
1

Year & Sem – 3rd Year & 5th Sem

Subject – COMPILER DESIGN

Unit – 3

Presented by – (Abhishek Dixit, Assistant Prof., Dept of CSE)

Abhishek Dixit (AP CSE) , JECRC, JAIPUR

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

1

1

VISION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards

academic, professional, cultural and social enrichment of the lives of

individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to

inculcate research aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global

needs, the areas of focus and provide platform to gain knowledge and

solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable

and imaginatively gifted leaders can emerge in a range of professions.

2 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and

make competent engineers & professionals with high ethical values prepared for

lifelong learning.

MISION OF THE DEPARTMENT

M1: To impart outcome based education for emerging technologies in the field of

computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities

3 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching

substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid

conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT

tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering

practice.

4 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

5 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM EDUCATIONAL OBJECTIVES

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

3. To inculcate professional and ethical attitude, effective communication skills, teamwork

skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning needed

for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

6 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM SPECIFIC OBJECTIVES

1. PSO1. Ability to interpret and analyze network specific and cyber security issues,

automation in real word environment.

2. PSO2. Ability to Design and Develop Mobile and Web-based applications under

realistic constraints.

7 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer.

CO2: Examine syntax and semantic analyzer by understanding grammars.

CO3: Illustrate storage allocation and its organization & analyze symbol table

organization.

CO4: Analyze code optimization, code generation & compare various compilers.

8
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

CO-PO MAPPING

9
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

S
em

ester

S
u

b
ject

C
o

d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

L
2. Examine syntax and semantic analyzer by

understanding grammars.
3 3 3 2 1 1 1 0 1 2 1 3

L
3. Illustrate storage allocation and its organization

& analyze symbol table organization.
3 3 2 2 1 1 1 1 1 2 1 3

L
4.Analyze code optimization, code generation &

compare various compilers.
3 3 3 3 2 1 1 1 1 2 1 3

1 2 1 3

V

3 3 1 1 1 1

C
O

M
P

IL
E

R
 D

E
S

IG
N

5
C

S
4

-0
2

L
1. Compare different phases of compiler and

design lexical analyzer..
3 3

1

SYLLABUS

10
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Syntax Directed Translation in Compiler Design

• Parser uses a CFG(Context-free-Grammer) to validate the input string and

produce output for next phase of the compiler. Output could be either a parse

tree or abstract syntax tree. Now to interleave semantic analysis with syntax

analysis phase of the compiler, we use Syntax Directed Translation.

•The general approach to Syntax-Directed Translation is to construct a parse

tree or syntax tree and compute the values of attributes at the nodes of the

tree by visiting them in some order. In many cases, translation can be done

during parsing without building an explicit tree.

11 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Example

E -> E+T | T

 T -> T*F | F

 F -> INTLIT

This is a grammar to syntactically validate an expression having additions and

multiplications in it. Now, to carry out semantic analysis we will augment SDT

rules to this grammar, in order to pass some information up the parse tree and

check for semantic errors, if any. In this example we will focus on evaluation of

the given expression, as we don’t have any semantic assertions to check in

this very basic example.

12 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

E -> E+T { E.val = E.val + T.val } PR#1

E -> T { E.val = T.val } PR#2

T -> T*F { T.val = T.val * F.val } PR#3

T -> F { T.val = F.val } PR#4

F -> INTLIT { F.val = INTLIT.lexval } PR#5

For understanding translation rules further, we take the first SDT augmented

to [E -> E+T] production rule. The translation rule in consideration has val as

attribute for both the non-terminals – E & T. Right hand side of the translation

rule corresponds to attribute values of right side nodes of the production rule

and vice-versa. Generalizing, SDT are augmented rules to a CFG that

associate 1) set of attributes to every node of the grammar and 2) set of

translation rules to every production rule using attributes, constants and

lexical values.

13 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse

tree corresponding to S would be

14 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

S – attributed and L – attributed SDTs in Syntax directed translation

Types of attributes –

Attributes may be of two types – Synthesized or Inherited.

Synthesized attributes –

A Synthesized attribute is an attribute of the non-terminal on the left-hand side of a production.

Synthesized attributes represent information that is being passed up the parse tree. The attribute can

take value only from its children (Variables in the RHS of the production).For eg. let’s say A -> BC

is a production of a grammar, and A’s attribute is dependent on B’s attributes or C’s attributes then it will

be synthesized attribute.

Inherited attributes –

An attribute of a nonterminal on the right-hand side of a production is called an inherited attribute. The

attribute can take value either from its parent or from its siblings (variables in the LHS or RHS of the

production).For example, let’s say A -> BC is a production of a grammar and B’s attribute is dependent

on A’s attributes or C’s attributes then it will be inherited attribute.

15 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Now, let’s discuss about S-attributed and L-attributed SDT.

S-attributed SDT :

If an SDT uses only synthesized attributes, it is called as S-attributed SDT.

S-attributed SDTs are evaluated in bottom-up parsing, as the values of the parent nodes

depend upon the values of the child nodes.

Semantic actions are placed in rightmost place of RHS.

L-attributed SDT:

If an SDT uses both synthesized attributes and inherited attributes with a restriction that

inherited attribute can inherit values from left siblings only, it is called as L-attributed

SDT.

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing

manner.

Semantic actions are placed anywhere in RHS.

16 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

For example,

A -> XYZ {Y.S = A.S, Y.S = X.S, Y.S = Z.S}

is not an L-attributed grammar since Y.S = A.S and Y.S = X.S are allowed but

Y.S = Z.S violates the L-attributed SDT definition as attributed is inheriting the

value from its right sibling.

Note – If a definition is S-attributed, then it is also L-attributed but NOT vice-

versa.

17 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Example – Consider the given below SDT.

P1: S -> MN {S.val= M.val + N.val}

P2: M -> PQ {M.val = P.val * Q.val and P.val =Q.val}

Select the correct option.

A. Both P1 and P2 are S attributed.

B. P1 is S attributed and P2 is L-attributed.

C. P1 is L attributed but P2 is not L-attributed.

D. None of the above

18 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Intermediate Code Generation:

A source code can directly be translated into its target machine code, then

why at all we need to translate the source code into an intermediate code

which is then translated to its target code? Let us see the reasons why we

need an intermediate code.

19 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

• If a compiler translates the source language to its target machine language

without having the option for generating intermediate code, then for each new

machine, a full native compiler is required.

• Intermediate code eliminates the need of a new full compiler for every

unique machine by keeping the analysis portion same for all the compilers.

• The second part of compiler, synthesis, is changed according to the target

machine.

• It becomes easier to apply the source code modifications to improve code

performance by applying code optimization techniques on the intermediate

code.

20 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

1. Postfix Notation –

 The ordinary (infix) way of writing the sum of a and b is with operator in the

middle : a + b

The postfix notation for the same expression places the operator at the

right end as ab +. In general, if e1 and e2 are any postfix expressions, and

+ is any binary operator, the result of applying + to the values denoted by

e1 and e2 is postfix notation by e1e2 +. No parentheses are needed in

postfix notation because the position and arity (number of arguments) of

the operators permit only one way to decode a postfix expression. In

postfix notation the operator follows the operand.

Example – The postfix representation of the expression (a – b) * (c + d) + (a

– b) is : ab – cd + *ab -+.

21 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

2. Three-Address Code –

A statement involving no more than three references(two for operands and

one for result) is known as three address statement. A sequence of three

address statements is known as three address code. Three address

statement is of the form x = y op z , here x, y, z will have address (memory

location). Sometimes a statement might contain less than three references

but it is still called three address statement.

Example – The three address code for the expression a + b * c + d :

T 1 = b * c

T 2 = a + T 1

T 3 = T 2 + d

T 1 , T 2 , T 3 are temporary variables.

22 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

For example:

a = b + c * d;

The intermediate code generator will try to divide this expression into sub-

expressions and then generate the corresponding code.

r1 = c * d;

r2 = b + r1;

a = r2

A three-address code has at most three address locations to calculate the

expression. A three-address code can be represented in two forms :

quadruples and triples

23 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Quadruples

Each instruction in quadruples presentation is divided into four fields:

operator, arg1, arg2, and result. The above example is represented below in

quadruples format:

24 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Triples

Each instruction in triples presentation has three fields : op, arg1, and

arg2.The results of respective sub-expressions are denoted by the position of

expression. Triples represent similarity with DAG and syntax tree. They are

equivalent to DAG while representing expressions.

Triples face the problem of code immovability while optimization, as the

results are positional and changing the order or position of an expression may

cause problems.

25 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

3. DAG

DAG stands for Directed Acyclic Graph.

A DAG is an Abstract Syntax Tree(AST) with a unique node for each value.

It is a tool that depicts the structure of basic blocks.

Like a syntax tree for an expression, a DAG has leaves corresponding to

atomic operands and interior nodes corresponding to operators.

26 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Syntax tree and DAG for a = (b * c) + (b * c)

27 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

DAG

Syntax Tree

Syntax Tree and DAG both are graphical representations.

Syntax tree does not find the common sub-expressions whereas
DAG

can. Thus, DAG not only represents expressions briefly,

it gives the compiler important clues regarding the generation of

efficient code to evaluate the expressions.

1

Construction of DAGs

Rule-01:

In a DAG,

Interior nodes always represent the operators.

Exterior nodes (leaf nodes) always represent the names, identifiers or constants.

Interior nodes also represent the results of expressions or the identifiers/name where the values are to be stored or

assigned.

Rule-02:

While constructing a DAG,

A check is made to find if there exists any node with the same value.

A new node is created only when there does not exist any node with the same value.

This action helps in detecting the common sub-expressions and avoiding the re-computation of the same.

Rule-03:

The assignment instructions of the form x:=y are not performed unless they are necessary.

28 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1 29 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

t0 = a + b t1 = t0 + c d = t0 * t1

Now, Directed Acyclic Graph is-

Q : Construct a DAG for the expression : (a+b)*(a+b+c)

Sol : The Three Address Code for the given expression is -

From the constructed DAG, we observe-

• The common sub-expression (a+b) has been
expressed into a single node in the DAG.

• The computation is carried out only once and

stored in the identifier t0 and reused later.

1 30 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Examples

Consider the following three address code statements.

 a = b * c

 d = b

 e = d * c

 b = e

 f = b + c

 g = f + d

Step 1

Consider the first statement, i.e., a = b * c. Create a leaf node with label b and c as left and right child

respectively and parent of it will be *. Append resultant variable a to the node *.

1 31 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

 Step 2

For second statement, i.e., d = b, node b is already created. So, append d to this node.

Step 3

For third statement e = d * c, the nodes for d, c and * are already create. Node e is not created, so append node

e to node *.

1 32 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

 Step 4

For fourth statement b = e, append b to node e.

 Step 5

For fifth statement f = b + c, create a node for operator + whose left child b and right child c and append f to

newly created node +.

1 33 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

 Step 6

For last statement g = f + d, create a node for operator + whose left child d and right child f and append g

to newly created node +.

Thus we have the desired Directed Acyclic Graph

1 34 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Q: Consider the following expression and construct a DAG for it-

 (((a + a) + (a + a)) + ((a + a) + (a + a)))

a

+

+

+
Sol:

(a+a)

((a + a) + (a + a))

(((a + a) + (a + a)) + ((a + a) + (a + a)))

Directed Acyclic Graph

1

APPLICATIONS

Determines the common sub-expressions (expressions computed more than once).

It is a useful data structure for implementing transformation on basic blocks.

A basic block can be optimized by the construction of DAG.

A DAG is usually constructed using Three Address Code (TAC).

Transformations such as dead code elimination and common sub expression elimination are then

applied.

It gives a picture representation of how the value computed by the statement is used in subsequent

statements.

To simplify the list of Quadruples by not executing the assignment instructions x=y unless they are

necessary.

35 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

BOOLEAN EXPRESSIONS

36 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

A Boolean Expression is an expression that results in a Boolean value, that is, in a value of

either true or false. A Boolean Expression may be composed of a combination of Boolean
constants true or false.

A Boolean Expression can compare data of any type as long as both parts of the expression

have the same basic data types.

Boolean expression are used for statements changing the flow of control.

Evaluation of Boolean expression can be optimized if it is sufficient to evaluate a part of the
expression that determines its value.

When translating Boolean expression into TAC we use two methods:

Numerical Method and Jump Method.

IN Numerical method we assign numerical values to true and false and evaluate the
expression analogously to an arithmetic expression.

1

37 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

In Jump method we evaluate a Boolean expression E as a sequence of conditional

And unconditional jump to location E.true(if E is true) or to E.false.

There are three Boolean operators: “AND”, “OR” and “NOT”.

1

38 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

In Compiler Design Boolean Expression has two primary purposes :

1. It is used for computing logical values.

2. It is used as conditional expressions using if then-else or while-do.

Grammer used in Boolean Expression

 E → E or E
 E → E and E

 E → Not E
 E → (E)

 E → id relop id
 E → True

 E → False
 The relop is denoted by <,>.

 Here, relop is Relational Operator.

1

39 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Production rule Semantic actions

E → E1 OR E2 { E.place = newtemp();

 Emit (E.place ':=' E1.place 'OR' E2.place) }

E → E1 + E2 { E.place = newtemp();
 Emit (E.place ':=' E1.place 'AND' E2.place)}

E → NOT E1 { E.place = newtemp();

 Emit (E.place ':=' 'NOT' E1.place)}

E → (E1) { E.place = E1.place}

1

40 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

E → id relop id2 { E.place = newtemp();

 Emit ('if' id1.place relop.op id2.place 'goto’ nextstar + 3);
 EMIT (E.place ':=' '0’)

 EMIT ('goto' nextstat + 2)
 EMIT (E.place ':=' ‘1’)}

E → TRUE { E.place := newtemp();

 Emit (E.place ':=' ‘1’)}

E → FALSE { E.place := newtemp();
 Emit (E.place ':=' ‘0’) }

The Emit function is used to generate the three address code and the newtemp() function

is used to generate the temporary variables.
The E → id relop id2 contains the next_state and it gives the index of next three address

 statements in the output sequence.

1

41 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Here is the example which generates the three address code using the above

 translation scheme :

p>q AND r<s OR u>r

 100: if p>q goto 103

 101: t1:=0
 102: goto 104

 103: t1:=1
 104: if r>s goto 107

 105: t2:=0
 106: goto 108

 107: t2:=1
 108: if u>v goto 111

 109: t3:=0
 110: goto 112

 111: t3:= 1
 112: t4:= t1 AND t2

 113: t5:= t4 OR t3

1

42 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

CONTROL STRUCTURE

Control Structure is like a block of programming that analysis variables and chooses

a direction in which to go based on given parameters.

The term control flow details the direction the program takes, hence it is the decision
Making process in computing.

Control Flow is the order in which individual statements, instructions, or function calls

of an imperative program are executed or evaluated.

Statements that alter the flow of control:

The goto statement alters the flow of control. If we implement goto statements then we need to define a LABEL for a
statement. A production can be added for this purpose:

S → LABEL : S

 LABEL → id

In this production system, semantic action is attached to record the LABEL and its value in the symbol table.

1

43 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Basic Terminologies

Those initial conditions and parameters are called preconditions.

Preconditions are the state of variables before entering a control
structure. Based on those preconditions, the computer runs

an algorithm (the control structure) to determine what to do.
The result is called a post condition.

 Post conditions are the state of variables after the algorithm is run.

An Example

Let us analyze flow control by using traffic flow as a model. A vehicle is

 arriving at an intersection. Thus, the precondition is the vehicle is in motion.
Suppose the traffic light at the intersection is red. The control structure

must determine the proper course of action to assign to the vehicle.

1

44 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Precondition

The vehicle is in motion.

Treatments of Information through Control Structures
Is the traffic light green? If so, then the vehicle may stay in motion.

Is the traffic light red? If so, then the vehicle must stop.
End of Treatment

Post condition

The vehicle comes to a stop.

Thus, upon exiting the control structure, the vehicle is stopped.

can also be form as a structure

1

45 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Following grammar used to incorporate structure flow of control

statement:

 S → if E then S
 S → if E then S else S

 S → while E do S
 S → begin L end

 S→ A
 L→ L ; S

 L → S

 Here, S is a statement, L is a statement-list, A is an assignment
statement and E is a Boolean-valued expression.

1

46 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

IF-THEN-ELSE Statement

IF-THEN statements test for only one action. With an IF-THEN-ELSE statement, the control can

"look both ways" so to speak, and take a secondary course of action. If the condition is true, then
an action occurs. If the condition is false, take an alternate action. To illustrate:

IF variable is true

THEN take this course of action
ELSE call another routine

In this case, if the variable is true, it takes a certain course of action and completely skips the
ELSE clause. If the variable is false, the control structure calls a routine and completely skips

the THEN clause.
Note that you can combine ELSE's with other IF's, allowing several tests to be made. In an

IF-THEN-ELSEIF-THEN-ELSEIF-THEN-ELSEIF-THEN structure, tests will stop as soon as
 a condition is true. That's why you'd probably want to put the most "likely" test first, for efficiency

 (Remembering that ELSE's are skipped if the first condition is true, meaning that the remaining
 portions of the IF-THEN-ELSEIF... would not be processed). eg:

In case your computer doesn't start
IF a floppy disk is in the drive

THEN remove it and restart
ELSE IF you don't have any OS installed

THEN install an OS
ELSE call the hotline

You can have as many ELSE IF's as you like.

1

47 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

DO-WHILE Loops

A DO-WHILE loop is nearly the exact opposite to a WHILE loop. A WHILE loop initially checks to

see if
 the parameters have been satisfied before executing an instruction. A DO-WHILE loop executes the

 instruction before checking the parameters. To illustrate:

 DO Add 1 to X
 WHILE X is not equal 9

As you can see, the example differs from the first illustration, where the DO action is taken before

the WHILE. The WHILE is inclusive in the DO. As such, if the WHILE results in a false
 (X is equal to 9), the control structure will break and will not perform another DO. Note that if X

is equal to or greater than 9 prior to entering the DO-WHILE loop, then the loop will never terminate.

1

48 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

FLOW OF CONTROL STATEMENTS WITH THE JUMP METHOD

We will consider the following rules:

s → if E then S1
s → if E then S1 else S2

s → while E repeat S1

In each of these productions, E is the boolean expression to be translated. The Boolean expression E is associated with two

labels (that are inherited attributes in the following semantic rules)

1. E.true the label to which control flows if E is true,
2. E.false the label to which control flows if E is false.

In each of these productions, S is a flow of control statement associated with two attributes

1. S.next which is a label that is attached to the first 3-address statement to be executed after the code for S , S.next is an

inherited attribute,
2. S.code is the translation code for S, as usual it is a synthesized attribute.

1

49 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

REFERENCES/BIBLOGRAPHY

1. The DAG Representation of Basic Blocks

www.facweb.iitkgp.ac.in

2. geeksforgeeks.com

3. Directed Acyclic Graphs | DAGs | Examples | Gate Vidyalay

www.gatevidyalay.com

50

http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc
https://www.gatevidyalay.com/directed-acyclic-graphs/
https://www.gatevidyalay.com/directed-acyclic-graphs/
https://www.gatevidyalay.com/directed-acyclic-graphs/
https://www.gatevidyalay.com/directed-acyclic-graphs/
https://www.gatevidyalay.com/directed-acyclic-graphs/
https://www.gatevidyalay.com/directed-acyclic-graphs/
http://www.facweb.iitkgp.ac.in/~niloy/Compiler/notes/TCDAG1.doc

Abhishek Dixit (AP CSE) , JECRC, JAIPUR 51
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

