CFG:

S—rXd|rZd X —-oa|eaZ — al
String —read

For an input string: read, a top-down parser, will behave like
this:

It will start with S from the production rules and will match Its
yield to the left-most letter of the input, i.e. 'r’. The very
production of S (S — rXd) matches with it. So the top-down
parser advances to the next input letter (i.e. ‘e’). The parser
tries to expand non-terminal ‘X" and checks its production from
the left (X — 0a). It does not match with the next input symbol.
So the top-down parser backtracks to obtain the next
production rule of X, (X — ea).

\ A/

(s)

s

AR\

(Xx) d

/\ /\ N

e d

back trackmg next-production

1

22

LEFT RECURSION

* Left recursion is a case when the left-most non-terminal in a
production of a non-terminal is the non-terminal itself(direct left
recursion) or through some other non-terminal definitions, rewrites
to the non-terminal again(indirect left recursion). Consider these
examples -

* (1) A-> Aq (direct)
* (2) A->Bq
B -> Ar (indirect)

* Left recursion has to be removed if the parser performs top-down
parsing

1

23

LEFT RECURSION

We have to eliminate left recursion because
top down parsing methods can not handle
left recursive grammars.

LEFT FACTORING

In left factoring it is not clear which of two
alternative productions to use to expand a
nonterminal A.

.e.if A2 aB; | a3,

W e don't know whether to expand A to af,
or to a3,

To remove left factoring for this grammar
replace all A productions containing a as
prefix by A =2 aA'then A' =2 B, | B

1

27

Recursive Descent Parsing

* Recursive descent parsing 1s a top-down method of
syntax analysis in which a set recursive procedures to
process the mput 1s executed.

* A procedure 1s associated with each nonterminal of a
grammar.

* Top-down parsing can be viewed as an attempt to find
a leftmost dertvation for an input string.

* Equivalently, it attempts to construct a parse tree for
the input starting from the root and creating the nodes
of the parse tree n preorder.

1

30

EXAMPLE

Grammar:
E->FE
E'-->+1E'E

-Here non terminals are E and E'
- String we have to parse is: i+i$

1

31

INt main()

{

/[l E Is a start symbol.

EQ);

/I if lookahead = $, it represents the end of the string
// Here | Is lookahead.
if (1 =="'%")

printf("Parsing Successful");

32

[/ Definition of E, as per the given production

E()
{
if (I ==""{

match('l');
E');
}
}

1

33

/[Definition of E' as per the given production
E'()
{

if (I =="+" {

match('+');
match('l');
E'();

}

else
return ();

1

34

/| Match function

match(char t)

{
If (I ==1){
| = getchar();
}
else

printf("Error");

1

35

1

36

Why FIRST and FOLLOW in Compiler Design?
Why FIRST?

We saw the need of backtrack In Introduction to Syntax
Analysis, which Is really a complex process to implement.
There can be easier way to sort out this problem:

If the compiler would have come to know In advance, that
what Is the “first character of the string produced when a
production rule is applied”, and comparing it to the current
character or token In the input string It sees, It can wisely take
decision on which production rule to apply.

Example

S -> cAd

A -> bcla

And the Iinput string Is “cad”.

Thus, In the example above, If it knew that after
reading character ‘c’ in the input string and applying
S->CcAd, next character in the input string Is ‘a’, then
it would have ignored the production rule A->bc
(because ‘b’ Is the first character of the string
produced by this production rule, not ‘a’)

And directly use the production rule A->a (because
‘a’ IS the first character of the string produced by
this production rule, and I1s same as the current
character of the Input string which Is also ‘a’).
Hence it Is validated that If the compiler/parser
knows about first character of the string that can be
obtained by applying a production rule, then It can
wisely apply the correct production rule to get the
correct syntax tree for the given input string.

Calculation of FIRST Set Iin Syntax Analysis
Rules to compute FIRST set:

1.1f X i1s a terminal, then FIRST(X) = { ‘X" }
2. (1) If Xisanonterminal and X-> aa then add a to FIRST{ X }.

(i) If X-> €, is a production rule, then add € to FIRST(X).
3.f X->Y1Y2Y3....Ynis a production(Y1,Y2.. Are non terminal),

a)FIRST(X) = FIRST(Y1 Except €)

b)If FIRST(Y1) contains € then FIRST(X) = { FIRST(Y2) Except € }
c)If FIRST (Y1) contains € for all i =1 to n, then add € to FIRST(X).

Example 1:
Production Rules of Grammar

E ->TE'

E'->+TE'|C€

T>FT

T->*FT|€

F ->(E)|Iid

FIRST sets FIRST(E) = FIRST(T) ={ (, id }
FIRST(E')={+, €}

FIRST(T) = FIRST(F)={(, 1d }
FIRST(T)={* €}

FIRST(F)={(,id}

41

Example 2:

Production Rules of Grammar

S->ACB | Cbb | Ba

A->da|BC

B->qg|€

C->h|€

FIRST sets

FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C) ={d, g, h, €,
b, a}

FIRST(A)={d} U FIRST(B)={d,g, h, €}
FIRST(B)={g, €}

FIRST(C)={h, €}

42

Why FOLLOW?

The parser faces one more problem. Let us

consider below grammar to understand this
problem.

A -> aBb
B->c|e

And suppose the Input string is “ab” to parse.

As the first character In the input Is a, the
parser applies the rule A->aBDb.

A
[|\

1

44

Now the parser checks for the second character of the input
string which is b, and the Non-Terminal to derive is B, but the
parser can't get any string derivable from B that contains b as

first character.

But the Grammar does contain a production rule B -> ¢, if that
Is applied then B will vanish, and the parser gets the input “ab”

, as shown below. But the parser can apply it only when it
knows that the character that follows B In the production rule

IS same as the current character in the input.

In RHS of A -> aBb, b follows Non-Terminal B, I.e.
FOLLOW(B) = {b}, and the current input character read
IS also b. Hence the parser applies this rule. And 1t Is
able to get the string “ab” from the given grammar.

So FOLLOW can make a Non-terminal to vanish out if
needed to generate the string from the parse tree.

Follow(X) to be the set of terminals that can appear

Immediately to the right of Non-Terminal X in some
sentential form.

Rules to compute FOLLOW sef:

1) FOLLOW(S)={$} //where Sis the starting
Non-Terminal
2) 2)IfA->aBf3 is a production, where a,B, and (3 are any
grammar symbols, where 3 # € then everything In
FIRST(B) except € i1s in FOLLOW(B).
3) If A->aB Is a production, then everything in FOLLOW(A) Is
in FOLLOW(B).
4) If A->aBf3 Is a production and FIRST([3) contains €, then
Everything In FOLLOW(A) is iIn FOLLOW(B).

Production Rules:
E->TFE’
E'->+TFE|E€
T>FT
T->"FT|€
F->(E)]|id

FIRST set

FIRST(E) = FIRST(T)={(,id}
FIRST(E)={+, €}

FIRST(T) = FIRST(F)={(, id }
FIRST(T)={* €}
FIRST(F)={(,id}

FOLLOW Set
FOLLOW(E) ={$,)}
FOLLOW(E’) = FOLLOW(E)={ $,)}
FOLLOW(T) ={FIRST(E')— €} U FOLLOW(E’) U FOLLOW(E)={+,$,)}
FOLLOW(T’) = FOLLOW(T)= {+,$,)}
FOLLOW(F) ={FIRST(T’)— €} U FOLLOW(T’) U FOLLOW(T) ={*, + $,)}
1 49

Production Rules:

-> aBDh

->cC

->pbC | €

-> EF

->g|€

F>f|€

FIRST set

FIRST(S)={a}

FIRST(B)={c}

FIRST(C)={b, €}

FIRST(D) = FIRST(E) U FIRST(F)={g,f, €}
FIRST(E)={g, €}

FIRST(F) ={f, €}

FOLLOW Set

FOLLOW(S)={$}

FOLLOW(B) ={ FIRST(D)-€ } UFIRST(h)={g,f,h}
FOLLOW(C) = FOLLOW(B)={g,f, h}
FOLLOW(D) = FIRST(h)={h}

FOLLOW(E) ={ FIRST(F)—€ } U FOLLOW(D) ={f, h}
FOLLOW(F) = FOLLOW(D) ={h}

moOwWwm

1

50

PREDICTIVE PARSING

PREDICTIVE PARSER

It is top — down parsing

An efficient non-backtracking form of top-down

called a predictive parser.

*To construct a predictive parser we must know
Input symbol

Non terminal / to be expanded
Alternatives of production

That derives a string beginning with

Proper alternative must be detectable by looking at
only first symbol it derives.

predictive parser has :-

nput - contain string to parser followed by $

stack - sequence of grammar symbols with $
parsing table - 2 dimension array M[A,a]
output stream - gives output

Parsing Program- Used to apply correct production from parsing
table

MODEL OF PREDICTIVE PARSING

a|+
Predictive

Parsing
Program

v

Parsing
Table M

1

o4

Construction of Parsing Table

INPUT- GRAMMAR G
OUTPUT: Parsing Table M
METHOD: Following steps are used for the production rule A-> a

1. For each ain FIRST(a) create an entry A -> a for M[A,a] where a Is
terminal symbol.

2. If FIRST(a) ={e}create an entry M[A,b]=A -> a where b is the
symbol in FOLLOW(A).

3. If FIRST(a) ={gfand FOLLOW(A)=$ create an entry M[A,$]=A ->a

4. Leftover entries are marked as error entry.

Example:
Production Rules:
E->TFE
E->+TE'|€
T>FT
T->*FT|€
F->(E)|id

FIRST set

FIRST(E) = FIRST(T)={(,id}
FIRST(E)={+, €}

FIRST(T) = FIRST(F)={(, id }
FIRST(T)={* €}
FIRST(F)={(,id}

FOLLOW Set
FOLLOW(E) ={$,)}
FOLLOW(E’) = FOLLOW(E)={ $,)}
FOLLOW(T) ={FIRST(E')— €} U FOLLOW(E’) U FOLLOW(E)={+,$,)}
FOLLOW(T’) = FOLLOW(T)= {+,$,)}
FOLLOW(F) ={FIRST(T’)— €} U FOLLOW(T’) U FOLLOW(T) ={*, + $,)}
1 56

PARSING TABLE FOR GRAMMAR G

Input Symbol
(-
EaTE

T-FT

| 7 |

Grammar:

E=TE
E'=2 +TE
T2FT
N &

‘F‘9(E)|id

¢

¢

1

57

PREDICTIVE PARSING ALGORITHM

Repeat
Begin
Let X be the top stack symbol and a the next input symbol
If X is a terminal then
If X=a then
POP X from the stack and remove a from input and also advance the input pointer.
else ERROR()
else [* XIs anon terminal *\
If M[X, a]= X->Y1 Y2......Yk then
Begin
POP X from the stack
PUSH Yk Y2 Y1 on the stack
end
else
ERROR()
End
Until X=$ [* Stack has Emptied *\

Example of Parsing a string using Predictive Parser

With input 1d+1d*id the predictive parser ma

shown below

Grammar;
E=2TE'
E'=+TE'
T2
T' 2 *FT"
F=(E)lid

¢

€

kes the sequence of moves as
STACK INPUT lovTPrT
SF id+1d*id$
SE'T id+id*idS | E — TE
SE'T'F id+3d*idS | T — F1 - — s o
SE'T'id id+id*ids | F — id md | M| ¢ | " (1]) $
SE'T" vid*idS | Match id | EaTE ETE
SE' Hd%dS | T — ¢ —1 [rm—— —
SET S IE = oTE : ' EnlE ' | | Eoe | Eex
SE'T id*id$ | Match + T | T T-FT
SE'T'F d*idS [T — FT r | tae [To%7] | Toe | Toe
SE'T'd W*dS | F —ud JE— + ' ' '
SE'T’ i | Match id F | P F-x)
SE'T'F? id$ | T — *FT
SE'T'F IdS | Match *
SE'T'id WS | F — id
SE'T’ $ | Match id
SE' SIT ¢
S SIE —¢

1 59

Parse Tree

Error recovery in predictive
parsing

* An error 1s detected during predictive parsing when

v The terminal on the top of the stack does not match the next input

symbol.

v When nonterminal A is on top of the stack ,¢ i1s the next input

symbol and the parsing table entry M| A a] 1s empty.

1

61

e S i e me\g “- Y

Whon &&MQ&@MM

SN AL IS AN LA MnINRL 191D ﬂ
M A A N g R e

om L2wcal It disob A | ¢t ‘ v
M,WCWW~ Aduquote when i co of
Hwndli_ng %Mad&c EXers "mw,l,,ufyb DO un Samy atimt s

' R‘_PM i naxe

-A{mawwﬁmm
Pﬂowngo‘mmmwnﬁ

Exwon Recowsy Shuategles 't

v

}“KAN'.CMODE RECOVERY : Thy Paxses
discantds the Wsambohmaza

Jome umbld one of B designaded

2 PHRASE LEVEL RECOVERY : Jhe Pansex |
pogerms Llocal comrnerlion on Hemaining
indut whon dh enex s didComoad

dhot allpwd St pansex i”‘—“’"‘a"""-
A5 exteulion
drawback § Frowk coxietion J4s

set o sgnwmm@ ohons a4

Hemaiming J”'«P‘-‘i ba Al m“ﬂ o

1

62

3 ERROR PRODUCTIONS

Ig WE Knew ht Cemmen SO0 dhat
Can be Mowmioud,w& Cam aupment

he max i B language with

P"Od-tm .ﬂ-AS,I gninale Ltiontoud

Comaliuu cl i

* Use dhe mew anpmax (Mm‘ s
paxasx .

' I‘"dw an U oK Pnoductwn 14
“é panser , genoats el
dw.@mtvm to imdicate naf?MP
Wtw/ UOtentous Congtiucls

. R
4 GILOBAL CORRECTION —
Jmai'mu.tvmwuﬁw U as
pocsrbly whilt umveiting an wnceuael

M’LPU.I Aj.'u»\g i a Valﬁd 'd"“"ﬂ
¢ Hiwen o uncorwued ‘m*uI %, t‘,nd a

|

paxse I ﬁ"‘ o suelated .sbdulw
(using Jhe gluun goommar) Sueh dh

Jhe mo: Lhan (imﬂ’lbl / .
"%Mcd O{Eb imq:gmm % bw s

LM

¢+ Too Coghy To Implimeat .

1

63

Panic mode recovery

* Panic mode recovery:

» Skip symbols on the input until a token in a selected
set of synchronizing tokens appear

v'Use FOLLOW symbols as synchronizing tokens

v'Use svinch in predictive parsing table to indicate
synchronizing tokens obtains from the follow set of the

non-terminal.

1

64

Panic mode recovery

Rules:

1.If parser looks up entry M/A,a/ and finds it blank then the

input symbol a 1s skipped.

2.If the entry 1s synch then the nonterminal on top of the stack

1s popped in an attempt to resume parsing.

3.If a token on the top of the stack does not match the input

symbol, then we pop the token from the stack.

1

65

“synch” Indicating synchronizing tokens obtained from
FOLLOW set of the nonterminal.

If the parser looks up entry M[A,a] and finds that it is blank,
the input symbol a 1s skipped.

If the entry Is synch, the nonterminal on top of the stack Is
popped.

If a token on top of the stack does not match the input
symbol, then we pop the token from the stack.

Example

E->TE’

E’->+TE’| €

T->FT
| B> o I

€

F->(E)|id

Non -
terminal

E

E9
T
T’

F

1d

E->TE

T->FT

F->id

e

-

- T T - ™

E’'->+TE’

First

1(id}
1(id]
1(id}
e

¥ o
1 ‘{'

Input Symbol

T->FT"

T">¢ " ->"FT

F ->(E)

Follow

“ n T ¥

——-— e — -
.+_ S— S—
- -
-

Non -
terminal
k

E

I

T

F

d
E->TE

T->FT

[nput Symbol

’ (

- - - -A.
E->TE

STACK INPUT REMARK
Exam ple $E Yid % +id $ error, skip)

$E id* + id $ id is in FIRST(E)
$SE'T idx+id$
SE'T'F idx +id $
$E'T’id idx +id$
SE'T’ * + id$
Non - [nput Symbol $E'T'F % *+id $

terminal 1d ' ' () S SE'T'F +id$ | error, M[F, +] = synch

E F2TF F..o>TE! SE'T’ +id $ F has been popped
$E’ +id$
% E'.>+TE' E->€ E't $E'T+ +id $
b oo $SE'T id $
T [T [-=>FT SE'T'F id $
| Pog Fafr | TE) T3y ConM s
FoooF->id F->(E) :E :

Fig. 4.19. Parsing and error recovery moves made by predictive parser.

LL(k) Parser:

e top-down parser - starts with start
symbol on stack, and repeatedly
replace nonterminals until string is
generated.

e predictive parser - predict next
rewrite rule

e first L of LLL means - read input
string left to right

e second L of LL means - produces
leftmost derivation

e k - number of lookahead symbols

LL(1)

- An LL parser is called an LL(k) parser il
it uses k tokens of look ahead when
parsing a sentence.

< LL grammars, particularly LL(1) ‘
grammars, as parsers are easy 10 Leh to nght

construct, and many computer
languages are designed to be LL(1) for

this reason. Leﬂ mOSt deﬂvatlon

Y

< The 1 stands for using one input symbol

of look ahead at each step to make klookahead Symb0|

parsing action decision.

—p— : :)
- 4 — " . : . oL .- . 4
- -
. : L % A J
"' Y. b e) T N
-)
s ¢ : - . - : e : .
A oL e = $r= 3
14 o - >))
. . -
> »
——— T =
1 -
- ’ - . '
!
-
) . 5 -
e
-
»
-~ ! s C.
-'
.
) - ‘
» . . N
- - s W
3 > y ’ 'o MY ™ y -
) i 3 : 3 ‘
. v ' : : - : ; .
. oW g
S v ”, N
o o hm -
-
- : .
> - .
»
' -
- Pl
- | - : IJ .p.
‘—:: o.b - "'
.
—tp

T
!
o
S

LL(1) Grammar

* Agrammar whose parsing table has no multiply-defined entries.

r
This grammar 18

LL(l)

FIRST(E=FIRST(T =FIRST(Fr={(.1d) FOLLOW(E =FOLLOW(E ={), $)
FIRST(E y={+.¢) FOLLOW(T=FOLLOW(T y=(+,). $)
FIRST(T y={*.¢} FOLLOW(Fy={+, *.). $}

I 2 I =
I N 23 I =73
I 2 2= A
I S il Y
1T Trel T

E'—+TE’le

EXAMPLEZ2:

Multiply-detined

()
This grammar 15 FIRST(S)={1,a) FOLLOW(S)={e, $) entries
not LL(1) FIRST(S")={e. ¢) FOLLOW(S y={e, §)

' FIRST(E F={b) FOLLOW(E ={t)

Non- Input Symbol -
T T [[
=0 I =T

S S — g S —e
S —eS

B | JE—bf]] |

S~ 1EtSS " | a

S eS| e

E Db

o Agrammar G 1s LL(1) tff whenever A — « | Jf are two distinet productions of G,
the following conditions hold:
v Condition I For no termnal a, do both « and // derive strings beginning with g
(FIRST(w) (1 FIRST(f) = ¢)
v Condition 2° Atmost one of « and [/ can derive empty string

v Condition 3 It /i * & then « does not derive any string beginning with a

termmnal in FOLLOW(A)

(FIRST(at) 1 FOLLOW(A)= ¢)

) .
[hus granumar is FIRST(S = (a. b FOLLOW(S)=($) FIRST(AaAD) () FIRST(BbBa) = §
LL(1) s L fal 1) Y =
WAL ULLUWA (A, D]
IRST(BY={¢) FOLLOW(BF{a, b}

S=+ AaAb | BbBa

A-ve Non-
5 o (oo [
T [[
B B-re B¢ |

GG)

This grammar 1s FIRST(S)=!1.a] FOLLOW(S)=(e, §)) FIRSTGELSS) lwl l"ll{.\"l"«zn = ()
] qag =
s FIRST(S F={e.e) | FOLLOW(Sy={e.§) 2) FIRST(eS) (1 FIRST(e) =
FIRST(E)={b] FOLLOW(E)=(t) ey [e) = ¢

3) FIRST(eS) 1 FOLLOW(S") = ¢

Noi- [nput Symbol el Nie, $i#
s fmnd ST T

D =) | £ N
F= 1 ll |\\

S N .S — £
—e —g

I"---I-

("heck following grammar for LL(1): FIRST (¢ (1 FIRST(d)

)

(‘\

This grammar 1s S— (CC (e} 11 {d) =&
LL(I)

d

(" =K c(q

FIRST(Sy={¢.d} FOLLOW(S ={$)
FIRST(Cy={c.d) FOLLOW(Cy={c.d. $)

[nput Symbol

SR PARSER

Bottom up parsing
o Bottom-up parse comesponds to the construction of a parse tree for an input
string beginning at the leaves (the bottom) and working up towards the root
(the top).
o [t uses nghtmost denvation to construct the parse tee.
¢ The nghtmost derivation is the one in which we always expand the rightmost

non-termnal.

STACK IMPLEMENTATION OF SR PARSER

't takes the given input string and builds a parse tree-

« Starting from the bottom at the leaves.

« And growing the tree towards the top to the root.

Reduced to

>4 .,. ”

-— ’ ’

‘_}\‘ : 3 .‘\.o
e

Data Structures-

Two data structures are required to implement a shift-reduce parser-

o AStack s required to hold the grammar symbols.

o An Input buffer 1s required to hold the string to be parsed.

Working-

Initially, shift-reduce parser is present in the following configuration where-

« Stack contains only the $ symbaol

« |Input buffer contains the input string with $ at its end.

\ASS,
»

S input buffer

Stack

Initial Configuration

The parser works by-

 Moving the input symbols on the top of the stack.

« Until & handie B appears on the top of the stack.

The parser keeps on repeating this cycle unitil-

e An error i1s detected

« Or stack is left with only the start symbol and the input buffer becomes empty.

S I =

Iinput buffer

Stack

Final Configuration

After achieving this configuration,

o The parser stops / halts.

+ |t reports the successful completion of parsing.

|2

ACTION PERFORMED BY THE SR PARSER

. In a shift acuon, the next mput symbol 15 shifted onto the wp of the

stack.

. In a reduce action, the parser knows the night end of the handle 1s at the

top of the stack. It must then locate the left end of the handle within the

stack and decide with what nonterminal to replace the handle.

. In an accepr acuon, the parser announces successful completion of

parsing.

. In an error action, the parser discovers that syntax error has occurred and

calls an emror recovery routine.

RULE FOR SHIFT/REDUCE

Example:
E—-E+TI|T
TT—=T*FI|F
F— 1d
Input string 1s 1d * 1d
Righimost derivation
E=1

=>>T%*F

=>"1"*1d

=>F * id

=>id * id

STACK | INPUT | ACTION

S td *1d S | Shitft

$ 1d *idS Reduce by F — 1d

S F *idS Reduce by T — F

—4

ST *idS Shift

> 5" d S Shift

$T*ud | S Reduce by F — id

4

ST*F S Reduceby I' —-T*IF

T S Reduce by E — T

S E S Accept

PARSE TREE GENERATED BY SR PARSER

OPERATOR PRECEDENCE PARSER

Aoy o wob allewued in parter

R ew
| ;r}: N J
i

OPERATOR PRECEDENCE PARSER

Operator grammar

» small, but an important class of grammars

» we may have an efficient operator precedence
parser (a shift-reduce parser) for an operator
grammar.

In an operaior grammar, No produchon ruie can have:

» ¢ at the nght side
» two adjacent non-ferminails at the right side.

E—->EOE E—>E+E |
E—id E°E |
O—-»+|%|/ E/E | I

grammar not operalor grammeox operator grammar

OPERATOR PRECEDENCE PARSER

Precedence Relations

» INn operator-precedence parsing, we define
three disjoint precedence relations between
certain pairs of terminails.

a <-b b has higher precedence than @
=-b b has same precedence as a
a > b b has lower precedence than a

How to Create Operator-
Precedence Relations

We use associativity and precedence relations among operators.

If operator O, has higher precedence than operator O

If operator O , and operator O , have equal precedence,
they are left-associative =20, >0, andO, >0,
they are right-associative =20 <0, and9, < 0,

Foralloperators 0.0 < id. 1d >0, 0< (L(<0,0 >).)>00>5. and
$< O

Also. ket
S <

S < 1d

Operator Precedence Parsing

v Consider the Grammar

«— E+E
¢ — B¥E
R [
id + . S
[id | - > > > Precedence:
T T e s > d>*>+>§
x | < . > . > >

! ! | | . + >+ (Left Associative)
} | < J o [S [- Example: id + id + id

Operator-precedence relations

|

Operator-Precedence Parsir o cesie
A\leleldliialan B

E!féﬂ»‘é’ g ggegnwéérg?nl?iﬁal naFk is S and a table holds precedence

set p to point to the first symbol of ws
repeat forever
if ($ison top of the stack and p poinis 1o $) then retum

else {
abel c;prg ost terrmnol SYMmbDbol on the stack and let b be the

symb o poIn ed

f (o< b or a— b) then { /* SHIFT */
push b onto the stack:
advance p o the next input symbol;

}

elseif ([a > b) then /* REDUCE */
repeat pop stack

unfil Vhe topgf stack terminal s related by < o the terminal most
recently poppe '

else error();

;

Operator-Precedence Parsi
Algorithm -- Example

sftack input action

% id+id*id$ $<id shift

$id +Hd*d$ id >+ reducek —»i1d
_ +id*id$ shift

P+ id*id$ shift

id$ id> reducek —id
' shift
shift
reduceEk — id
recdlucek —» E*E
reducekE — E+E

accept

OPERATOR FUNCTION

We construct the operator precedence table as-

g —_—
id - X
id | >
f -+ | < | > =
x <
S | < | < | =

Operator Precedence Table

\/

\/

\f

The graph representing the precedence functions is-

Graph Representing Precedence Functions

Here, the longest paths are-

e i w9y, — 1. — g, — 1g
 Od = Ikx—9x — 1, — g, — 15

The resulting precedence functions are-

LR PARSER

LR parser

LR(0)

SLR(1)

Fig: Types of LR parser

LR parsing Is one type of bottom up parsing, It is used to parse the large class of grammars.
[Inthe LR parsing, "L" stands for feft-to-right scanning of the input,

'R" stands for constructing a right most derivation in reverse.

K" is the number of input symbols of the look ahead used to make number of parsing decision,

LR parsing Is divided into four parts: LR (0} parsing, SLR parsing, CLR parsing and LALR parsing.

LR algorithm:

The LR algorithm requires stack, input, output and parsing table, In all type of LR parsing, input, output and stack are same but

parsing table is different.

Ip buffer

T

LR parser

l

LR parsing table

Stacks

[nput buffer is used to indicate end of input and it contains the string to be parsed followed by a § Symbol,
A stack is used to contain a sequence of grammar symbols with a § at the bottom of the stack

Parsing table 15 a two dimensional array. It containg two parts: Action part and Go To part

LR Parser

l— No. of ‘ook ahead symbol

Rcv of RMD .
Ldt to Rught

Classiﬂcation of LR Parser :- Based on the constructlon of the parse table LR

S R T

parser are classafned into 4 types

/1. LR(0) LR ©) s\,uw
2. SR

3. CLR(I)} LR () | W
L =

v4. LALR (1)

Procedure to construct the LR Parse table

J¢ Obtain the Augmented grammar, for then given Grammar.
¥ Create the canonical collection of LR items.

v WW items,

Augmented Grammar: Ille grammar which is obtained by adding one
more production that derives the start symbol of the g_,rgmm_ar_js_called-as
Augmented Grammar. . i

A Gyawws

N : LY LA, e oY /%\. - 1*-‘_“_4£"- ——
>, c— AR ./ “"J\’d
= , z " A
| — adl ¢ — AR
A — n A —alt
l’,L - i‘,)
« Augmented grammarhelps us-ip separating the final item from the
non final items.
| P —

e The need of Augmented grammar is to deci e final item w P
ever a multiple production are there from the start symbol. &

AR (0) items: The production with (.) any where on R.H.S. is know as LR(0) items.

Ex — A => abc i e
: e - Sha ke y ﬂf.)l‘i?“u
—e + G Bl : : .—1‘,(\}- ‘ y'v
- e Nou fuek 4 ; \
L“{c" ‘\ i 5 C ' A ol L g
0"\ — 1Y ; (1
" A — Ghl-) g“"igﬁ:\. “; '. 715
. { bt “‘\k.
Canonical collection - If I, 1., |, .. 2 A
LR(O) item then the set C = {I, 1,, |, 1) is called as canonical collection.
N — ‘ PR N i —— e ——— ey
=
. Function used to get LR(0) items
¥ Closure (I) Ve |
2. Goto(l,X) | GATE_

Construction of LR(0) Parser table: Parse table consist of two parts

1. Action
2. GO-TO
h [ACTION | Goto |
| | Terminals l S | Non terminals
.
-
| L |
|
| a {

mxn

1. Goto (I, X) =S(!)

X = terminal

2. Goto (I, X)=J(1)

X = Non terminal

3. If| is the final item containing r, rule of grammar then place r, under all
terminal.

STATE ACTION GOTO
S
d $

I0 |S S4

3
|11 Accept
12 |S S4

3
I3 |S S4

3
14 |r3 r3 r3
|15 rl rl rl
|16 r2 r2 r2

GOTO

E

ACTION

34

Accept

34

S4

r3

r3

r3

rl

rl

rl

r2

r2

r2

STATE

0 |S3

11

12 |S3

13 |S3

14

15

16

CLR(1)

CLIRO) Vessouw j L2 1)
!

L/A L)]);.sé".Lm t__‘,::.
T <, e) L’R Lo ‘
= L=) y =
Plocedure of closure 1 :- M

1) Add everything from i/p to output
or
add every item in | to closure L

VI‘S IfA—> aBB,Sisinl and B —2>r is in Grammar then add B = .r, First
™. Qe M\’”’

(BS) in the ci

Ex-1
S AAY ﬁ
vV A= aA (=25
/A2 (— At
/'\ ""aA
A 4

Lo

/r

TP e AR
LB .AAI {'HS-{ (F)—’ "175{ (é‘ $)
AA—' «aA , frst ($) — {ﬂsf (A$) - 2“/5)

v —-<AA LF) CLR (1) Parser

1 —) I .
fpl__:‘é(l:s) » = m AI: t

(¢s.E} A - ﬁ—-‘/ M >
L sﬂ.ﬁh/$ s= A3\ o poah f =

: A—O(IA/ Q.I
— ' A->-@, 3 A—=-aA, $ 6
S A-«-UA/QH.? /'\—4-b 1 A_,.b,Q b
-S _— Rﬂ @—ﬁ-bll‘lb,-} g 2 \

— i | b e
I et
b H - a. /7\,,5;,5\ T3

L p -
au (L
A - b",u“,\ \51 \ I
d ¢
I‘,r [:Io _]
AN
(20 satss) re

PARSE TABLE

LALR (1) Parser

Conflict in CLR(1) Parser

SQ(QRF‘ICX

1. SR conflict
2. SR conflict

I
1. For every grammar if SLR(1) parser can be constructed then LR(1) Parser can
also be constructed. But if LR(1) Parser can be constructed for a grammar
—————— ——— p—

then SLR{1) Parser may or may not be constructed.

i.e. every SLR(1) grammar is CLR 1) but every CLR(1) grammar need we
SLR(1). P

" C,RL) —

_ 2. CLR(1) Parser is more powerful than any other parser and more costly also.

— Ny -

/3'. Medium level company will not prefer this kind of mechanism to construct

PP
the parser in compiler projects.
W'\

——

"

LALR(1) Parser:-

The DFA of CLR(1) contain some state which contain the item with _same

production part and different look ahead part.

* Now combine the state with common production part and different look
ahead part in a single state and construct the parse table.

. lf parse table is free from multiple entries i.e. free from SR and RR conflict

CLRQ) Jasare

LALR{1) Parser (part-2)

Note:

e If the DFA of CLR(1) parser does not contain more than one state with

common production part and diff. look ahgadﬁpart then the grammar is
CLR(1) and LALR(1).

. If the DFA of CLR(1) Parser contain more than one state with common
productnw and diff. look ahead part then,thg\’gLammar may or may not
"be LALR(1). - -
B N

e _every LALR(1) grammar is CLR(1) but every CLR(1) grammar need not be

LALR(1). e
e

(,bRU)

y

s—

fu GATE 4
1

LEX

* [t 1s tool which Generate Lexical analyser
* Lexical analyser 1s first phase ot compiler which
take input as source code and generate output as

tOkenS ille]l ¢ X > 3|[.]]1
% L Character Stream
Lexical
Analyzer

@ Token Stream

KEYWORD BRACKET IDENTIFIER OPERATOR NUMBER
00‘:" l.(l. 00“0. N).. ~3.1l.

*The mput notation for the Lex tool 1s reterred
to as the Lex language and the tool itself 1s the
Lex compiler.

*'The Lex compiler transtorms the mput patterns
Into a transition diagram and generates code, In

a file called lex.yy.c

Lex source program A ” :
_’J) ex . yy . C
lex.l compiler I
M e—————
lex.yy.c — C. b a.OUt
compiler

Input stream Sequence of tokens

Working

* An mput file, which we call lex.], 1s written in the Lex
language and describes the lexical analyser to be generate(l.

* The Lex compiler transtorms lex.] to a C program, m a file
that 1s always named lex.yy.c.

* The later file 1s compiled by the C compiler mnto a file called
a.out, as always.

* The C-compiler output 1s a working lexical analyser that can
take a stream of mput characters and produce a stream of
tokens

)]

Structure of Lex Programs:

A Lex program has the following form:
{declarations}

%%

{translation rules}

%%

{auxiliary functions}

YACC

* YACC stands for Yet Another Compiler
Compiler.

[t 1s a tool which Generate LALR Parser

*Syntax analyser (parser) 1s second phase ot
compiler which take mput as token and generate
syntax tree

’ZACC IN COMPILER DESIGN

’:} A Fauad y ‘(vf Ygi' Ao Huer ﬂ 'fc.h—&_u:f'u\(dovu Szu \ W/
H s a deel of gemesah Look Muead ﬁmum (cwwfﬂos uuu ~ fle
L‘-{ﬁ to- "43’«1 j(LRL&) PM:L eybaion, T+ Wl Lowfasn ABI-ed

_ AT Yace VAL wwfllo,
Y dudas ilf o Teeial g for > ol | cowvent uf:d ¢ tads wirtw

SYntax P & ..4
ittty G, 5 pan fpon d e fle

%kwa.wiauumkj in Mc)TLM Yobabec [l wl’!.u(}w a4 O

fo e Q._(_-ﬁ:fllvt amd e ’s
will b Ha LALR PMI oL

YQCC TYQCC

'f‘“-hm ompler | Y'tqb'c law.wx W +Haa Loy ol
' oy (Sl Fa s frol) will be
Wb, ! M ro Ou.i‘_,] €. .

T

o=

T, el @ CCoh-lfl'(crj Q_OUk ~ R LRLK M ok e wHl 3&

Working

yacc
g compiler y. tab. ¢
specification

eg. parser.y

C
b o g
iInput —-lTl—» output

Syntax

Detinitions
%%
Rules
%%
Supplementary Code

* Definition Section: All code between % and % is copied
to the C file. The definitions section 1s where we contfigure
various parser features such as defining token codes,
establishing operator precedence and associativity and
setting up variables used to communicate between the
scanner and the parser.

* Rules Section: The required productions section is where
we specity the grammar rule.

* Supplementary Code Section: It 1s used for ordinary C
code that we want copied verbatim to the generated C file,
declarations are copied to the top of the file, user
subroutines to the bottom.

JECRC Foundation JEER[

JAIFUR ENGINEERING COLLEGE
AND RESEARCH CENTRE

NAME OF FACULTY (POST, DEPTT.)

1D/, TIAIDILHID

