‘;\
JELRC
JECRC Foundation SUBJECT- COMPILER DESIGN

SEMESTER- 5™ SEM

VISSION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards academic,
professional, cultural and social enrichment of the lives of individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research
aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of
focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and
imaginatively gifted leaders can emerge in a range of professions.

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and make
competent engineers & professionals with high ethical values prepared for lifelong learning.

MISION OF THE DEPARTMENT

M1l: To impart outcome based education for emerging technologies
in the field of computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by
accepting the change intechnologies.

M4: To develop aptitude of fulfilling social responsibilities

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural
sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations. The engineer and society: Apply reasoning informed
by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer. CO2: Examine syntax
and semantic analyzer by understanding grammars.

CO3: Illustrate storageallocation and its organization & analyze
symboltable organization.

CO4: Analyze code optimization, code generation & compare various compilers.

CO-PO Mapping

19)SaWsS

109lgns

9p0d

d/1/1

02

T0d

¢Od

€0d

¥0Od

GOd

90d

LOd
80d

60d

0TOd
1T0d

¢10d

COMPILER DESIGN

5CS4 - 02

1. Compare
different phases of
compiler and
design lexical

analyzer.

2. Examine syntax
and semantic
analyzer and
illustrate storage
allocation and its

organization

3. Analyze symbol
table organization,
code optimization

and code generator

4.Compare and

evaluate various
compilers and

analyzers

PROGRAM EDUCATIONAL OBJECTIVES:

1.

PSO

To provide students with the fundamentals of Engineering Sciences with more
emphasis in Computer Science &Engineering by way of analyzing and exploiting
engineering challenges.

To train students with good scientific and engineering knowledge so as to
comprehend, analyze, design, and create novel products and solutions for the real life
problems.

To inculcate professional and ethical attitude, effective communication skKills,
teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to
relate engineering issues with social issues.

To provide students with an academic environment aware of excellence, leadership,
written ethical codes and guidelines, and the self motivated life-long learning needed
for a successful professional career.

To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

PSOL. Ability to interpret and analyze network specific and cyber security issues, automation in

real word environment.

PSO2. Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

SYLLABUS

Credit: 3
3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-02: Compiler Design

Max. Marks: 150(IA:30, ETE:120)

End Term Exam: 3 Hours

SN

Contents

Hours

1

Introduction:Objective, scope and outcome of the course.

01

2

Introduction: Objective, scope and outcome of the course.
Compiler, Translator, Interpreter definition, Phase of compiler,
Bootstrapping, Review of Finite automata lexical analyzer, Input,
Recognition of tokens, Idea about LEX: A lexical analyzer
generator, Error handling.

06

Review of CFG Ambiguity of grammars: Introduction to parsing.
Top down parsing, LL grammars & passers error handling of LL
parser, Recursive descent parsing predictive parsers, Bottom up
parsing, Shift reduce parsing, LR parsers, Construction of SLR,
Conical LR & LALR parsing tables, parsing with ambiguous
grammar. Operator precedence parsing, Introduction of automatic

parser generator: YACC error handling in LR parsers.

10

Syntax directed definitions; Construction of syntax trees, S-
Attributed Definition, L-attributed definitions, Top down
translation. Intermediate code forms using postfix notation, DAG,
Three address code, TAC for various control structures,
Representing TAC wusing triples and quadruples, Boolean
expression and control structures.

10

Storage organization; Storage allocation, Strategies, Activation
records, Accessing local and non-local names in a block structured
language, Parameters passing, Symbol table organization, Data
structures used in symbol tables.

08

Definition of basic block control flow graphs; DAG
representation of basic block, Advantages of DAG, Sources of
optimization, Loop optimization, Idea about global data flow
analysis, Loop invariant computation, Peephole optimization,
Issues in design of code generator, A simple code generator, Code
generation from DAG.

07

LECTURE PLAN:
Subject: Compiler Design (5CS4 - 02) Year/Sem: 1/

Unit
No./
Total Topics Lect. Req.
lec.
Req.

Compiler, Translator, Interpreter definition, Phase of compiler

Introduction to one pass & Multipass compilers, Bootstrapping

Unit-1
(6) Review of Finite automata lexical analyzer, Input, buffering,

Recognition of tokens, Idea about LEX:, GATE Questions

A lexical analyzer generator, Error Handling, Unit Test

Review of CFG Ambiguity of grammars, Introduction to parsing

Bottom up parsing Top down Parsing Technique

Shift reduce parsing, Operator Precedence Parsing

Unit-2 | Recursive descent parsing predictive parsers

(17) | LL grammars & passers error handling of LL parser

Conical LR & LALR parsing tables

parsing with ambiguous grammar, GATE Questions

Introduction of automatic parser generator: YACC error handling in LR parsers, Unit
Test

Syntax directed definitions; Construction of syntax trees

L-attributed definitions, Top down translation

Unit 3- | Specification of a type checker, GATE Questions

(7 Intermediate code forms using postfix notation and three address code,

Representing TAC using triples and quadruples, Translation of assignment statement.

Boolean expression and control structures, Unit Test

Storage organization, Storage allocation, Strategies, Activation records,

Unit 4- | Accessing local and non local names in a block structured language

(4) Parameters passing, Symbol table organization, GATE Questions

Data structures used in symbol tables, Unit Test

Definition of basic block control flow graphs,

DAG representation of basic block, Advantages of DAG,

Unit 5- | Sources of optimization, Loop optimization Idea about global data flow analysis, Loop
(6) invariant computation, Loop invariant computation, Tutorial

Peephole optimization, GATE Questions, Tutorial

Issues in design of code generator, A simple code generator, Code generation from
DAG., UNIT TEST, Revision

R R, N |RrRrPr|IRPr|IRP|IRP[R|IRP|IN|Rr|RPR|RP| RPN WIR|RP|IMDNAON|R[RIN|RP|R

JECRC Fou;dation JEER[

JAIPUR ENGINEERING COLLEGE
AND RESEARCH CENTRIE

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem — 3" Year & 5t Sem
Subject - COMPILER DESIGN

Unit—1

UNIT-1
OVERVIEW OF LANGUAGE PROCESSING SYSTEM

TRANSLATOR:
» Translating the high Level language program input into an equivalent
machine language program.

*Providing diagnostic messages wherever the programmer violates
specification of the High level language.

source Target
e Translator >
language language

1

Skeletal Source Program

Preprocessor l

Source program

Compiler l

lT;Lriz et Assemblv program

Assé!;nbler I

I Relocatable NMachine Code
v

Loader/Linker-editor J —Librars

‘

Absolute Machine Code

Fig 1.1 Language processing Svstem

. relocatable obj fil=

1

Preprocessor

A preprocessor produce input to complilers. They may perform the
following functions.

*Macro processing: A preprocessor may allow a user to define macros
that are short hands for longer constructs.

File inclusion: A preprocessor may include header files into the program
text.

*Rational preprocessor: these preprocessors augment older languages
with more modern flow-of-control and data structuring facilities.

L anguage Extensions: These preprocessor attempts to add capabilities
to the language by certain amounts to build-in macro

COMPILER

Compiler Is a translator program that translates a program written In
(HLL) the source program and translate it into an equivalent program

iIn (MLL) the target program. As an important part of a compliler Is
error showing to the programmer.

Source program , Target program
'{ Compiler , ~b
(Input) (Output)

1 5

ASSEMBLER:
programmers found it difficult to write or read programs in machine

language. They begin to use a mnemonic (symbols) for each
machine Instruction, which they would subsequently translate into
machine language. Such a mnemonic machine language IS now
called an assembly language. Programs known as assembler were
written to automate the translation of assembly language In to
machine language. The Input to an assembler program is called
source program, the output is a machine language translation (object
program).

Ex: MOV A,B

INTERPRETER:

An Interpreter Is a program that appears to execute a source
program as If it were machine language.

Languages such as BASIC, SNOBOL, LISP can be translated
using interpreters. JAVA also uses interpreter.

INPUT PROCESS QUTPUT

Source Program
Program ’I INTERPRETER I > Output

Data

1 7

Advantages:

*Modification of user program can be easily made and implemented
as execution proceeds.

Debugging a program and finding errors is simplified task for a
program used for interpretation.

*The Interpreter for the language makes it machine independent.
Disadvantages:

*The execution of the program is slower.
Memory consumption is more.

DIFFERENCE BETWEEN COMPILER AND INTERPRETER

A compiler converts the high level instruction into machine language while an interpreter converts the
high level instruction into an intermediate form.

-Before execution, entire program is executed by the compiler whereas after translating the first line, an
Interpreter then executes it and so on.

List of errors is created by the compiler after the compilation process while an interpreter stops
translating after the first error.

An independent executable file is created by the compiler whereas interpreter is required by an
Interpreted program each time.

*The compiler produce object code whereas interpreter does not produce object code. In the process of
compilation the program is analyzed only once and then the code is generated whereas source program
IS Interpreted every time it is to be executed and every time the source program is analyzed. hence
Interpreter is less efficient than compiler.

Examples of interpreter: A UPS Debugger .
example of compiler: Borland ¢ compiler or Turbo C compiler compiles the programs written in C or C++.

Loader and Linker

A loader Is a program that places programs into memory and
prepares them for execution.

*A Linker resolves external memory address where the code in one
file may refer to the code in another file.

10

Phases of a compiler

A compiler operates Iin phases. A phase is a logically interrelated operation that takes
source program in one representation and produces output in another representation.
_exical Analysis:-

_A or Scanners reads the source program one character at a time, carving the source
program into a sequence of atomic units called tokens.

Lexical Analysis

- Input: result=a + b * 10

- Tokens:
(result’, ¢=t’ ‘a!, ¢+” "b” :*’, ‘10’
-\4_\0 3 l‘_ e -
< \\ =1
. - < \\\‘\».\:\\ :'
identifiers G
operators

1 11

Syntax Analysis:-

The second stage of translation iIs called Syntax analysis or parsing. In this phase
expressions, statements, declarations etc... are identified by using the results of lexical
analysis. Syntax analysis is aided by using technigues based on formal grammar of the
programming language.

- Uncover the structure of a sentence in the program from a
stream of tokens.

- For instance, the phrase “"x = +vy", which is recognized as
four tokens, representing “x", "=" and “+" and “y", has the
structure =(Xx,+(y)). i.e., an assignment expression, that
operates on “X" and the expression “+(y)".

- Build a tree called a parse tree that reflects the structure of
the input sentence.

1 12

Syntax Tree

Input: result=a + b ™ 10

result

Assign

g,
&

a

-

\.»
4

b

Y

10

=

Semantic Analyzer:

It uses syntax tree and symbol table to check whether the given program s
semantically consistent with language definition. It gathers type information and stores it
In either syntax tree or symbol table. This type information is subsequently used by
compiler during intermediate-code generation.

Semantic Analysis

« Concerned with the semantic (meaning) of the
program

« Performs type checking
— Operator operand compitability

1 14

Intermediate Code Generations:-
This phase bridges the analysis and synthesis phases of translation.
 Translate Tree structure into intermediate code

Code Optimization :-
This Is optional phase described to improve the intermediate code so

that the output runs faster and takes less space.

Code Generation:-

The last phase of translation is code generation. A number of
optimizations to reduce the length of machine language program
are carried out during this phase. The output of the code generator Is
the machine language program of the specified computer.

Symbol Table

» Records the identifiers used in the source program

— Collects various associated information as attributes

+ Variables: type, scope, storage allocation

* Procedure: number and types of arguments method of
argument passing

« |t's a data structure with collection of records

— Different fields are collected and used at different
phases of compilation

16

Error Handler
It detects and recover the error occurred In different

phases of compller.

It also provide synchronization among different phases
of compiler.

source program

lexical
analvzer

.

syntax
analyvzer

v

semantic

syvmbol table
manager

¢ error
handler

/ analyzer \\\
R‘-—-‘

intermediate code .

generafor

.

code
optimizer

v

code
generator

'

target program

Fig 1.5 Phases of a compiler

PORALIAR = ARt ial % rate = 8D

L
Leoocal Anslvaerm
L
(. 2) (el 2 . {l«}_) S
’
Symtax Analyess
.
il) $
! ’H'..‘ L an (s »
/ TILATY Ml) o
} rals ' '
SEmant Sonly e
|
'
STy Nian AL w1)
. 2 »
TN inttofloat
W

Intermedinte { odde Geurralag

'

L imraflenrioD)

12 = 1d) * 21
53 = 142 » "
Al = D
'
Code Optituises
\J

$E = 4D & D
4l = 383 » =1
'

Camde L Mt e w

'
LDF nZ. 149
NULY A2, R2, 80,0
LOF Rl ‘a3
ADDF Ri. R, W2
- 2 1al., R)

Single pass, Multi pass Compilers

e Pass : A pass refers to the traversal of a compiler through the entire
program.

* Phase : A phase of a compiler is a distinguishable stage, which takes
input from the previous stage, processes and yields output that can be
used as input for the next stage. A pass can have more than one
phase.

Single Pass Compiler

If we combine or group all the phases of compiler design
INn a single module known as single pass compiler.

High level language

\/

lexical analyz=zer

pR—

\%

|syntax analyzern

—

A

semantic analyzei all phases are in
\/ / a single module

low level language

Some Points about single pass compiler

1.A one pass/single pass compiler is that type of
compiler that passes through the part of each compilation
unit exactly once.

2.SIngle pass compller Is faster and smaller than the
multi pass compller.

3.As a disadvantage of single pass compiler is that It is
less efficient In comparison with multipass compiler.
4.5ingle pass compiler Is one that processes the

Input exactly once.

[}

Two Pass compiler or Multi Pass compiler:

A Two pass/multi-pass Compller is a type of compiler that
processes the source code or abstract syntax tree of a program
multiple times. In multipass Compiler we divide phases in two
PasSsS as. P S m———

\/

lexical analyzern

—

vV

Syntax analyzer

——

vV
[first pass
semantic analyzeg

\

intermediate code

code optirmzatic’)n
V [> second pass

code generator
\ /
V

low level language

I | NAME OF FACULTY (POST, DEPTT.) , 23
JECRC, JAIPUR

First Pass: IS refers as

(a) Front end

(b) Analytic part

(c) Platform independent

In first pass the included phases are as Lexical analyzer, syntax
analyzer, semantic analyzer, intermediate code generator are work
as front end and analytic part means all phases analyze the High
level language and convert them into intermediate code and first
pass Is platform independent

The output of first pass have requirement of the code optimization
and code generator phase which are comes to the second pass.

[}

Second Pass: Is refers as
(a) Back end

(b) Synthesis Part

(c) Platform Dependent

In second Pass the included phases are as Code optimization and
Code generator are work as back end and the synthesis part
refers to taking input as three address code(Intermediate code)
and convert them into Low level language/assembly language and
second pass Is platform dependent because final stage of a typical
compiler converts the intermediate representation of program into
an executable set of instructions which is dependent on the
system.

[}

AMachine-
Independent Code

Improvement

Target Code

(reneration

Front end
ana

Semantic Analysis

arid Intermediate .
Machine-Specific

Code Improvement

Code Generation

With multi-pass Compiler we can solve these 2
basic problems:

1.1f we want to design a compiler for different programming
language for same machine. In this case for each
programming language there Is requirement of making
Front end/first pass for each of them and only one Back
end/second pass as shown In diagram:

s

Programming
lang 1

|

]

Programming
lang 2

Qack end 1

system/machine 1

NAME OF FACULTY (POST, DEPTT.) ,

JECRC, JAIPUR

prog
lang n

front end 4

28

2.1f we want to design a compiler for same
programming language for different machine/system. In
this case we make different Back end for different
Machine/system and make only one Front end for
same programming language as:

[: back end 1]

programming
language 1

[front end 1

]

[back end 2]

[back end 3 } -----------------

@:hmeb @ChineD

-[back end 4]

30

Differences between Single Pass and Multipass

Compilers
Speed Fast Slow
Memory More Less
Time Less More
Portability NO Yes

31

_"‘ v 1\
Al ‘a : \r -
.'V .\W-Jub) \‘-' .j "'.«n -d: :
('G ; ns v

&V(bv\f -S’ :?- .k ‘:? |‘..J,.
T \V“ ..- |J 1

&N e
""J’n . CLG.;_S_

Y

s P .,‘.\\
N

' |1‘--

r.'u Ny, I ESV D
/.) I " ’(\, I‘ f ‘:

“"“‘ 2‘ s I\' *"‘ ey i

INCREMENTAL COMPILER /

+ Incremental compileris acompiler which performs the recompilation of
only modified source rather than compiling the whole source program.

"
r -
I >
!
3
’

| Programmer ' Compller transforms
writes the code it 1o machine code

P W

33

Features of Incremental Compiler

* Ittracksthe dependencies between output and the source program.
* Itproduces the same result as full recompile.
* It performs less task than recompilation.

* The process of incremental compilation is effective for maintenance.

34

CROSS COMPILER

* A compiler which runs on one machine and produces the target code for
another machine. Such compileris called Cross Compiler.

* Compiler runs on platform X and target code runs on platformY.

T— Debug on A
‘ ‘ p mz e (= emulate))

Compile on A

Somree

Program

H')\ 1))

Inprut ‘-‘ Chitpruat

Run on)

35

Load & Go System

Load and go system Is a programming language processor in which
the compilation, assembly, Loader, linker steps are not separated from
program Execution.EX: FORTRAN

"Compile

User
Program

and Go"
Loader

04

Compile and go
loader

Executable code
of user program

Main Memory

36

Threaded Code Compiller

where each op-code In the virtual machine instruction
code is the

address of some (lower level) code to perform the required
operation. This kind of virtual machine can be implemented
efficiently in machine code on most processors by simply

performing an indirect jJump to the address which is the next
Instruction to be executed.

STAGE COMPILER

* Stage compller compiles Prolog
implementations of theoretical machine
to its assembly language.

* Prolog is a general-purpose logic
programming language associated with
artificial intelligence and computational
linguistics.

* Prolog is declarative : the program logic
Is expressed In terms of relations,

represented asfacts and rules.

Languags

Transistior

38

JUST - IN-TIME (JIT) COMPILER

* In this type of compiler applications are delivered in byte code, which is compiled to
native machine code just prior to execution.

* The JIT compiler Is enabled by default, and is activated when a Java method is called.
The JIT compiler compiles the bytecodes of that method into native machine
code, compiling it “just in time" to run. When a method has been compiled, the JVM
calls the compiled code of that method directly Instead of interpreting it.

|j 39

PARALLELIZING COMPILER

* Parallelizing compiler converts a serial input program into a form suitable
for efficient execution on a parallel computer architecture.

* The goal of automatic parallelization is to relieve programmers from the
hectic and error-prone manual parallelization process.

Patatiet Tank | Paraiiel sk 1| Parabiet Tank In \

e - -

Pt atiel Task | Paraiel Thask Parmibet Yask 1
ety
- =
-
e ———1
I

40

Bootstrapping

Bootstrapping is widely used in the compilation development.
Bootstrapping is used to produce a self-hosting compiler. Self-hosting
compiler is a type of compiler that can compile its own source code.
Bootstrap compiler is used to compile the compiler and then you can
use this compiled compiler to compile everything else as well as
future versions of itself.

The process described by the T-diagrams Is called bootstrapping.

*The T- diagram shows a compiler C ' for Source S, Target T,
Implemented in |.

5 T

Follow some steps to produce a new language for machine A
-Create a compiler >C “for subset, S of the desired language, L using
language "A" and that compiler runs on machine A.

Create a compliler LCSA]‘or language L written in a subset of L.

»Compile “C_A using the compiler C ,Ato obtainC *.-C Aisa
compiler for language L, which runs on machine A and produces
code for machine A

LS

[#]

Create a compliler LCSA]‘or language L written in a subset of L.

»Compile “C_A using the compiler C ,Ato obtainC *.-C Aisa
compiler for language L, which runs on machine A and produces
code for machine A

LS

[#]

Review of Finite Automata

Finite automata Is a state machine that takes a string of symbols as

Input and changes its state accordingly. Finite automata IS a
recognizer for regular expressions. When a regular expression string
Is fed into finite automata, it changes its state for each literal. If the
Input string Is successfully processed and the automata reaches its
final state, It Is accepted

The mathematical model of finite automata consists of:

Finite set of states (Q)
Finite set of input symbols (2)

One Start state (g0)
Set of final states (qf)
Transition function (o)

1

46

Finite Automata

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite
State Machine (FSM).

A finite automata can be represented by a 5-tuple (Q, £, §, q0, F), where:
* Qis afinite set of states.

* Jis afinite set of symbols, called the alphabet of the automaton.

« bisthe transition function,
« qO0is the initial state from where any input is processed (q0 € Q).
* Fisasetof final state/states of Q (F € Q).

Deterministic Finite Automaton (DFA)

In DFA, for each input symbol, one can determine the state to which the machine
will move. Hence, it is called Deterministic Automaton, As it has a finite number
of states, the machine is called Deterministic Finite Machine or Deterministic

Finite Automaton.

48

-States : States of FA are represented by circles. State names are written inside circles.

Start state : The state from where the automata starts, Is known as the start state. Start
state has an arrow pointed towards it.

‘Intermediate states : All intermediate states have at least two arrows one pointing to
and another pointing out from them.

‘Final state : If the input string is successfully parsed, the automata is expected to be In
this state. Final state is represented by double circles.

*Transition : The transition from one state to another state happens when a desired
symbol in the input Is found. Upon transition, automata can either move to the next state
or stay In the same state. Movement from one state to another is shown as a directed
arrow, where the arrows points to the destination state. If automata stays on the same
state, an arrow pointing from a state to itself is drawn.

EXAMPLE DFA

51

Present State Next State for
Input 0

a a

b C

b

[ts graphical representation would be as follows:

Next State for
Input 1

b
a

C

52

Non-deterministic Finite Automaton

In NDFA, for a particular input symbol, the machine can move to any combination

of the states in the machine. In other words, the exact state to which the
machine moves cannot be determined. Hence, it is called Non-deterministic
Automaton. As it has finite number of states, the machine is called Non-

deterministic Finite Machine or Nondeterministic Finite Automaton.

53

An NDFA can be represented by a 5-tuple (Q, Z, 6, qO, F) where:

* Qisa finite set of states.

« Iisafinite set of symbols called the alphabets.

* §isthe transition function where §: Q x I - 2¢
(Here the power set of Q (29) has been taken because in case of NDFA, from a
state, transition can occur to any combination of Q states)

* q0is theinitial state from where any input is processed (q0 € Q).

* Fisa set of final state/states of Q (F € Q).

54

[}

Graphical Representation of an NDFA

Graphical Representation of an NDFA: (same as DFA)

An NDFA is represented by digraphs called state diagram.

* The vertices/Circles represent the states.

* The arcs labeled with an input alphabet show the transitions.
* The initial state is denoted by an empty single incoming arc.

* The final state is indicated by double circles.

55

Example

Let a non-deterministic finite automaton be
* Q={a,b,c]

¢ 1={0,1)

* q0={al

* F={c}and

* Transition function & as shown by the following table:

56

Present State Next State for

| Input 0
g a,b

| c
C b, €

Its graphical representation would be as follows:

- -

Next State for
Input 1
b
a, c
C

-

S7

Input Recognition of Tokens

Token: Token Is a sequence of characters that can be treated as a single
logical entity. Typical tokens are,

1) ldentifiers 2) keywords 3) operators 4) special symbols 5) constants
The patterns for the tokens are described using regular definitions.
digit -->[0,9]
letter-->[A-Z,a-7]

Id -->letter(letter/digit)*

if -->if

then -->then

else -->else

relop--> </>/<=/>=/==/<>

58

Finite Automata For Recognizing ldentifiers

Letter or digit

—~

) Letter & N Other 4 N .
W »(2 3 »i 3)‘a Return (getToken(), insttallD())
. N ¥/ '\:_‘" y

—

Finite Automata For Recognizing keywords

"™ Other # = Y

P | P \.. f /_.- l
—-)(\ 4 }—N\ 5 }—> 6 .—-){ /‘J Accept if as keyword

~ —— N

—

——

1

59

Finite Automata For Recognizing digits

digit digit digit

e — digit F +or - digit O othe

(1) "® ——*@ -+an;—/ Ssulppl

E digit
other * other 7~ #

Finite Automata For Recognizing white space

Tab, Space, Enter

o~ Tab, /ff’.]-\ Other /= = ¢ -
— 23 249)-—-»{(25 '),l No return value
s space e >

Enter

1

60

Finite Automata For Recognizing Relational operators

olart Ve < o
-

T
x
.-

({ 1] Retwxrrdrelop EO)

n

Returrireiop 1LE)

et telop INED

Neturn(reliop T)

ceturnresop GE)

metarirelicp GT)

1

61

LEXICAL ANALYSIS
& ITS ROLE

Lexical analysis

>> The scanning/lexical analysis phase of a compiler
performs the task of reading the source program
as a file of characters and dividing up into
tokens.

tokens

> Each token is a sequence of characters that
represents a unit of information in the source
program.

Example-tokens
> Keywords which are fixed string of letters .eg: “if”,
“while”.
>> ldentifiers which are user-defined strings
composed of letters and mnumbers.
>> Special symbols like arithmetic symbols.

1

63

Role of Lexical Analyzer

» Lexical analyzer is the first phase of a compiler.

» |ts main task is to read input characters and produce as
output a sequence of tokens that parser uses for syntax

analysis.

3 | token
source Iex;c alr '1 parser ST
program analyze get next |
| token /
symbol

table

1

64

A Simple Lexical Analyzer

Keyword?

Identifier?
E=M*C**2) s Identifier

Operators”

999

Identifier pattern matching

1

65

>2

>

>>

> >

>

Tasks Lexical Analyzer

Separation of the input source code into tokens.

Stripping out the unnecessary white spaces from
the source code.

Removing the comments from the source text.

Keeping track of line numbers while scanning the
new line characters. These line numbers are used
by the error handler to print the error messages.

Preprocessing of macros.

1

66

22>

2>

>>

>>

>>

>>

Tokens , Pattern and Lexemes

Connected with lexical analysis are three important
terms with similar meaning.

Lexeme
Token

Patterns

A token is a pair consisting of a token name and
an optional attribute value. Token name:
Keywords, operators, identifiers, constants, literal strings,
punctuation symbols(such as commas,semicolons)

A lexeme is a sequence of characters in the
source program that matches the pattern for a
token and is identified by the lexical analyzer as

an instance of that token. E.g.Relation
{<_<=,>,>:’::'<>}

Pattern: A set of rules describing lexems.

1

67

22

>

| exical Errors

1.) let us consider a statement “fi(a==f)". Here “f”
Is a misspelled keyword. This error is not
detected in lexical analysis as “fi” is taken as an
identifier. This error is then detected in other
phases of compilation.

2.) in case the lexical analyzer is not able to
continue with the process of compilation, it
resorts to panic mode of error recovery.

Deleting the successive characters from the
remaining input until a token is detected.

Deleting extraneous characters.

1

68

* Inserting missing characters

* Replacing an incorrect character by a correct
character.

* Transposing two adjacent characters

1

69

PAT TERN |,

IFATTERN , TokKENs , LEXEMS

Tokens ane Zexmunal SUM o the
SowL ,
Ly .[du&b—lvu, Tmb exd n,a”w(d_"
punclualion Aﬂmbob ol
Pattexn Ja o suile deseouiing all thew

dexemus dhal can sebruent o particular
tohminasoqm”q e

:df:mulﬂsaﬂ

al+ 28 -59

Py] T "
Tokend: Numberx ! [0"'] — 3',“/5’.
OPuuiv!: +;-

LexicaL ERRORS : A dexical Analyzern
m t Fxoc.wi d mo rule
“:3’ ;:M) mxch:f Jhe pn-g/it of the
Ju.vm':.ni.na inpul -

" =5 | Selution. :
Usz:\u WW nﬂl'l 1 MMU\;* .‘w MQMW&M)
T i 1 leasmadal InmP:qna 2 adjacent chaxeteon.
count = count + 3| A -Wwﬁapw&d&”
Token : id , opexatex, puncluation () | . diletion o Luccessive chans:
Ly count) temp. e f‘"’7

[

LECTURE CONTENTS WITH A BLEND OF NPTEL CONTENTS

Parsing

Just like a natural language, a programming language also has a set of grammatical rules and hence
can be broken down into a parse tree by the parser. It is on this parse tree that the further steps of
semantic analysis are carried out. This is also used during generation of the intermediate language

code. Yacc (yet another compiler compiler) is a program that generates parsers in the C programming
|anguage_ Consider an expression
fx==ythenz=1elsez =2

If stmt

g |

predicate then-stmt else-stmt

\ \ |
></: :\y z/:\’l z/:\Q

/1

LECTURE CONTENTS WITH A BLEND OF NPTEL CONTENTS

Parsing

Just like a natural language, a programming language also has a set of grammatical rules and hence
can be broken down into a parse tree by the parser. It is on this parse tree that the further steps of
semantic analysis are carried out. This is also used during generation of the intermediate language

code. Yacc (yet another compiler compiler) is a program that generates parsers in the C programming
|anguage_ Consider an expression
fx==ythenz=1elsez =2

If stmt

g |

predicate then-stmt else-stmt

\ \ |
></: :\y z/:\’l z/:\Q

12

REFERENCES/BIBLOGRAPHY

1 https://nptel.ac.in/courses/106/104/106104072/

2

https://www.slideshare.net/appasami/cs6660-compil
er-design-notes

Nttp://www. brainka om/article/Recoanition-of-Tok

ens 8138/ :

https://nptel.ac.in/courses/106/104/106104072/
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
http://www.brainkart.com/article/Recognition-of-Tokens_8138/
http://www.brainkart.com/article/Recognition-of-Tokens_8138/

JECRC Fou;\dation JEER[

JAIFUR ENGINEERING COLLEGE
AND RESEARCH CENTRE

