
1

Year & Sem – 3rd Year & 5th Sem

Subject – COMPILER DESIGN

Unit – 2

Presented by – (Abhishek Dixit, Assistant Prof., Dept of CSE)

Abhishek Dixit (AP CSE) , JECRC, JAIPUR

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

1

1

VISION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards

academic, professional, cultural and social enrichment of the lives of

individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to

inculcate research aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global

needs, the areas of focus and provide platform to gain knowledge and

solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable

and imaginatively gifted leaders can emerge in a range of professions.

2 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and

make competent engineers & professionals with high ethical values prepared for

lifelong learning.

MISION OF THE DEPARTMENT

M1: To impart outcome based education for emerging technologies in the field of

computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities

3 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching

substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid

conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT

tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering

practice.

4 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

5 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM EDUCATIONAL OBJECTIVES

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

3. To inculcate professional and ethical attitude, effective communication skills, teamwork

skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning needed

for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

6 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM SPECIFIC OBJECTIVES

1. PSO1. Ability to interpret and analyze network specific and cyber security issues,

automation in real word environment.

2. PSO2. Ability to Design and Develop Mobile and Web-based applications under

realistic constraints.

7 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer.

CO2: Examine syntax and semantic analyzer by understanding grammars.

CO3: Illustrate storage allocation and its organization & analyze symbol table

organization.

CO4: Analyze code optimization, code generation & compare various compilers.

8
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

CO-PO MAPPING

9
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

S
em

ester

S
u

b
ject

C
o

d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

L
2. Examine syntax and semantic analyzer by

understanding grammars.
3 3 3 2 1 1 1 0 1 2 1 3

L
3. Illustrate storage allocation and its organization

& analyze symbol table organization.
3 3 2 2 1 1 1 1 1 2 1 3

L
4.Analyze code optimization, code generation &

compare various compilers.
3 3 3 3 2 1 1 1 1 2 1 3

1 2 1 3

V

3 3 1 1 1 1

C
O

M
P

IL
E

R
 D

E
S

IG
N

5
C

S
4

-0
2

L
1. Compare different phases of compiler and

design lexical analyzer..
3 3

1

SYLLABUS

10
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Syntax Analysis

• Syntax analysis or parsing is the second phase of a compiler.

• We have seen that a lexical analyzer can identify tokens with the help of

regular expressions and pattern rules. But a lexical analyzer cannot check the

syntax of a given sentence due to the limitations of the regular expressions.

• Regular expressions cannot check balancing tokens, such as parenthesis.

Therefore, this phase uses context-free grammar (CFG), which is recognized

by push-down automata.

• CFG, on the other hand, is a superset of Regular Grammar.

• It implies that every Regular Grammar is also context-free,

 but there exists some problems, which are beyond the

 scope of Regular Grammar.

11 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Context-Free Grammar

A context-free grammar has four components:

A set of non-terminals (V). Non-terminals are syntactic variables that denote sets of strings. The non-

terminals define sets of strings that help define the language generated by the grammar.

A set of tokens, known as terminal symbols (Σ). Terminals are the basic symbols from which strings

are formed.

A set of productions (P). The productions of a grammar specify the manner in which the terminals and

non-terminals can be combined to form strings. Each production consists of a non-terminal called the

left side of the production, an arrow, and a sequence of tokens and/or on- terminals, called the right

side of the production.

One of the non-terminals is designated as the start symbol (S); from where the production begins.

The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the start

symbol) by the right side of a production, for that non-terminal.

12 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Compiler Design - Types of Parsing

Syntax analyzers follow production rules defined by means of context-free grammar. The way the

production rules are implemented (derivation) divides parsing into two types : top-down parsing and

bottom-up parsing.

13 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Top-down Parsing

When the parser starts constructing the parse tree from the start symbol and then tries to transform the

start symbol to the input, it is called top-down parsing.

Recursive descent parsing : It is a common form of top-down parsing. It is called recursive as it uses

recursive procedures to process the input. Recursive descent parsing suffers from backtracking.

Backtracking : It means, if one derivation of a production fails, the syntax analyzer restarts the process

using different rules of same production. This technique may process the input string more than once to

determine the right production.

14 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Bottom-up Parsing

As the name suggests, bottom-up parsing starts with the input symbols and tries to construct the parse

tree up to the start symbol.

Example:

Input string : a + b * c

Production rules:

S → E

E → E + T

E → E * T

E → T

T → id

Let us start bottom-up parsing

a + b * c

15 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Read the input and check if any production matches with the input:

a + b * c

T + b * c

E + b * c

E + T * c

E * c

E * T

E

S

16 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Top-Down Parser

We have learnt that the top-down parsing technique parses the input, and starts constructing a parse

tree from the root node gradually moving down to the leaf nodes. The types of top-down parsing are

depicted below:

17 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Recursive Descent Parsing:

Recursive descent is a top-down parsing technique that constructs the parse tree from the top and the

input is read from left to right. It uses procedures for every terminal and non-terminal entity. This parsing

technique recursively parses the input to make a parse tree, which may or may not require back-

tracking. But the grammar associated with it (if not left factored) cannot avoid back-tracking. A form of

recursive-descent parsing that does not require any back-tracking is known as predictive parsing.

This parsing technique is regarded recursive as it uses context-free grammar which is recursive in

nature.

Back-tracking:

Top- down parsers start from the root node (start symbol) and match the input string against the

production rules to replace them (if matched). To understand this, take the following example of CFG:

S → rXd | rZd

X → oa | ea

Z → ai

18 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

For an input string: read, a top-down parser, will behave like this:

It will start with S from the production rules and will match its yield to the left-most letter of the input, i.e.

‘r’. The very production of S (S → rXd) matches with it. So the top-down parser advances to the next

input letter (i.e. ‘e’). The parser tries to expand non-terminal ‘X’ and checks its production from the left (X

→ oa). It does not match with the next input symbol. So the top-down parser backtracks to obtain the

next production rule of X, (X → ea).

Now the parser matches all the input letters in an ordered manner. The string is accepted.

19 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

FIRST and FOLLOW in Compiler Design

20 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

21 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

FIRST(X) for a grammar symbol X is the set of terminals that begin the strings

derivable from X.

Rules to compute FIRST set:

If x is a terminal, then FIRST(x) = { ‘x’ }

If x-> Є, is a production rule, then add Є to FIRST(x).

If X->Y1 Y2 Y3….Yn is a production,

FIRST(X) = FIRST(Y1)

If FIRST(Y1) contains Є then FIRST(X) = { FIRST(Y1) – Є } U { FIRST(Y2) }

If FIRST (Yi) contains Є for all i = 1 to n, then add Є to FIRST(X).

1

22 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Example 1

Production Rules of Grammar

E -> TE’

E’ -> +T E’|Є

T -> F T’

T’ -> *F T’ | Є

F -> (E) | id

FIRST sets

FIRST(E) = FIRST(T) = { (, id }

FIRST(E’) = { +, Є }

FIRST(T) = FIRST(F) = { (, id }

FIRST(T’) = { *, Є }

FIRST(F) = { (, id }

1

23 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Example 2:

Production Rules of Grammar

S -> ACB | Cbb | Ba

A -> da | BC

B -> g | Є

C -> h | Є

FIRST sets

FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C)

= { d, g, h, Є, b, a}

FIRST(A) = { d } U FIRST(B) = { d, g , h, Є }

FIRST(B) = { g , Є }

FIRST(C) = { h , Є }

1

24 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

FOLLOW Set in Syntax Analysis

1)FOLLOW(S) = { $ } // where S is the starting Non-Terminal

2) If A -> pBq is a production, where p, B and q are any

grammar symbols, then everything in FIRST(q) except Є is

in FOLLOW(B).

3) If A->pB is a production, then everything in FOLLOW(A) is

in FOLLOW(B).

4) If A->pBq is a production and FIRST(q) contains Є, then

FOLLOW(B) contains { FIRST(q) – Є } U FOLLOW(A)

1

25 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Production Rules:

E → TE’

E’ → +T E’|Є

T → F T’

T’ → *F T’ | Є

F → (E) | id

FIRST set

FIRST(E) = FIRST(T) = FIRST(F) = { (, id }

FIRST(E’) = { +, Є }

FIRST(T’) = { *, Є }

1

26 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

FOLLOW Set

FOLLOW(E) = { $,) } // Note ')' is there because of 5th rule

FOLLOW(E’) = FOLLOW(E) = { $,) } // See 1st production rule

FOLLOW(T) = { FIRST(E’) – Є } U FOLLOW(E’) U FOLLOW(E) = { + , $,) }

FOLLOW(T’) = FOLLOW(T) = { + , $,) }

FOLLOW(F) = { FIRST(T’) – Є } U FOLLOW(T’) U FOLLOW(T) = { *, +, $,) }

https://www.youtube.com/watch?v=pP1-ragPlkQ

https://www.youtube.com/watch?v=pP1-ragPlkQ
https://www.youtube.com/watch?v=pP1-ragPlkQ
https://www.youtube.com/watch?v=pP1-ragPlkQ

1

27 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Creating a predictive parsing Table

Input: Grammar G.

Output: Predictive parsing table M.

Method:

1. for (each production A → α in G) follow step 2 and 3

2. for (each terminal a in FIRST(α)) add A → α to M[A, a];

3. if (ε is in FIRST(α)) for (each symbol b in FOLLOW(A)) add

A → α to M[A, b] for each terminal b in follow (A). If ε is in

First(α) and $ is in Follow(A) add A → α to M[A, $];

4. make each undefined entry of M be error;

https://www.youtube.com/watch?v=KbTkcSz4ulE

https://www.youtube.com/watch?v=KbTkcSz4ulE

1

28 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Grammar G

E → TE’

E’ → +T E’|Є

T → F T’

T’ → *F T’ | Є

F → (E) | id

FIRST set

FIRST(E) = FIRST(T) = FIRST(F) = { (, id }

FIRST(E’) = { +, Є }

FIRST(T’) = { *, Є }

FOLLOW set

FOLLOW(E) = { $,) }

FOLLOW(E’) = FOLLOW(E) = { $,) }

FOLLOW(T) = { + , $,) }

FOLLOW(T’) ={ + , $,) }

FOLLOW(F) = { *, +, $,)

1

29 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Parsing Table for Grammar G

1

30 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

LL(1) Parsing:

Here the 1st L represents that the scanning of the Input will

be done from Left to Right manner and second L shows that

in this Parsing technique we are going to use Left most

Derivation Tree. and finally the 1 represents the number of

look ahead, means how many symbols are you going to see

when you want to make a decision.

1

31 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Construction of LL(1) Parsing Table:

Note: Every grammar is not feasible for LL(1) Parsing table.

It may be possible that one cell may contain more than one

production.

Let’s see with an example.

1

32 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Parsing Table:

a $

S S –> A, S –> a

A A –> a

Example-2:

Consider the Grammar

S --> A | a

A --> a

1

33 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Operator Precedence Parsing:

Any Grammar G is called operator precedence grammar if it

meets the following conditions

1. If there exist no production rule which contain no Є

(Epsilon) on its right hand side.

2. There exist no production rule which contain two non

terminal adjacent to each other on its RHS.

1

34 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Operator Precedence Parsing:

An operator precedence parser is a bottom-up parser that

interprets an operator grammar. This parser is only used for

operator grammars. Ambiguous grammars are not allowed in

any parser except operator precedence parser.

There are two methods for determining what precedence

relations should hold between a pair of terminals:

1

35 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1. Use the conventional associatively and precedence of

operator.

2. The second method of selecting operator-precedence

relations is first to construct an unambiguous grammar for the

language, a grammar that reflects the correct associatively

and precedence in its parse trees.

This parser relies on the following three precedence

relations: ⋖, ≐, ⋗

a ⋖ b This means a “yields precedence to” b.

a ⋗ b This means a “takes precedence over” b.

a ≐ b This means a “has same precedence as” b.

1

36 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Parsing Action

1. Both end of the given input string, add the $ symbol.

2. scan the input string from left right until the ⋗ is

encountered.

3. Scan towards left over all the equal precedence until the

first left most ⋖ is encountered.

4. Everything between left most ⋖ and right most ⋗ is a

handle.

5. $ on $ means parsing is successful.

1

37 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

38 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Grammar:

E → E+T/T

T → T*F/F

F → id

Given string:

w = id + id * id

.

1

39 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

.

On the basis of above tree, we can design following operator precedence table:

1

40 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

.

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Introduction to YACC

 YACC (yet another compiler-compiler) is an LALR(1) (LookAhead, Left-to-right, Rightmost

derivation producer with 1 lookahead token) parser generator. YACC was originally designed for

being complemented by Lex.

Input File:

YACC input file is divided in three parts

/* definitions */

....

%%

/* rules */

....

%%

/* auxiliary routines */

....

41

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Input File: Definition Part:

The definition part includes information about the tokens used in the syntax definition:

%token NUMBER

%token ID

Yacc automatically assigns numbers for tokens, but it can be overridden by % token NUMBER 621

Yacc also recognizes single characters as tokens. Therefore, assigned token numbers should not

overlap ASCII codes.

The definition part can include C code external to the definition of the parser and variable declarations,

within %{ and %} in the first column.

It can also include the specification of the starting symbol in the grammar:%start nonterminal

Input File: Rule Part:

The rules part contains grammar definition in a modified BNF form.

Actions is C code in { } and can be embedded inside (Translation schemes).

42

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Input File: Auxiliary Routines Part:

The auxiliary routines part is only C code.

It includes function definitions for every function needed in rules part.

It can also contain the main() function definition if the parser is going to be run as a program.

The main() function must call the function yyparse().

Input File:

If yylex() is not defined in the auxiliary routines sections, then it should be included:#include "lex.yy.c"

YACC input file generally finishes with: .y

43

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Output Files:

The output of YACC is a file named y.tab.c

If it contains the main() definition, it must be compiled to be executable.

Otherwise, the code can be an external function definition for the function int yyparse()

If called with the –d option in the command line, Yacc produces as output a header file y.tab.h with all

its specific definition (particularly important are token definitions to be included, for example, in a Lex

input file).

If called with the –v option, Yacc produces as output a file y.output containing a textual description of

the LALR(1) parsing table used by the parser. This is useful for tracking down how the parser solves

conflicts.

Example:

Yacc File (.y)

44

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

45

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

REFERENCES/BIBLOGRAPHY

1. https://www.tutorialspoint.com/compiler_design/

2. http://www1.cs.columbia.edu/~aho/cs4115/lectures/13-02-20.htm

3. https://www.youtube.com/watch?v=KbTkcSz4ulE

4. https://www.youtube.com/watch?v=pP1-ragPlkQ

5. https://www.javatpoint.com/operator-precedence-parsing

6. https://www.youtube.com/watch?v=hF9aIV5H7Xo

46

https://www.tutorialspoint.com/compiler_design/
http://www1.cs.columbia.edu/~aho/cs4115/lectures/13-02-20.htm
http://www1.cs.columbia.edu/~aho/cs4115/lectures/13-02-20.htm
http://www1.cs.columbia.edu/~aho/cs4115/lectures/13-02-20.htm
http://www1.cs.columbia.edu/~aho/cs4115/lectures/13-02-20.htm
http://www1.cs.columbia.edu/~aho/cs4115/lectures/13-02-20.htm
https://www.youtube.com/watch?v=KbTkcSz4ulE
https://www.youtube.com/watch?v=pP1-ragPlkQ
https://www.youtube.com/watch?v=pP1-ragPlkQ
https://www.youtube.com/watch?v=pP1-ragPlkQ
https://www.javatpoint.com/operator-precedence-parsing
https://www.javatpoint.com/operator-precedence-parsing
https://www.javatpoint.com/operator-precedence-parsing
https://www.javatpoint.com/operator-precedence-parsing
https://www.javatpoint.com/operator-precedence-parsing
https://www.youtube.com/watch?v=hF9aIV5H7Xo

Abhishek Dixit (AP CSE) , JECRC, JAIPUR 47
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

