
1 

Year & Sem – 3rd Year & 5th Sem 

Subject – COMPILER DESIGN 

Unit – 4 

Presented by –   (Abhishek Dixit, Assistant Prof., Dept of CSE) 

Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE 

1 



1 

VISION AND MISSION OF INSTITUTE 

 

To become a renowned center of outcome based learning and work towards 

academic, professional, cultural and social enrichment of the lives of 

individuals and communities 

M1: Focus on evaluation of learning outcomes and motivate students to 

inculcate research aptitude by project based learning. 

M2: Identify, based on informed perception of Indian, regional and global 

needs, the areas of focus and provide platform to gain knowledge and 

solutions. 

  

M3: Offer opportunities for interaction between academia and industry.  

  

M4: Develop human potential to its fullest extent so that intellectually capable 

and imaginatively gifted leaders can emerge in a range of professions.  

  

  

2 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

VISION OF THE DEPARTMENT 

 

To become renowned Centre of excellence in computer science and engineering and 

make competent engineers & professionals with high ethical values prepared for 

lifelong learning. 

 

MISION OF THE DEPARTMENT 

M1: To impart outcome based education for emerging technologies in the field of 

computer science and engineering.  

M2: To provide opportunities for interaction between academia and industry.   

M3: To provide platform for lifelong learning by accepting the change in technologies 

M4: To develop aptitude of fulfilling social responsibilities 

  

  

  

 

 

3 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

PROGRAM OUTCOMES 

 

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an 

engineering specialization to the solution of complex engineering problems.  

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching 

substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.  

Design/development of solutions: Design solutions for complex engineering problems and design system 

components or processes that meet the specified needs with appropriate consideration for the public health and 

safety, and the cultural, societal, and environmental considerations.  

Conduct investigations of complex problems: Use research-based knowledge and research methods including 

design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid 

conclusions.  

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT 

tools including prediction and modeling to complex engineering activities with an understanding of the limitations.  

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, 

safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering 

practice.  

 

 

 

 

 

 

4 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Environment and sustainability: Understand the impact of the professional engineering solutions 

in societal and environmental contexts, and demonstrate the knowledge of, and need for 

sustainable development.  

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms 

of the engineering practice.  

Individual and team work: Function effectively as an individual, and as a member or leader in 

diverse teams, and in multidisciplinary settings.  

Communication: Communicate effectively on complex engineering activities with the engineering 

community and with society at large, such as, being able to comprehend and write effective reports 

and design documentation, make effective presentations, and give and receive clear instructions.  

Project management and finance: Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one’s own work, as a member and leader in a team, 

to manage projects and in multidisciplinary environments.  

Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

  

  

 

 

 

5 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

PROGRAM EDUCATIONAL OBJECTIVES 

 

1. To provide students with the fundamentals of Engineering Sciences with more 

emphasis in Computer Science &Engineering by way of analyzing and exploiting 

engineering challenges.  

2. To train students with good scientific and engineering knowledge so as to comprehend, 

analyze, design, and create novel products and solutions for the real life problems.  

3. To inculcate professional and ethical attitude, effective communication skills, teamwork 

skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate 

engineering issues with social issues.  

4. To provide students with an academic environment aware of excellence, leadership, 

written ethical codes and guidelines, and the self motivated life-long learning needed 

for a successful professional career.  

5. To prepare students to excel in Industry and Higher education by Educating Students 

along with High moral values and Knowledge  

  

 

 

 

 

6 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

PROGRAM SPECIFIC OBJECTIVES 

 

1. PSO1. Ability to interpret and analyze network specific and cyber security issues, 

automation in real word environment.  

 

2. PSO2. Ability to Design and Develop Mobile and Web-based applications under 

realistic constraints.  

 

 

 

 

 

7 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

COURSE OUTCOME 

 

CO1: Compare different phases of compiler and design lexical analyzer. 

CO2: Examine syntax and semantic analyzer by understanding grammars.  

CO3: Illustrate storage allocation and its organization & analyze symbol table 

organization.  

CO4: Analyze code optimization, code generation & compare various compilers. 

 

 

 

 

 

 

 

8  
Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

CO-PO MAPPING 

 

 

 

 

 

 

 

 

9  
Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

S
em

ester

S
u

b
ject

C
o

d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

L
2. Examine syntax and semantic analyzer by 

understanding grammars.
3 3 3 2 1 1 1 0 1 2 1 3

L
3.  Illustrate storage allocation and its organization 

& analyze symbol table organization.
3 3 2 2 1 1 1 1 1 2 1 3

L
4.Analyze code optimization, code generation & 

compare various compilers.
3 3 3 3 2 1 1 1 1 2 1 3

1 2 1 3

V

3 3 1 1 1 1

C
O

M
P

IL
E

R
 D

E
S

IG
N

5
C

S
4

-0
2

L
1.  Compare different phases of compiler and 

design lexical analyzer..
3 3



1 

SYLLABUS 

 

 

 

 

 

 

 

10  
Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Storage Organization: 

 

 

When the target program executes then it runs in its own logical address 

space in which the value of each program has a location. 

 

The logical address space is shared among the compiler, operating system 

and target machine for management and organization.  

 

The operating system is used to map the logical address into physical address 

which is usually spread throughout the memory. 

11 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Subdivision of Run-time Memory: 

 

 

 

12 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

STORAGE ALLOCATION 

 

•Storage allocation strategies are the strategies by which it is decided that    

which type of object is provided to particular data object. 

•It is based on programming language implementation. 

 

 

 STORAGE ALLOCATION STRATEGIES 

The different storage allocation strategies are : 

1. Static allocation - lays out storage for all data objects at compile time 

2. Stack allocation - manages the run-time storage as a stack. 

3. Heap allocation - allocates and deallocates storage as needed at run time 

from a data area known as heap. 

  

 
13 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

STATIC ALLOCATION 

  

In static allocation, names are bound to storage as the program is compiled, 

so there is no need for a run-time support package. Since the bindings do not 

change at run-time, every time a procedure is activated, its names are bound 

to the same storage locations. Therefore values of local names are retained 

across activations of a procedure. 

  

That is, when control returns to a procedure the values of the locals are the 

same as they were when control left the last time. From the type of a name, 

the compiler decides the amount of storage for the name and decides where 

the activation records go. At compile time, we can fill in the addresses at 

which the target code can find the data it operates on. 

14 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

STACK ALLOCATION OF SPACE 

  

All compilers for languages that use procedures, functions or methods as units of user-

defined actions manage at least part of their run-time memory as a stack. Each time a 

procedure is called , space for its local variables is pushed onto a stack, and when the 

procedure terminates, that space is popped off the stack. 

  

Calling sequences: 

  

Procedures called are implemented in what is called as calling sequence, which consists 

of code that allocates an activation record on the stack and enters information into its 

fields. A return sequence is similar to code to restore the state of machine so the calling 

procedure can continue its execution after the call. The code in calling sequence is often 

divided between the calling procedure (caller) and the procedure it calls (callee). 

15 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

HEAP ALLOCATION 

 

 

Stack allocation strategy cannot be used if either of the following is possible : 

1.   The values of local names must be retained when an activation ends. 

2.   A called activation outlives the caller. 

  

Heap allocation parcels out pieces of contiguous storage, as needed for activation 

records or other objects. Pieces may be deallocated in any order, so over the time the 

heap will consist of alternate areas that are free and in use. 

16 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Activation Record: 

 

Control stack is a run time stack which is used to keep track of the live procedure 

activations i.e. it is used to find out the procedures whose execution have not been 

completed. 

 

When it is called (activation begins) then the procedure name will push on to the stack 

and when it returns (activation ends) then it will popped. 

 

Activation record is used to manage the information needed by a single execution of a 

procedure. 

 

An activation record is pushed into the stack when a procedure is called and it is popped 

when the control returns to the caller function. 

17 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 18 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Return Value: It is used by calling procedure to return a value to calling procedure. 

Actual Parameter: It is used by calling procedures to supply parameters to the called 

procedures. 

Control Link: It points to activation record of the caller. 

Access Link: It is used to refer to non-local data held in other activation records. 

Saved Machine Status: It holds the information about status of machine before the 

procedure is called. 

Local Data: It holds the data that is local to the execution of the procedure. 

Temporaries: It stores the value that arises in the evaluation of an expression. 

 

19 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Accessing local and non-local names in a block structured 

Language: 

 

 

What is Block? 

 

• A block is a section of software code or an algorithm in software programming. 

• A block can consist of one or more statements or declarations. It is possible for a block 

to contain one or more blocks nested within it.  

• If a programming language comprises blocks and nested blocks, it is called a block-

structured programming language.  

• Blocks are a basic feature of structured programming and help form control structures.  

• However, it is not necessary to add blocks in software code; blocks should be driven by 

necessity.  

• At the same time, blocks can improve code efficiency. 

• A block is also known as a code block. 

 

 

 

 

20 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

What is LOCAL & NON-LOCAL Variable 

 

 

• A local variable is a variable that is given local scope. Local variable references in 
the function or block in which it is declared override the same variable name in the larger 
scope. In programming languages with only two levels of visibility, local variables are 
contrasted with global variables. 
 

• In programming language theory, a non-local variable is a variable that is not defined in 
the local scope. While the term can refer to global variables, it is primarily used in the 
context of nested and anonymous functions where some variables can be neither in 
the local nor the global scope. 
 

21 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

There are two type of scope rules 

 

1. Static Scope Rule: 

 

Scope of name can be determined by examining the text of the program 

 

2. Dynamic Scope Rule:  

 

 The scope of the name can be determined by considering the current activation 

of the procedure 

 

22 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

There are two type of scope rules 

 

1. Static Scope Rule: 

 

Scope of name can be determined by examining the text of the program 

 

2. Dynamic Scope Rule:  

 

 The scope of the name can be determined by considering the current activation 

of the procedure 

 

23 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Parameters passing: 

 

The communication medium among procedures is known as parameter passing. The 

values of the variables from a calling procedure are transferred to the called procedure 

by some mechanism.  

 

Before moving ahead, first go through some basic terminologies pertaining to the values 

in a program. 

 

r-value: 

The value of an expression is called its r-value. The value contained in a single variable 

also becomes an r-value if it appears on the right-hand side of the assignment operator. 

r-values can always be assigned to some other variable. 

 

l-value: 

The location of memory (address) where an expression is stored is known as the l-value 

of that expression. It always appears at the left hand side of an assignment operator. 

 

 

 

24 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

For example: 

day = 1;  

week = day * 7; 

 month = 1;  

year = month * 12; 

 

From this example, we understand that constant values like 1, 7, 12, and variables like 

day, week, month and year, all have r-values. Only variables have l-values as they also 

represent the memory location assigned to them. 

 

For example: 

7 = x + y; 

is an l-value error, as the constant 7 does not represent any memory location. 

25 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Pass by Value: 

 

In pass by value mechanism, the calling procedure passes the r-value of actual 

parameters and the compiler puts that into the called procedure’s activation record. 

Formal parameters then hold the values passed by the calling procedure. If the values 

held by the formal parameters are changed, it should have no impact on the actual 

parameters. 

 

Pass by Reference: 

 

In pass by reference mechanism, the l-value of the actual parameter is copied to the 

activation record of the called procedure. This way, the called procedure now has the 

address (memory location) of the actual parameter and the formal parameter refers to 

the same memory location. Therefore, if the value pointed by the formal parameter is 

changed, the impact should be seen on the actual parameter as they should also point to 

the same value 

26 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Parameter passing methods are the ways in  which parameters  are transferred between  
functions when one function calls another. 
 

There are four different ways of passing  parameters which are as follows: 

 

•1. Call by Value 

•2. Call by Reference (address) 

•3. Call by Value Result 

•4. Call by Name 

27 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

❖ Passing parameter by value 
 

● By default, parameters are passed by value. In  this method a duplicate copy is made and sent 
to  the called function. There are two copies of the  variables. So if you change the value in the  
called method it won't be changed in the calling  method. 

 
  Example: 
 
  void swap(int x,int y){ 
  int t; 
  t=x; 
  x=y; 
  y=t;  } 

void main(){ 

   int a=1,b=2; 

   swap(a,b); 

   printf(“a=%d,b=%d”,a,b); } 
 

28 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

❖ Passing parameter by reference 

 
●  Passing parameters by ref uses the address of the actual  parameters to the formal parameters. It requires ref  keyword in front of 

variables to identify in both actual and  formal parameters. 
 

●  We use this process when we want to use or change the 

  values of the parameters passed. 

Example: 

       void swap(int *x, int*y){ 

          int t; 

          t=*x; 

          *x=*y; 

          *y=t; 

        } 

 void main() 

       { 

         int a=1,b=2;   

        swap(&a , &b); 

        printf(“a=%d , b=%d” ,a ,b) 

       } 

 

 

29 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Passing parameter by Value Result 
 
• Like reference parameters, output parameters don't create  a new storage location and are passed by reference. 

During the execution of called method the actual parameter value is not affected. After execution value of formal 
parameter is passed to actual parameter. 

 

• We use this process when we want some parameters to 

bring back some processed values form the called method. 

 

 Example: 

     

       int y: //global variable 

copyValue(int x){ 

      x=2; 

      y=0;  } 

  main(){ 

   y=10; 

   copyValue(y); 

   print(y);  } 

 

 

30 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

❖ Passing parameter by Name 
    

●   In this technique of parameter passing the actual parameter are substituted for the formal 
parameter i.e formal parameter are replaced by actual parameter inside function. 

 

 Example: 
    void Init(int x,int y){ 
 
     for(int k=0; k<=5; k++){ 
     y=0;    // here A[j] is replaced with y 
     x=x++; // here j is replaced with x 
     }  
    } 
    
    main(){ 
        int i,A[10]; 
       j=0; 
      Init(j,A[j]); 
      } 31 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

SYMBOL TABLE 

    
Symbol tables are data structures that are used by compilers to hold information about source-program constructs 

 

. 

32 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

APPLICATIONS 

    

• It is used to store the name of all entities in a structured form at 

one place. 

• It is used to verify if a variable has been declared. 

• It is used to determine the scope of a name. 

• It is used to implement type checking by verifying assignments and 

expressions in the source code are semantically correct. 
 

33 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

COMPONENTS OF SYMBOL TABLE 

    
 

34 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

OPERATIONS ON SYMBOL TABLE 

 

• Insert 

• Lookup 

• Delete 

• Scope Management 

            1. Local 

2. Global 

 

    
 

35 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

Example 

 

 

    
 

36 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

 

int value; 

void one( ) 

{ int a; 

   int b; 

    { int c; 

       int d; 

     } 

int e; 

{ int f; 

   int g; 

} 
 

 
 

 
 

void two( ) 

{ int x; 

   int y; 

    { int p; 

       int q; 

     } 

int r; 

} 



1 

 

 

    
 

37 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

Value Var Int 

One Proc Void 

Two Proc Void 

a var int 

b var int 

e var int 

x var int 

y var int 

r var int 

c var int 

d var int 

f var int 

g var int 

f var int 

g var int 



1 

Implementation 

 

 A symbol table can be implemented in one of the following ways: 

• Linear (sorted or unsorted) list 

• Binary Search Tree 

• Hash table 

 

Among all, symbol tables are mostly implemented as hash tables, where the source code 

symbol itself is treated as a key for the hash function and the return value is the 

information about the symbol 

 

Linear Search 

• Simplest way 

• Array is used to store information 

• If there are n records then 

1. n/2- successful search 

2. n- unsuccessful search 

 

 

38 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 



1 

 

 

    
 

39 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

Binary Search 

• Store symbol in alphabetical order 

• Table is divided into 2 tables 

• Achieved by comparing coming elements with middle element 

 

Hash Table 

• Most powerful implementation table 

• 2 tables are maintained 

         1. Hash table 

         2. Symbol Table 

• Tables are link through pointer. 

 



1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

REFERENCES/BIBLOGRAPHY 

 

1. slideshare.net 

2. Javapoint.com 

3. Cse.iitm.ac.in 

 

 

 

 

40 



Abhishek Dixit (AP CSE) , JECRC, JAIPUR 41 
Abhishek Dixit (AP CSE) , JECRC, JAIPUR 

 


