
1

Year & Sem – 3rd Year & 5th Sem

Subject – COMPILER DESIGN

Unit – 1

Presented by – (Abhishek Dixit, Assistant Prof., Dept of CSE)

Abhishek Dixit (AP CSE) , JECRC, JAIPUR

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

1

1

VISION AND MISSION OF INSTITUTE

To become a renowned center of outcome based learning and work towards

academic, professional, cultural and social enrichment of the lives of

individuals and communities

M1: Focus on evaluation of learning outcomes and motivate students to

inculcate research aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global

needs, the areas of focus and provide platform to gain knowledge and

solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable

and imaginatively gifted leaders can emerge in a range of professions.

2 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

VISION OF THE DEPARTMENT

To become renowned Centre of excellence in computer science and engineering and

make competent engineers & professionals with high ethical values prepared for

lifelong learning.

MISION OF THE DEPARTMENT

M1: To impart outcome based education for emerging technologies in the field of

computer science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities

3 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching

substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid

conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT

tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering

practice.

4 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

5 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM EDUCATIONAL OBJECTIVES

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

3. To inculcate professional and ethical attitude, effective communication skills, teamwork

skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning needed

for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating Students

along with High moral values and Knowledge

6 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

PROGRAM SPECIFIC OBJECTIVES

1. PSO1. Ability to interpret and analyze network specific and cyber security issues,

automation in real word environment.

2. PSO2. Ability to Design and Develop Mobile and Web-based applications under

realistic constraints.

7 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

COURSE OUTCOME

CO1: Compare different phases of compiler and design lexical analyzer.

CO2: Examine syntax and semantic analyzer by understanding grammars.

CO3: Illustrate storage allocation and its organization & analyze symbol table

organization.

CO4: Analyze code optimization, code generation & compare various compilers.

8
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1

CO-PO MAPPING

9
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

S
em

ester

S
u

b
ject

C
o

d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

L
2. Examine syntax and semantic analyzer by

understanding grammars.
3 3 3 2 1 1 1 0 1 2 1 3

L
3. Illustrate storage allocation and its organization

& analyze symbol table organization.
3 3 2 2 1 1 1 1 1 2 1 3

L
4.Analyze code optimization, code generation &

compare various compilers.
3 3 3 3 2 1 1 1 1 2 1 3

1 2 1 3

V

3 3 1 1 1 1

C
O

M
P

IL
E

R
 D

E
S

IG
N

5
C

S
4

-0
2

L
1. Compare different phases of compiler and

design lexical analyzer..
3 3

1

SYLLABUS

10
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

UNIT-1
OVERVIEW OF LANGUAGE PROCESSING SYSTEM

TRANSLATOR:

• Translating the high Level language program input into an equivalent

machine language program.

•Providing diagnostic messages wherever the programmer violates

specification of the High level language.

11

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

12

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Preprocessor

 A preprocessor produce input to compilers. They may perform the

 following functions.

•Macro processing: A preprocessor may allow a user to define macros

that are short hands for longer constructs.

•File inclusion: A preprocessor may include header files into the program

text.

•Rational preprocessor: these preprocessors augment older languages

with more modern flow-of-control and data structuring facilities.

•Language Extensions: These preprocessor attempts to add capabilities

to the language by certain amounts to build-in macro

13

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

COMPILER

Compiler is a translator program that translates a program written in

(HLL) the source program and translate it into an equivalent program

in (MLL) the target program. As an important part of a compiler is

error showing to the programmer.

14

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

ASSEMBLER:

 programmers found it difficult to write or read programs in

machine language. They begin to use a mnemonic (symbols) for

each machine instruction, which they would subsequently translate

into machine language. Such a mnemonic machine language is now

called an assembly language. Programs known as assembler were

written to automate the translation of assembly language in to

machine language. The input to an assembler program is called

source program, the output is a machine language translation (object

program).

Ex: MOV A,B

15

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

INTERPRETER:

 An interpreter is a program that appears to execute a source

program as if it were machine language.

 Languages such as BASIC, SNOBOL, LISP can be translated

using interpreters. JAVA also uses interpreter.

16

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Advantages:

•Modification of user program can be easily made and implemented

as execution proceeds.

•Debugging a program and finding errors is simplified task for a

program used for interpretation.

•The interpreter for the language makes it machine independent.

Disadvantages:

•The execution of the program is slower.

•Memory consumption is more.

17

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

DIFFERENCE BETWEEN COMPILER AND INTERPRETER

•A compiler converts the high level instruction into machine language while an interpreter converts the

high level instruction into an intermediate form.

•Before execution, entire program is executed by the compiler whereas after translating the first line, an

interpreter then executes it and so on.

•List of errors is created by the compiler after the compilation process while an interpreter stops

translating after the first error.

•An independent executable file is created by the compiler whereas interpreter is required by an

interpreted program each time.

•The compiler produce object code whereas interpreter does not produce object code. In the process of

compilation the program is analyzed only once and then the code is generated whereas source program

is interpreted every time it is to be executed and every time the source program is analyzed. hence

interpreter is less efficient than compiler.

Examples of interpreter: A UPS Debugger .

example of compiler: Borland c compiler or Turbo C compiler compiles the programs written in C or

C++.

18

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Loader and Linker

•A loader is a program that places programs into memory and

prepares them for execution.

•A Linker resolves external memory address where the code in one

file may refer to the code in another file.

19

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Phases of a compiler

A compiler operates in phases. A phase is a logically interrelated operation that takes

source program in one representation and produces output in another representation.

Lexical Analysis:-

LA or Scanners reads the source program one character at a time, carving the source

program into a sequence of atomic units called tokens.

Syntax Analysis:-

The second stage of translation is called Syntax analysis or parsing. In this phase

expressions, statements, declarations etc… are identified by using the results of lexical

analysis. Syntax analysis is aided by using techniques based on formal grammar of the

programming language.

Semantic Analyzer:

 It uses syntax tree and symbol table to check whether the given program is

semantically consistent with language definition. It gathers type information and stores it

in either syntax tree or symbol table. This type information is subsequently used by

compiler during intermediate-code generation.

20

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Intermediate Code Generations:-

An intermediate representation of the final machine language code is

produced.

This phase bridges the analysis and synthesis phases of translation.

Code Optimization :-

This is optional phase described to improve the intermediate code so

that the output runs faster and takes less space.

Code Generation:-

The last phase of translation is code generation. A number of

optimizations to reduce the length of machine language program

are carried out during this phase. The output of the code generator is

the machine language program of the specified computer.

21

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

22

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

23

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Lexical Analysis

• Lexical analysis is the first phase of compiler which is also termed

as scanning.

• Source program is scanned to read the stream of characters and

those characters are grouped to form a sequence called lexemes

which produces token as output.

.

 24

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Lexical Analysis

• Lexical analysis is the first phase of compiler which is also termed

as scanning.

• Source program is scanned to read the stream of characters and

those characters are grouped to form a sequence called lexemes

which produces token as output.

 Token: Token is a sequence of characters that represent lexical unit, which matches with the pattern,

such as keywords, operators, identifiers etc.

• Lexeme: Lexeme is instance of a token i.e., group of characters forming a token. ,

• Pattern: Pattern describes the rule that the lexemes of a token takes. It is the structure that must be

matched by strings.

.

25

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Syntax Analysis

• Syntax analysis is the second phase of compiler which is also called

as parsing.

• Parser converts the tokens produced by lexical analyzer into a tree

like representation called parse tree.

• A parse tree describes the syntactic structure of the input.

• Syntax tree is a compressed representation of the parse tree in

which the operators appear as interior nodes and the operands of the

operator are the children of the node for that operator.

Input: Tokens

Output: Syntax tree

.

26

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Syntax Analysis

.

27

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Semantic Analysis

• Semantic analysis is the third phase of compiler.

• It checks for the semantic consistency.

• Type information is gathered and stored in symbol table or in syntax

tree.

• Performs type checking.

.

28

https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Intermediate Code Generation

• Intermediate code generation produces intermediate representations for the source

program which are of the following forms:

 o Postfix notation

 o Three address code

 o Syntax tree

Most commonly used form is the three address code.

 t1 = inttofloat (5)

 t2 = id3* tl

 t3 = id2 + t2

 id1 = t3

Properties of intermediate code

• It should be easy to produce.

• It should be easy to translate into target program.

.

29

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Code Optimization

• Code optimization phase gets the intermediate code as input and produces optimized

intermediate code as output.

• It results in faster running machine code.

• It can be done by reducing the number of lines of code for a program.

• This phase reduces the redundant code and attempts to improve the intermediate code

so that faster-running machine code will result.

• During the code optimization, the result of the program is not affected.

• To improve the code generation, the optimization involves

 o Deduction and removal of dead code (unreachable code).

 o Calculation of constants in expressions and terms.

 o Collapsing of repeated expression into temporary string.

 o Loop unrolling.

 o Moving code outside the loop.

 o Removal of unwanted temporary variables.

 t1 = id3* 5.0

 id1 = id2 + t1

.

30

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Code Generation

• Code generation is the final phase of a compiler.

• It gets input from code optimization phase and produces the target code or object code

as result.

• Intermediate instructions are translated into a sequence of machine instructions that

perform the same task.

• The code generation involves

 o Allocation of register and memory.

 o Generation of correct references.

 o Generation of correct data types.

 o Generation of missing code.

 LDF R2, id3

 MULF R2, # 5.0

 LDF R1, id2

 ADDF R1, R2

 STF id1, R1

.

31

https://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Symbol Table Management

• Symbol table is used to store all the information about identifiers used in the program.

• It is a data structure containing a record for each identifier, with fields for the attributes

of the identifier.

• It allows finding the record for each identifier quickly and to store or retrieve data from

that record.

• Whenever an identifier is detected in any of the phases, it is stored in the symbol table.

.

32

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Bootstrapping

Bootstrapping is a process in which simple language is used to

translate more complicated program which in turn may handle for

more complicated program. This complicated program can further

handle even more complicated program and so on.

Writing a compiler for any high level language is a complicated

process. It takes lot of time to write a compiler from scratch. Hence

simple language is used to generate target code in some stages. to

clearly understand the Bootstrapping technique consider a following

scenario.

33

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Bootstrapping

Suppose we want to write a cross compiler for new language X. The

implementation language of this compiler is say Y and the target

code being generated is in language Z. That is, we create XYZ. Now

if existing compiler Y runs on machine M and generates code for M

then it is denoted as YMM. Now if we run XYZ using YMM then we

get a compiler XMZ. That means a compiler for source language X

that generates a target code in language Z and which runs on

machine M.

34

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Following diagram illustrates the above scenario.

Example:

We can create compiler of many different forms. Now we will

generate.

35

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

•The T- diagram shows a compiler SCI
T for Source S, Target T,

implemented in I.

•Follow some steps to produce a new language for machine A

•Create a compiler SCA
A for subset, S of the desired language, L

using language "A" and that compiler runs on machine A.

36

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

•Create a compiler LCS
A for language L written in a subset of L.

•Compile LCS
A using the compiler SCA

A to obtain LCA
A. LCA

A is a

compiler for language L, which runs on machine A and produces

code for machine A.

37

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Review of Finite Automata

•Finite Automata(FA) is the simplest machine to recognize patterns.

•Finite automata is a state machine that takes a string of symbols as

input and changes its state accordingly.

•Finite automata is a recognizer for regular expressions. When a

regular expression string is fed into finite automata, it changes its

state for each literal. If the input string is successfully processed and

the automata reaches its final state, it is accepted.

38

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

The mathematical model of finite automata consists of:

Finite set of states (Q)

Finite set of input symbols (Σ)

One Start state (q0)

Set of final states (qf)

Transition function (δ)

Finite Automata Construction

Let L(r) be a regular language recognized by some finite automata

(FA)

39

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

•States : States of FA are represented by circles. State names are written inside circles.

•Start state : The state from where the automata starts, is known as the start state. Start

state has an arrow pointed towards it.

•Intermediate states : All intermediate states have at least two arrows one pointing to

and another pointing out from them.

•Final state : If the input string is successfully parsed, the automata is expected to be in

this state. Final state is represented by double circles. It may have any odd number of

arrows pointing to it and even number of arrows pointing out from it. The number of odd

arrows are one greater than even, i.e. odd = even+1.

•Transition : The transition from one state to another state happens when a desired

symbol in the input is found. Upon transition, automata can either move to the next state

or stay in the same state. Movement from one state to another is shown as a directed

arrow, where the arrows points to the destination state. If automata stays on the same

state, an arrow pointing from a state to itself is drawn.

40

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Input Recognition of Tokens

Token: Token is a sequence of characters that can be treated as a single

logical entity. Typical tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5) constants

The patterns for the tokens are described using regular definitions.

digit -->[0,9]

letter -->[A-Z,a-z]

id -->letter(letter/digit)*

if --> if

then -->then

else -->else

relop --> </>/<=/>=/==/< >

41

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

1) Deterministic Finite Automata (DFA)

DFA consists of 5 tuples {Q, Σ, q, F, δ}.

Q : set of all states.

Σ : set of input symbols. (Symbols which machine takes as input)

q : Initial state. (Starting state of a machine)

F : set of final state.

δ : Transition Function, defined as δ : Q X Σ --> Q.

In a DFA, for a particular input character, the machine goes to one state only. A transition

function is defined on every state for every input symbol. Also in DFA null (or ε) move is

not allowed, i.e., DFA cannot change state without any input character.

For example, below DFA with Σ = {0, 1} accepts all strings ending with 0.

42

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

2) Nondeterministic Finite Automata(NFA)

NFA is similar to DFA except following additional features:

1. Null (or ε) move is allowed i.e., it can move forward without reading symbols.

2. Ability to transmit to any number of states for a particular input.

However, these above features don’t add any power to NFA. If we compare both in terms

of power, both are equivalent.

Due to above additional features, NFA has a different transition function, rest is same as

DFA.

δ: Transition Function

δ: Q X (Σ U ε) --> 2 ^ Q.

As you can see in transition function is for any input including null (or ε), NFA can go to

any state number of states.

For example, below is a NFA for above problem

43

1

Lexical Analysis & its

Role

Abhishek Dixit (AP CSE) , JECRC, JAIPUR 44

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

45

Introduction of Lexical Analysis:

• Lexical Analysis is the first phase of the compiler also known as a scanner. It

converts the High level input program into a sequence of Tokens.

• Lexical Analysis can be implemented with the Deterministic finite Automata.

The output is a sequence of tokens that is sent to the parser for syntax analysis

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

46

What is a token?

A lexical token is a sequence of characters that can be treated as a

unit in the grammar of the programming languages.

Example of tokens:

Type token (id, number, real, . . .)

Punctuation tokens (IF, void, return, . . .)

Alphabetic tokens (keywords)

Lexeme: The sequence of characters matched by a pattern to form

the corresponding token or a sequence of input characters that

comprises a single token is called a lexeme. eg- “float”,

“abs_zero_Kelvin”, “=”, “-”, “273”, “;” .

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

47

Role of the Lexical Analyzer

• Remove comments and white spaces

• Macros expansion

• Read input characters from the source program

• Group them into lexemes

• Produce as output a sequence of tokens

• Interact with the symbol table

• Correlate error messages generated by the compiler with the

source program

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

48

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

Lexical Analyzer Architecture: How tokens are recognized

The main task of lexical analysis is to read input characters in the code and produce tokens.

Lexical analyzer scans the entire source code of the program. It identifies each token one by one.

Scanners are usually implemented to produce tokens only when requested by a parser.

1. "Get next token" is a command which is sent from the parser to the lexical analyzer.

2. On receiving this command, the lexical analyzer scans the input until it finds the next token.

3. It returns the token to Parser.

Lexical Analyzer skips whitespaces and comments while creating these tokens. If any error is present,

then Lexical analyzer will correlate that error with the source file and line number.

49

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

LECTURE CONTENTS WITH A BLEND OF NPTEL CONTENTS

Parsing
Just like a natural language, a programming language also has a set of grammatical rules and hence

can be broken down into a parse tree by the parser. It is on this parse tree that the further steps of

semantic analysis are carried out. This is also used during generation of the intermediate language

code. Yacc (yet another compiler compiler) is a program that generates parsers in the C programming

language.

50

1 Abhishek Dixit (AP CSE) , JECRC, JAIPUR

REFERENCES/BIBLOGRAPHY

1 https://nptel.ac.in/courses/106/104/106104072/

2 https://www.slideshare.net/appasami/cs6660-

compiler-design-notes

3 http://www.brainkart.com/article/Recognition-of-

Tokens_8138/

51

https://nptel.ac.in/courses/106/104/106104072/
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
https://www.slideshare.net/appasami/cs6660-compiler-design-notes
http://www.brainkart.com/article/Recognition-of-Tokens_8138/
http://www.brainkart.com/article/Recognition-of-Tokens_8138/
http://www.brainkart.com/article/Recognition-of-Tokens_8138/
http://www.brainkart.com/article/Recognition-of-Tokens_8138/
http://www.brainkart.com/article/Recognition-of-Tokens_8138/

Abhishek Dixit (AP CSE) , JECRC, JAIPUR 52
Abhishek Dixit (AP CSE) , JECRC, JAIPUR

