
 SUBJECT- COMPILER DESIGN

SEMESTER- 5TH SEM

VISSION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards academic,

professional, cultural and social enrichment of the lives of individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of

focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

MISION OF THE DEPARTMENT

M1: To impart outcome based education for emerging technologies

 in the field of computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by

 accepting the change in technologies.

M4: To develop aptitude of fulfilling social responsibilities

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural

sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations. The engineer and society: Apply reasoning informed

by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer. CO2: Examine syntax

and semantic analyzer by understanding grammars.

CO3: Illustrate storage allocation and its organization & analyze

 symbol table organization.

CO4: Analyze code optimization, code generation & compare various compilers.

CO-PO Mapping

S
em

ester

S
u
b
ject

C
o
d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

V

 V

C
O

M
P

IL
E

R
 D

E
S

IG
N

5
C

S
4
 -

 0
2

L 1. Compare

different phases of

compiler and

design lexical

analyzer. 3 3 3 3 2 1 1 1 1 2 1 3

L 2. Examine syntax

and semantic

analyzer and

illustrate storage

allocation and its

organization 3 3 3 3 1 1 1 1 1 2 2 3

L 3. Analyze symbol

table organization,

code optimization

and code generator 3 3 3 3 2 1 1 1 1 2 2 3

L 4.Compare and

evaluate various

compilers and

analyzers

3 3 3 3 2 1 1 1 1 2 1 3

PROGRAM EDUCATIONAL OBJECTIVES:

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to

comprehend, analyze, design, and create novel products and solutions for the real life

problems.

3. To inculcate professional and ethical attitude, effective communication skills,

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to

relate engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning needed

for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

PSO

PSO1. Ability to interpret and analyze network specific and cyber security issues, automation in

real word environment.

PSO2. Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

SYLLABUS

LECTURE PLAN:

 Subject: Compiler Design (5CS4 – 02) Year/Sem: III/V

Unit

No./

Total

lec.

Req.

Topics Lect. Req.

Unit-1

(6)

Compiler, Translator, Interpreter definition, Phase of compiler 1

Introduction to one pass & Multipass compilers, Bootstrapping 1

Review of Finite automata lexical analyzer, Input, buffering, 2

Recognition of tokens, Idea about LEX:, GATE Questions 1

A lexical analyzer generator, Error Handling, Unit Test 1

Unit-2

(17)

Review of CFG Ambiguity of grammars, Introduction to parsing 2

Bottom up parsing Top down Parsing Technique 5

Shift reduce parsing, Operator Precedence Parsing 2

Recursive descent parsing predictive parsers 1

LL grammars & passers error handling of LL parser 1

Conical LR & LALR parsing tables 3

parsing with ambiguous grammar, GATE Questions 2

Introduction of automatic parser generator: YACC error handling in LR parsers, Unit

Test
1

Unit 3-

(7)

Syntax directed definitions; Construction of syntax trees 1

L-attributed definitions, Top down translation 1

Specification of a type checker, GATE Questions 1

Intermediate code forms using postfix notation and three address code, 2

Representing TAC using triples and quadruples, Translation of assignment statement. 1

Boolean expression and control structures, Unit Test 1

Unit 4-

(4)

Storage organization, Storage allocation, Strategies, Activation records, 1

Accessing local and non local names in a block structured language 1

Parameters passing, Symbol table organization, GATE Questions 1

Data structures used in symbol tables, Unit Test 1

Unit 5-

(6)

Definition of basic block control flow graphs, 1

DAG representation of basic block, Advantages of DAG, 1

Sources of optimization, Loop optimization Idea about global data flow analysis, Loop

invariant computation, Loop invariant computation, Tutorial
2

Peephole optimization, GATE Questions, Tutorial 1

 Issues in design of code generator, A simple code generator, Code generation from

DAG., UNIT TEST, Revision
1

Year & Sem – 3rd Year & 5th Sem

Subject – COMPILER DESIGN

Unit – 1

1 1

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

UNIT-1
OVERVIEW OF LANGUAGE PROCESSING SYSTEM

1 2

TRANSLATOR:

• Translating the high Level language program input into an equivalent

machine language program.

•Providing diagnostic messages wherever the programmer violates

specification of the High level language.

1 3

Preprocessor

1 4

A preprocessor produce input to compilers. They may perform the

following functions.

•Macro processing: A preprocessor may allow a user to define macros

that are short hands for longer constructs.

•File inclusion: A preprocessor may include header files into the program

text.

•Rational preprocessor: these preprocessors augment older languages

with more modern flow-of-control and data structuring facilities.

•Language Extensions: These preprocessor attempts to add capabilities

to the language by certain amounts to build-in macro

COMPILER

1 5

Compiler is a translator program that translates a program written in

(HLL) the source program and translate it into an equivalent program

in (MLL) the target program. As an important part of a compiler is

error showing to the programmer.

ASSEMBLER:
programmers found it difficult to write or read programs in machine

language. They begin to use a mnemonic (symbols) for each

machine instruction, which they would subsequently translate into

machine language. Such a mnemonic machine language is now

called an assembly language. Programs known as assembler were

written to automate the translation of assembly language in to

machine language. The input to an assembler program is called

source program, the output is a machine language translation (object

program).

Ex: MOV A,B

1 6

INTERPRETER:

An interpreter is a program that appears to execute a source

program as if it were machine language.

Languages such as BASIC, SNOBOL, LISP can be translated

using interpreters. JAVA also uses interpreter.

1 7

Advantages:

1 8

•Modification of user program can be easily made and implemented

as execution proceeds.

•Debugging a program and finding errors is simplified task for a

program used for interpretation.

•The interpreter for the language makes it machine independent.

Disadvantages:

•The execution of the program is slower.

•Memory consumption is more.

DIFFERENCE BETWEEN COMPILER AND INTERPRETER

•A compiler converts the high level instruction into machine language while an interpreter converts the

high level instruction into an intermediate form.

•Before execution, entire program is executed by the compiler whereas after translating the first line, an

interpreter then executes it and so on.

•List of errors is created by the compiler after the compilation process while an interpreter stops

translating after the first error.

•An independent executable file is created by the compiler whereas interpreter is required by an

interpreted program each time.

•The compiler produce object code whereas interpreter does not produce object code. In the process of

compilation the program is analyzed only once and then the code is generated whereas source program

is interpreted every time it is to be executed and every time the source program is analyzed. hence

interpreter is less efficient than compiler.

Examples of interpreter: A UPS Debugger .

example of compiler: Borland c compiler or Turbo C compiler compiles the programs written in C or C++.

1 9

Loader and Linker

1 10

•A loader is a program that places programs into memory and

prepares them for execution.

•A Linker resolves external memory address where the code in one

file may refer to the code in another file.

Phases of a compiler

1 11

A compiler operates in phases. A phase is a logically interrelated operation that takes

source program in one representation and produces output in another representation.

Lexical Analysis:-

LA or Scanners reads the source program one character at a time, carving the source

program into a sequence of atomic units called tokens.

Syntax Analysis:-

The second stage of translation is called Syntax analysis or parsing. In this phase

expressions, statements, declarations etc… are identified by using the results of lexical

analysis. Syntax analysis is aided by using techniques based on formal grammar of the

programming language.

1 12

1

9

Semantic Analyzer:

It uses syntax tree and symbol table to check whether the given program is

semantically consistent with language definition. It gathers type information and stores it

in either syntax tree or symbol table. This type information is subsequently used by

compiler during intermediate-code generation.

1 14

Intermediate Code Generations:-

This phase bridges the analysis and synthesis phases of translation.

• Translate Tree structure into intermediate code

Code Optimization :-
This is optional phase described to improve the intermediate code so

that the output runs faster and takes less space.

Code Generation:-
The last phase of translation is code generation. A number of

optimizations to reduce the length of machine language program

are carried out during this phase. The output of the code generator is

the machine language program of the specified computer.

1 15

16

Error Handler

It detects and recover the error occurred in different

phases of compiler.

It also provide synchronization among different phases

of compiler.

17

1 18

1 19

Single pass, Multi pass Compilers

20

• Pass : A pass refers to the traversal of a compiler through the entire

program.

• Phase : A phase of a compiler is a distinguishable stage, which takes

input from the previous stage, processes and yields output that can be

used as input for the next stage. A pass can have more than one

phase.

Single Pass Compiler

If we combine or group all the phases of compiler design

in a single module known as single pass compiler.

21

Some Points about single pass compiler

1.A one pass/single pass compiler is that type of

compiler that passes through the part of each compilation

unit exactly once.

2.Single pass compiler is faster and smaller than the

multi pass compiler.

3.As a disadvantage of single pass compiler is that it is

less efficient in comparison with multipass compiler.

4.Single pass compiler is one that processes the

input exactly once.

NAME OF FACULTY (POST, DEPTT.) ,
JECRC, JAIPUR

22

Two Pass compiler or Multi Pass compiler:
A Two pass/multi-pass Compiler is a type of compiler that

processes the source code or abstract syntax tree of a program

multiple times. In multipass Compiler we divide phases in two

pass as:

NAME OF FACULTY (POST, DEPTT.) ,
JECRC, JAIPUR

23

First Pass: is refers as

(a) Front end

(b) Analytic part

(c) Platform independent
In first pass the included phases are as Lexical analyzer, syntax

analyzer, semantic analyzer, intermediate code generator are work

as front end and analytic part means all phases analyze the High

level language and convert them into intermediate code and first

pass is platform independent

The output of first pass have requirement of the code optimization

and code generator phase which are comes to the second pass.

NAME OF FACULTY (POST, DEPTT.) ,
JECRC, JAIPUR

24

Second Pass: is refers as

(a) Back end

(b) Synthesis Part

(c) Platform Dependent

In second Pass the included phases are as Code optimization and

Code generator are work as back end and the synthesis part

refers to taking input as three address code(Intermediate code)

and convert them into Low level language/assembly language and

second pass is platform dependent because final stage of a typical

compiler converts the intermediate representation of program into

an executable set of instructions which is dependent on the

system.
25

26

With multi-pass Compiler we can solve these 2

basic problems:

1.If we want to design a compiler for different programming

language for same machine. In this case for each

programming language there is requirement of making

Front end/first pass for each of them and only one Back

end/second pass as shown in diagram:

NAME OF FACULTY (POST, DEPTT.) ,
JECRC, JAIPUR

27

NAME OF FACULTY (POST, DEPTT.) ,
JECRC, JAIPUR

28

2.If we want to design a compiler for same

programming language for different machine/system. In

this case we make different Back end for different

Machine/system and make only one Front end for

same programming language as:

29

30

Differences between Single Pass and Multipass

Compilers

31

32

33

34

35

Load & Go System
Load and go system is a programming language processor in which

the compilation, assembly, Loader, linker steps are not separated from

program Execution.EX: FORTRAN

36

Threaded Code Compiler

where each op-code in the virtual machine instruction

code is the

address of some (lower level) code to perform the required

operation. This kind of virtual machine can be implemented

efficiently in machine code on most processors by simply

performing an indirect jump to the address which is the next

instruction to be executed.

37

38

39

40

Bootstrapping

1 41

Bootstrapping is widely used in the compilation development.

Bootstrapping is used to produce a self-hosting compiler. Self-hosting

compiler is a type of compiler that can compile its own source code.

Bootstrap compiler is used to compile the compiler and then you can

use this compiled compiler to compile everything else as well as

future versions of itself.

The process described by the T-diagrams is called bootstrapping.

I

1 42

•The T- diagram shows a compiler SC T for Source S, Target T,

implemented in I.

•Follow some steps to produce a new language for machine A

A
•Create a compiler SC A for subset, S of the desired language, Lusing

language "A" and that compiler runs on machine A.

•Create a compiler LC A for language L written in a subset of L.
S

•Compile LC A using the compiler SC A to obtain LC A. LC
S A A A

A is a
compiler for language L, which runs on machine A and produces

code for machine A.

1 43

•Create a compiler LC A for language L written in a subset of L.
S

•Compile LC A using the compiler SC A to obtain LC A. LC
S A A A

A is a
compiler for language L, which runs on machine A and produces

code for machine A.

1 44

Review of Finite Automata

1 45

•Finite automata is a state machine that takes a string of symbols as

input and changes its state accordingly. Finite automata is a

recognizer for regular expressions. When a regular expression string

is fed into finite automata, it changes its state for each literal. If the

input string is successfully processed and the automata reaches its

final state, it is accepted

The mathematical model of finite automata consists of:

Finite set of states (Q)
Finite set of input symbols (Σ)

One Start state (q0)

Set of final states (qf)

Transition function (δ)

1 46

47

48

1

•States : States of FA are represented by circles. State names are written inside circles.

•Start state : The state from where the automata starts, is known as the start state. Start

state has an arrow pointed towards it.

•Intermediate states : All intermediate states have at least two arrows one pointing to

and another pointing out from them.

•Final state : If the input string is successfully parsed, the automata is expected to be in

this state. Final state is represented by double circles.

•Transition : The transition from one state to another state happens when a desired

symbol in the input is found. Upon transition, automata can either move to the next state

or stay in the same state. Movement from one state to another is shown as a directed

arrow, where the arrows points to the destination state. If automata stays on the same

state, an arrow pointing from a state to itself is drawn.

5

5

50

EXAMPLE DFA

51

52

53

54

55

56

57

Input Recognition of Tokens

1 58

Token: Token is a sequence of characters that can be treated as a single

logical entity. Typical tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5) constants

The patterns for the tokens are described using regular definitions.

digit -->[0,9]
letter-->[A-Z,a-z]

id -->letter(letter/digit)*

if --> if

then -->then

else -->else
relop--> </>/<=/>=/==/< >

Finite Automata For Recognizing Identifiers

1 59

Finite Automata For Recognizing keywords

Finite Automata For Recognizing digits

1 60

Finite Automata For Recognizing white space

Finite Automata For Recognizing Relational operators

1 61

1 62

1 63

Role of Lexical Analyzer

1 64

1 65

Tasks Lexical Analyzer

1 66

Tokens , Pattern and Lexemes

1 67

Pattern: A set of rules describing lexems.

Lexical Errors

1 68

1 69

7

6

LECTURE CONTENTS WITH A BLEND OF NPTEL CONTENTS

Parsing
Just like a natural language, a programming language also has a set of grammatical rules and hence

can be broken down into a parse tree by the parser. It is on this parse tree that the further steps of

semantic analysis are carried out. This is also used during generation of the intermediate language

code. Yacc (yet another compiler compiler) is a program that generates parsers in the C programming

language.

1 71

LECTURE CONTENTS WITH A BLEND OF NPTEL CONTENTS

Parsing
Just like a natural language, a programming language also has a set of grammatical rules and hence

can be broken down into a parse tree by the parser. It is on this parse tree that the further steps of

semantic analysis are carried out. This is also used during generation of the intermediate language

code. Yacc (yet another compiler compiler) is a program that generates parsers in the C programming

language.

1 72

1

REFERENCES/BIBLOGRAPHY

1 https://nptel.ac.in/courses/106/104/106104072/

2

https://www.slideshare.net/appasami/cs6660-compil

er-design-notes

3

http://www.brainkart.com/article/Recognition-of-Tok
ens_8138/

7

9

https://nptel.ac.in/courses/106/104/106104072/
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
http://www.brainkart.com/article/Recognition-of-Tokens_8138/
http://www.brainkart.com/article/Recognition-of-Tokens_8138/

NAME OF FACULTY (POST, DEPTT.) , JECRC, JAIPUR
8

0

