
 Jaipur Engineering College & Research Center, Jaipur

Subject- : Database Management System Lab

Lab Code : 4CS4-05

Branch : Computer Science & Engineering

Year : 2ndYear

 Jaipur Engineering College and Research Center, Jaipur

 Department of Computer Science & Engineering

(Rajasthan Technical University, KOTA)

Faculty Name: Ms. Tanya Shruti

Assistant Professor,CSE

2

 Vision of Institute

To become a renowned centre of outcome based learning, and work towards academic,

professional, cultural and social enrichment of the live so find individuals and communities.

 Mission of Institute

M1. Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2. Identify, based on informed perception of indian, regional and global needs, areas of

focus and provide platform to gain knowledge and solutions.

M3. Offer opportunities for interaction between academia and industry.

M4. Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

 Vision of CSE Department
To become renowned Centre of excellence in computer science and engineering and make competent

engineers & professionals with high ethical values prepared for lifelong learning.

 Mission of CSE Department
M1: To impart outcome based education for emerging technologies in the field of computer science

and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities

 Program Outcomes

• Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

• Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems

reaching substantiated conclusions using first principles of mathematics, natural sciences, and
engineering sciences.

• Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

• Conduct investigations of complex problems: Use research-based knowledge and research methods
including design of experiments, analysis and interpretation of data, and synthesis of the information to
provide valid conclusions.

3

• Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

• The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional
engineering practice.

• Environment and sustainability: Understand the impact of the professional engineering solutions in
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

• Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

• Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

• Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports and
design documentation, make effective presentations, and give and receive clear instructions.

• Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

• Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

 Program Educational Objectives (PEO)

PEO1: To provide students with the fundamentals of Engineering Sciences with more emphasis

 in computer science and engineering by way of analyzing and exploiting engineering

 challenges.

PEO2: To train students with good scientific and engineering knowledge so as to comprehend,

 analyze, design, and create novel products and solutions for the real life problems.

PEO3: To inculcate professional and ethical attitude, effective communication skills, teamwork

 skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

 engineering issues with social issues.

PEO4: To provide students with an academic environment aware of excellence, leadership,

 written ethical codes and guidelines, and the self-motivated life-long learning needed for

 a successful professional career.

PEO5: To prepare students to excel in Industry and Higher education by educating Students

 along with High moral values and Knowledge.

4

 Course Outcomes

Database Management System (4CS4-05)

CO1: Design an ER model for an enterprise

CO2: Perform and analysis Query database using Relational Algebra, Relational Calculus and

 SQL

CO3: Apply normalization based on functional dependency.
CO4: Illustrate for serialzability among concurrent transactions and apply concurrency control

 protocols and outline database recovery techniques

Mapping of Course Outcomes with Program Outcomes (CO –

PO Mapping)

Subject/

Subject Code
COs

Program Outcomes (POs)

PO-

1

PO-

2

PO-

3

PO-

4

PO-

5

PO-

6

PO-

7

PO-

8

PO-

9

PO-

10

PO-

11

PO-

12

Database

Management

Syestem/

4CS4-05

CO-
1 3 3 3 3 3 2 1 2 1 2 2 3

CO-
2 3 3 3 3 3 2 1 1 1 2 2 3

CO-
3 3 3 3 3 3 2 1 1 1 2 2 3

CO-
4 3 3 3 2 2 2 1 1 1 2 2 3

5

 Syllabus

6

 UNIT-1 Introduction of DBMS

Define the following terms.

Data

 Fact that can be recorded or stored.

 E.g. Person Name, Age, Gender and Weight etc.

Information

 When data is processed, organized, structured or presented in a given context so as to

make it useful, it is called information.

Database

 A Database is a collection of inter-related (logically-related) data.

 E.g. Books Database in Library, Student Database in University etc.

DBMS (Database Management System)

 A database management system is a collection of inter-related data and set of programs to

manipulate those data.

 DBMS = Database + Set of programs

 E.g. MS SQL Server, Oracle, My SQL, SQLite, MongoDB etc.

Metadata

 Metadata is data about data.

 Data such as table name, column name, data type, authorized user and user access

privileges for any table is called metadata for that table.

Data dictionary

 Data dictionary is an information repository which contains metadata.

 It is usually a part of the system catalog.

Data warehouse

 Data warehouse is an information repository which stored data.

 It is design to facilitate reporting and analysis.

Field

 A field is a character or group of characters that have a specific meaning.

 It is also called a data item. It is represented in the database by a value.

 For Example customer id, name, society and city are all fields for customer Data.

Record

 A record is a collection of logically related fields.

 For examples, collection of fields (id, name, address & city) forms a record for customer.

Explain disadvantages of file system (file processing systems) compare to Database

management system. OR Explain

 disadvantages of conventional file-based system

compared to Database management system.

Data Redundancy

 It is possible that the same information may be duplicated in different files. This leads to

data redundancy.

7

 Data redundancy results in memory wastage.

 For example, consider that some customers have both kinds of accounts - saving and

current. In this case, data about customers such as name, address, e-mail and contact

number will be duplicated in both files, saving accounts file and current account file.

 In other words, same information will be stored in two different locations (files). And, it

wastes memory.

Data Inconsistency

 Due to data redundancy, it is possible that data may not be in consistent state.

 For example, consider that an address of some customer changes. And, that customer has

both kinds of accounts. Now, it is possible that this changed address is updated in only

one file, leaving address in other file as it is. As a result of this, same customer will have

two different addresses in two different files, making data inconsistent.

Difficulty in Accessing Data

 Accessing data is not convenient and efficient in file processing system.

 For example, suppose, there is a program to find information about all customers. But,

what if there is a need to find out all customers from some particular city. In this case,

there are two choices here: One, find out all customers using available program, and then

extract the needed customers manually. Second, develop new program to get required

information. Both options are not satisfactory.

 For each and every different kind of data access, separate programs are required. This is

neither convenient nor efficient.

Limited Data Sharing

 Data are scattered in various files.

 Different files may have different formats. And these files may be stored in different

folders (directories) may be of different computers of different departments.

 So, due to this data isolation, it is difficult to share data among different applications.

Integrity Problems

 Data integrity means that the data contained in the database is both correct and consistent.

For this purpose, the data stored in database must satisfy certain types of constraints

(rules).

 For example, a balance for any account must not be less than zero. Such constraints are

enforced in the system by adding appropriate code in application programs. But, when

new constraints are added, such as balance should not be less than Rs. 5000, application

programs need to be changed. But, it is not an easy task to change programs whenever

required.

Atomicity Problems

 Any operation on database must be atomic. This means, operation completes either 100%

or 0%.

 For example, a fund transfer from one account to another must happen in its entirely. But,

computer systems are vulnerable to failure, such as system crash, virus attack. If a system

failure occurs during the execution of fund transfer operation, it may possible that

8

amount to be transferred, say, Rs. 500, is debited from one account, but is not credited to

another account.

 This leaves database in consistent state. But, it is difficult to ensure atomicity in a file

processing system.

Concurrent Access Anomalies

 Multiple users are allowed to access data simultaneously (concurrently). This is for the

sake of better performance and faster response.

 Consider an operation to debit (withdrawal) an account. The program reads the old

balance, calculates the new balance, and writes new balance back to database. Suppose an

account has a balance of Rs. 5000. Now, a concurrent withdrawal of Rs. 1000 and Rs.

2000 may leave the balance Rs. 4000 or Rs. 3000 depending upon their completion time

rather than the correct value of Rs. 2000.

 Here, concurrent data access should be allowed under some supervision.

 But, due to lack of co-ordination among different application programs, this is not

possible in file processing systems.

Security Problems

 Database should be accessible to users in a limited way.

 Each user should be allowed to access data concerning his application only.

 For example, a customer can check balance only for his/her own account. He/She should

not have access for information about other accounts.

 But, in file processing system, application programs are added in an ad hoc manner by

different programmers. So, it is difficult to enforce such kind of security constraints.

Explain advantages (benefits) of DBMS over file management system. OR

Explain purpose of database system.

Minimal Data Redundancy (Duplication)

 Due to centralized database, it is possible to avoid unnecessary duplication of

information.

 This leads to reduce data redundancy.

 It prevents memory wastage and reduces extra processing time to get required data.

Shared Data

 All authorized user and application program can share database easily.

Data Consistency

 Data inconsistency occurs due to data redundancy.

 With reduced data redundancy such type of data inconsistency can be eliminated.

 This results in improved data consistency.

Data Access

 DBMS utilizes a variety of techniques to retrieve data.

 Required data can be retrieved by providing appropriate query to the DBMS.

 Thus, data can be accessed in convenient and efficient manner.

9

Data Integrity

 Data in database must be correct and consistent.

 So, data stored in database must satisfy certain types of constraints (rules).

 DBMS provides different ways to implement such type of constraints (rules).

 This improves data integrity in a database.

Data Security

 Database should be accessible to user in a limited way.

 DBMS provides way to control the access to data for different user according to their

requirement.

 It prevents unauthorized access to data.

 Thus, security can be improved.

Concurrent Access

 Multiple users are allowed to access data simultaneously.

 Concurrent access to centralized data can be allowed under some supervision.

 This results in better performance of system and faster response.

Guaranteed Atomicity

 Any operation on database must be atomic. This means, operation must be executed

either 100% or 0%.

 This type of atomicity is guaranteed in DBMS.

List and explain the applications of DBMS.

Airlines and railways

 Airlines and railways use online databases for reservation, and for displaying the schedule

information.

Banking

 Banks use databases for customer inquiry, accounts, loans, and other transactions.

Education

 Schools and colleges use databases for course registration, result, and other information.

Telecommunications

 Telecommunication departments use databases to store information about the

communication network, telephone numbers, record of calls, for generating monthly bills,

etc.

Credit card transactions

 Databases are used for keeping track of purchases on credit cards in order to generate

monthly statements.

E-commerce

 Integration of heterogeneous information sources (for example, catalogs) for business

activity such as online shopping, booking of holiday package, consulting a doctor, etc.

Health care information systems and electronic patient record

 Databases are used for maintaining the patient health care details in hospitals.

10

Digital libraries and digital publishing

 Databases are used for management and delivery of large bodies of textual and

multimedia data.

Finance

 Databases are used for storing information such as sales, purchases of stocks and bonds

or data useful for online trading.

Sales

 Databases are used to store product, customer and transaction details.

Human resources

 Organizations use databases for storing information about their employees, salaries,

benefits, taxes, and for generating salary checks.

Describe functions (responsibility, roles, and duties) of DBA to handle DBMS.

DBA

 The full name of DBA is Database Administrator.

 Database Administrator is a person in the organization who controls the design and the

use of database.

Functions or Responsibilities of DBA are as under:

Schema Definition

 DBA defines the logical schema of the database.

 A schema refers to the overall logical structure of the database.

 According to this schema, database will be designed to store required data for an

organization.

Storage Structure and Access Method Definition

 DBA decides how the data is to be represented in the database.

 Based on this, storage structure of the database and access methods of data is defined.

Defining Security and Integrity Constraints

 DBA decides various security and integrity constraints.

 DDL (Data Definition Language) provides facilities to specifying such constraints.

Granting of Authorization for Data Access

 The DBA determines which user needs access to which part of the database.

 According to this, various types of authorizations (permissions) are granted to different

users.

 This is required to prevent unauthorized access of a database.

Liaison with Users

 DBA is responsible to provide necessary data to user.

 User should be able to write the external schema, using DDL (Data Definition Language).

Assisting Application Programmers

 DBA provides assistance to application programmers to develop application programs.

11

Monitoring Performance

 The DBA monitors performance of the system.

 The DBA ensures that better performance is maintained by making change in physical or

logical schema if required.

Backup and Recovery

 Database should not be lost or damaged.

 The task of DBA is to backing up the database on some storage devices such as DVD,

CD or Magnetic Tape or remote servers.

 In case of failures, such as flood or virus attack, Database is recovered from this backup.

Explain three levels ANSI SPARC Database System. OR

Explain three level Data abstraction.

The ANSI SPARC architecture divided into three levels:

1) External level

2) Conceptual level

3) Internal level

Externa

l

Level

Conceptua

l Level

Interna

l

Level

Internal Level
Three levels ANSI SPARC Database System

 This is the lowest level of the data abstraction.

 It describes how the data are actually stored on storage devices.

 It is also known as a physical level.

 The internal view is described by internal schema.

 Internal schema consists of definition of stored record, method of representing the data

field and access method used.

Conceptual Level

 This is the next higher level of the data abstraction.

View A

Conceptual View

View B View C

Internal View

12

 It describes what data are stored in the database and what relationships exist among those

data.

 It is also known as a logical level.

 Conceptual view is defined by conceptual schema. It describes all records and

relationship.

External Level

 This is the highest level of data abstraction.

 It is also known as view level.

 It describes only part of the entire database that a particular end user requires.

 External view is describes by external schema.

 External schema consists of definition of logical records, relationship in the external view

and method of deriving the objects from the conceptual view.

 This object includes entities, attributes and relationship.

Explain Mapping. OR

Explain external and internal mapping. OR

What is mapping? Describe type of mapping.

Mapping

 The process of transforming requests and results between the three levels is called

mapping.

Types of Mapping

 Conceptual/Internal Mapping

 External/Conceptual Mapping

Conceptual/Internal Mapping

 It relates conceptual schema with internal schema.

 It defines correspondence between the conceptual schema and the database stored in

physical devices.

 It specifies how conceptual records and fields are presented at the internal level.

 If the structure of stored database is changed, then conceptual/internal mapping must be

changed accordingly and conceptual schema can remain invariant.

 There could be one mapping between conceptual and internal levels.

External/Conceptual Mapping

 It relates each external schema with conceptual schema.

 It defines correspondence between a particular external view and conceptual schema.

 If the structure of conceptual schema is changed, then external/conceptual mapping must be

changed accordingly and external schema can remain invariant.

 There could be several mappings between external and conceptual levels.

13

Explain Data Independence.

Data Independence

 Data independency is the ability to modify a schema definition in one level without

affecting a schema definition in the next higher level.

Types of data independence

 Physical data independence

 Logical data independence

Physical data independence

 Physical data independence allows changing in physical storage devices or organization

of file without change in the conceptual view or external view.

 Modifications at the internal level are occasionally necessary to improve performance.

 Physical data independence separates conceptual level from the internal level.

 It is easy to achieve physical data independence.

Logical data independence

 Logical data independence is the ability to modify the conceptual schema without

requiring any change in application programs.

 Conceptual schema can be changed without affecting the existing external schema.

 Modifications at the logical level are necessary whenever the logical structure of the

database is altered.

 Logical data independence separates external level from the conceptual view.

 It is difficult to achieve logical data independence.

Explain Data Abstraction in DBMS.

 Database systems are made-up of complex data structures.

 To ease the user interaction with database, the developers hide internal irrelevant details

from users. This process of hiding irrelevant details from user is called data abstraction.

Explain different database users.

There are four different database users.

Application programmers

 These users are computer professionals who write application programs using some tools.

E.g. Software developers

Sophisticated users

 These users interact with system without writing program. They form their request in a

database query language. E.g. Analyst.

Specialized users

 These users write specialized database applications that do not fit into the traditional data

processing framework. E.g. Database Administrator.

Naive users

 These users are unsophisticated users who have very less knowledge of database system.

14

 These users interact with the system by using one of the application programs that have

been written previously.

 Examples, e.g. Clerk in bank

Differentiate the DA and DBA.

DA (Data Administrator) DBA (Database Administrator)

The data administrator is a person in the

organization who controls the data of the

database.

The database administrator is a person in the

organization who controls the design and the

use of the database.

DA determines what data to be stored in

database based on requirements of the

organization.

DBA provides necessary technical support for

implementing a database.

DA is involved more in the requirements

gathering, analysis, and design phases.

DBA is involved more in the design,

development, testing and operational phases.

DA is a manager or some senior level person

in an organization who understands

organizational requirements with respect to

data.

DBA is a technical person having knowledge

of database technology.

DA does not need to be a technical person, but

any kind of knowledge about database

technology can be more beneficiary.

DBA does not need to be a business person,

but any kind of knowledge about a

functionality of an organization can be more

beneficiary.

DA is a business focused person, but, he/she

should understand more about the database

technology.

DBA is a technically focused person, but,

he/she should understand more about the

business to administer the databases

effectively.

Explain Database System Architecture.

Components of a DBMS

These functional units of a database system can be divided into two parts:

1. Query Processor Units (Components)

2. Storage Manager Units

Query Processor Units:

Query processor unit deal with execution of DDL (Data Definition Language) and DML (Data

Manipulation Language) statements.

 DDL Interpreter — Interprets DDL statements into a set of tables containing metadata.

 DML Compiler — Translates DML statements into low level instructions that the

query evaluation engine understands.

 Embedded DML Pre-compiler — Converts DML statements embedded in an

application program into normal procedure caIls in the host language.

 Query Evaluation Engine — Executes low level instructions generated by DML

compiler.

15

Storage Manager Units:

Storage manager units provide interface between the low level data stored in database and

the application programs & queries submitted to the system.

 Authorization Manager — Checks the authority of users to access data.

 Integrity Manager — Checks for the satisfaction of the integrity constraints.

 Transaction Manager — Preserves atomicity and controls concurrency.

 File Manager — Manages allocation of space on disk storage.

 Buffer Manager — Fetches data from disk storage to memory for being used.

In addition to these functional units, several data structures are required to implement physical

storage system. These are described below:

 Data Files — To store user data.

 Data Dictionary and System Catalog — To store metadata. It is used heavily, almost

for each and every data manipulation operation. So, it should be accessed efficiently.

 Indices — To provide faster access to data items.

 Statistical Data — To store statistical information about the data in the database. This

information is used by the query processor to select efficient ways to execute a query.

16

17

Explain database system 3 tier architecture with clear diagram in detail.

 Most widely used architecture is 3-tier architecture.

 3-tier architecture separates it tier from each other on basis of users.

client

server

Database (Data) Tier
2 tier v/s 3 tier architecture

 At this tier, only database resides.

 Database along with its query processing languages sits in layer-3 of 3-tier architecture.

 It also contains all relations and their constraints.

Application (Middle) Tier

 At this tier, the application server and program, which access database, resides.

 For a user this application tier works as abstracted view of database.

 Users are unaware of any existence of database beyond application.

 For database-tier, application tier is the user of it.

 Database tier is not aware of any other user beyond application tier.

 This tier works as mediator between the two.

User (Presentation) Tier

 An end user sits on this tier.

 From a user’s aspect, this tier is everything.

 He/she doesn't know about any existence or form of database beyond this layer.

 At this layer multiple views of database can be provided by the application.

 All views which are generated by an application, resides in application tier.

Presentation Tier

Database Tier

Application Tier

user

 application client

network

 application server

 database system

2 – Data Models

J

Define the following terms.

Entity

 An entity is a thing or object or person in the real world that is distinguishable from all
other object.

 E.g. book, student, employee, college etc…

Entity sets

 An entity set is a set of entities of same type that share the same properties or attributes.

 E.g. the set of all students in a college can be defined as entity set student.

Relationship

 Relationship is an association (connection) between several entities.

 Relationship between 2 entities is called binary relationship.

 E.g. book is issued by student where book and student are entities and issue is relation.

Relationship set

 Relationship set is a set of relationships of the same type.

Attributes

 Attributes are properties hold by each member of an entity set.

 E.g. entity is student and attributes of student are enrollmentno, name, address, cpi etc

Types of attributes

 Simple attribute: It cannot be divided into subparts. E.g. cpi, rollno

 Composite attribute: It can be divided into subparts. E.g. name (first-name, middle-

name, last-name), address.

 Single valued attribute: It has single data value. E.g. enrollmentno, birthdate

 Multi valued attribute: It has multiple data value. E.g. phoneno (may have multiple
phones).

 Stored attribute: It’s value is stored manually in database. E.g. birthdate

 Derived attribute: It’s value is derived or calculated from other attributes. E.g. age (can

be calculated using current date and birthdate).

Descriptive attributes

 A relationship may also have attributes like an entity. These attributes are called
descriptive attributes.

 E.g. Student gets degree certificate on 14th March 2011. Student and Degree are entities,
gets certificate is relation and certificate date is an attribute of relationship.

2 – Data Models

J

student degree certificate

is prerequisite for

subject

student-name

student-id

Issue date

Branch certi-no name

issue

Recursive relationship set

 The same entity set participates in a relationship set more than once then it is called
recursive relationship set.

 E.g. an employee entity participated in relationship under with department entity as an

employee as well manager also.

Degree of relationship

 The degree of a relationship is the number of entity types that participate in the
relationship.

 The three most common relationships in ER models are Unary, Binary and Ternary.
 A unary relationship is when both participant entities in the relationship are the same

entity.

 Example: Subjects may be prerequisites for other subjects.

 A binary relationship is the relationship between two different entities.

 The University might need to record which teachers taught which subjects.

 teaches

 A ternary relationship is the relationship between three different entities.

 The University might need to record which teachers taught which subjects in which
courses.

subject teacher

2 – Data Models

J

customer-name customer-address

customer-id customer-city loan-no amount

borrower loan customer

Explain various mapping cardinality (cardinality constraint).

Mapping cardinality (cardinality constraints)

 It represents the number of entities of another entity set which are connected to an entity
using a relationship set.

 It is most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality must be one of the following types:

 One to one

 One to many

 Many to one

 Many to many

One-to-one relationship

A B

A1 B1

A2 B2

A3 B3

A4 B4

s

 An entity in A is associated with at most (only) one entity in B and an entity in B is

associated with at most (only) one entity in A.

teaches

course

subject teacher

 Jaipur Engineering College & Research Center, Jaipur

loan-no amount

loan

A1 B1

A2 B2

A3 B3

A4 B4

 A customer is connected with only one loan using the relationship borrower and a loan is
connected with only one customer using borrower.

One-to-many relationship

A B

 An entity in A is associated with any number (zero or more) of entities in B and an entity

in B is associated with at most (only) one entity in A.

 In the one-to-many relationship a loan is connected with only one customer using borrower

and a customer is connected with more than one loans using borrower.

customer-name customer-address

customer-id customer-city

borrower customer

2 – Data Models

J

A1 B1

A2 B2

A3 B3

A4 B4

customer-name customer-address

customer-id customer-city loan-no amount

borrower customer loan

A1 B1

A2 B2

A3 B3

A4 B4

Many-to-one relationship

A B

 An entity in A is associated with at most (only) one entity in B and an entity in B is
associated with any number (zero or more) of entities in A.

 In a many-to-one relationship a loan is connected with more than one customer using
borrower and a customer is connected with only one loan using borrower.

Many-to-many relationship

A B

2 – Data Models

J

loan-no amount

loan

customer-name customer-address

customer-id customer-city

borrower customer

 An entity in A is associated with any number (zero or more) of entities in B and an entity
in B is associated with any number (zero or more) of entities in A.

 A customer is connected with more than one loan using borrower and a loan is connected
with more than one customer using borrower.

Explain various participation constraints.

Participation constraints

 It specifies the participation of an entity set in a relationship set.

 There are two types participation constraints

 Total participation

 Partial participation

Total participation

 In total participation, every entity in the entity set participates in at least one relationship
in the relationship set.

 It specifies that every entity in super class must be member of some of its sub class.
 E.g. participation of loan in borrower is total because every loan must be connected to a

customer using borrower.

 It is indicated by double line.

Partial participation

 In partial participation, some entities may not participate in any relationship in the

relationship set.

 It specifies that an entity may not belong to any sub class.

 E.g. participation of customer in borrower is partial because every customer is not
connected to loan using borrower.

 It is indicated by single line.

2 – Data Models

J

payment-date

loan-no amount payment-no loan-amount

loan-payment

Strong Entity
Weak Entity Relationship Weak Entity

 loan payment

Partial Participation Total Participation

Explain weak entity set with the help of example.

Weak entity set

 An entity set that does not have a primary key is called weak entity set.

 The existence of a weak entity set depends on the existence of a strong entity set.

 Weak entity set is indicated by double rectangle.

 Weak entity relationship set is indicated by double diamond.
 The discriminator (partial key) of a weak entity set is the set of attributes that distinguishes

between all the entities of a weak entity set.

 The primary key of a weak entity set is created by combining the primary key of the strong

entity set on which the weak entity set is existence dependent and the weak entity set’s

discriminator.

 We underline the discriminator attribute of a weak entity set with a dashed line.

 E.g. in below fig. there are two entities loan and payment in which loan is strong entity set
and payment is weak entity set.

 Payment entity has payment-no which is discriminator.

 Loan entity has loan-no as primary key.

 So primary key for payment is (loan-no, payment-no).

customer-name customer-address

customer-id customer-city loan-no amount

borrower loan customer

2 – Data Models

J

Explain the Superclass and Subclass in E-R diagram with the help of example.

Superclass

 A superclass is an entity from which another entity can be derived.

 A superclass is a generic entity set which has a relationship with one or more subclasses.

 For example, an entity set account has two subsets saving_account and
current_account. So an account is superclass.

 Each member of subclass is also a member of superclass. So any saving account or a
current account is a member of entity set account.

Subclass

 A subclass is an entity that is derived from another entity.
 A class is a subset of entities in an entity set which has attributes distinct from those in

other subset.

 For example, entities of the entity set account are grouped in to two classes

saving_account and current_account. So saving_account and current_account are

subclasses.

superclass

sublass

Explain the difference between Specialization and

Generalization in E-R diagram.

Specialization Generalization

It will work in Top-down approach. It will work in Bottom-up approach

The process of creating sub-groupings within an

entity set is called specialization.

The process of creating groupings from

various entity sets is called generalization.

Specialization is a process of taking a sub set of

higher level entity set to form a lower-level

entity set.

Generalization is a process of taking the

union of two or more lower-level entity sets

to produce a higher-level entity set.

Specialization starts from a single entity set; it
creates different low-level entity set using some

different features.

Generalization starts from the number of
entity sets and creates high-level entity set

using some common features.

saving account current account

account

2 – Data Models

J

Explain Specialization and Generalization in E-R diagram with example.

 For all practical purposes, generalization and specialization is inversion of each other.

Specialization

 A top-down design process that creates subclasses based on some different characteristics

of the entities in the superclass.

 An entity set may include sub groupings of entities that are distinct in some way from

other entities in the set.

 For example, a subset of entities within an entity set may have attributes that are not shared

by all the entities in the entity set.

 Consider an entity set person, with attributes name, street and city.

 A person may be further classified as one of the following:

 customer

 Employee

 For example, customer entities may be described further by the attribute customer-id,

credit-rating and employee entities may be described further by the attributes employee-id

and salary.

 The process of designating sub groupings within an entity set is called specialization. The

specialization of person allows us to distinguish among persons according to whether they

are employees or customers.

 Now again, employees may be further classified as one of the following:

 officer

 teller

 secretary

 Each of these employee types is described by a set of attributes that includes all the
attributes of entity set employee plus additional attributes.

 For example, officer entities may be described further by the attribute office-number, teller

entities by the attributes station-number and hours-per-week, and secretary entities by the

attribute hours-per-week.

 In terms of an E-R diagram, specialization is depicted by a triangle component labeled

ISA.

 The label ISA stands for “is a” and represents, for example, that a customer “is a”

person.

 The ISA relationship may also be referred to as a superclass subclass relationship.

Generalization

 A bottom-up design process that combines number of entity sets that have same features

into a higher-level entity set.

 The design process proceed in a bottom-up manner, in which multiple entity sets are

synthesized into a higher level entity set on the basis of common features.

2 – Data Models

J

ISA

teller secretary officer

customer

 The database designer may have to first identify a customer entity set with the attributes

name, street, city, and customer-id, and an employee entity set with the attributes name,

street, city, employee-id, and salary.

 But customer entity set and the employee entity set have some attributes common. This

commonality can be expressed by generalization, which is a containment relationship that

exists between a higher level entity set and one or more lower level entity sets.

 In our example, person is the higher level entity set and customer and employee are lower
level entity sets.

 Higher level entity set is called superclass and lower level entity set is called subclass. So

the person entity set is the superclass of two subclasses customer and employee.

 Differences in the two approaches may be characterized by their starting point and overall

goal.

Explain types of constraints on specialization and

Generalization.

 There are mainly two types of constraints apply to a specialization/generalization:

Disjoint Constraint

 Describes relationship between members of the superclass and subclass and indicates
whether member of a superclass can be a member of one, or more than one subclass.

name street city

person

ISA credit-rating salary

employee

officer-number hours-worked

station-number hours-worked

2 – Data Models

J

 It may be disjoint or non-disjoint (overlapping).

1. Disjoint Constraint

 It specifies that the subclasses of the specialization must be disjointed (an entity can be a
member of only one of the subclasses of the specialization).

 Specified by ‘d’ in EER diagram or by writing disjoint.

2. Non-disjoint (Overlapping)

 It specifies that is the same entity may be a member of more than one subclass of the
specialization.

 Specified by ‘o’ in EER diagram or by writing overlapping.

Participation Constraint

 Determines whether every member in super class must participate as a member of a
subclass or not.

 It may be total (mandatory) or partial (optional).

1. Total (Mandatory)

 Total specifies that every entity in the superclass must be a member of some subclass in the
specialization.

 Specified by a double line in EER diagram.

2. Partial (Optional)

 Partial specifies that every entity in the super class not belong to any of the subclass of
specialization.

 Specified by a single line in EER diagram.

 Based on these two different kinds of constraints, a specialization or generalization can be

one of four types

 Total, Disjoint

 Total, Overlapping

 Partial, Disjoint

 Partial, Overlapping.

Explain aggregation in E-R diagram.

 The E-R model cannot express relationships among relationships.

 When would we need such a thing at that time aggregation is used.

 Consider a database with information about employees who work on a particular project
and use a number of machines doing that work.

2 – Data Models

J

name id
hours

number

work

uses

project emp

id

machinery

name id
hours

number

work

uses

uses

machinery

work

project emp

work

Fig. A Fig. B

 Relationship sets work and uses could be combined into a single set. We can combine

them by using aggregation.

 Aggregation is an abstraction through which relationships are treated as higher-level

entities.

 For our example, we treat the relationship set work and the entity sets employee and
project as a higher-level entity set called work.

 Transforming an E-R diagram with aggregation into tabular form is easy. We create a
table for each entity and relationship set as before.

 The table for relationship set uses contains a column for each attribute in the primary
key of machinery and work.

Explain the steps to reduce the ER diagram to ER database schema.

Step 1: Entities and Simple Attributes:

 An entity type within ER diagram is turned into a table. You may preferably keep the

same name for the entity or give it a sensible name but avoid DBMS reserved words as

well as avoid the use of special characters.

 Each attribute turns into a column (attribute) in the table. The key attribute of the entity is

the primary key of the table which is usually underlined. It can be composite if required

but can never be null.

id

machinery

2 – Data Models

J

PersonID
Phone

Name
Address Email

Person

PersonID Person

 It is highly recommended that every table should start with its primary key attribute
conventionally named as TablenameID.

 Consider the following simple ER diagram:

 The initial relational schema is expressed in the following format writing the table names
with the attributes list inside a parentheses as shown below

 Persons(personid, name, address, email)

Person

personid name address Email

 Persons and Phones are Tables and personid, name, address and email are Columns
(Attributes).

 personid is the primary key for the table : Person

Step 2: Multi-Valued Attributes

 A multi-valued attribute is usually represented with a double-line oval.

 If you have a multi-valued attribute, take that multi-valued attribute and turn it into a new
entity or table of its own.

 Then make a 1:N relationship between the new entity and the existing one.

 In simple words.

 1. Create a table for that multi-valued attribute.

 2. Add the primary (id) column of the parent entity as a foreign key within the

new table as shown below:

 First table is Persons (personid, name, address, email)

 Second table is Phones (phoneid , personid, phone)

 personid within the table Phones is a foreign key referring to the personid of Persons

Phone

phoneid personid phone

Phone

2 – Data Models

J

Name Wife

Persons
personid name address email

Wife
wifeid name personid

Have

PersonID
Phone

Name
Address Email

Person

Step 3: 1:1 Relationship

 Let us consider the case where the Person has one wife. You can place the primary key of

the wife table wifeid in the table Persons which we call in this case Foreign key as shown

below.

 Persons(personid, name, address, email , wifeid)

 Wife (wifeid , name)

 Or vice versa to put the personid as a foreign key within the wife table as shown below:

 Persons(personid, name, address, email)

 Wife (wifeid , name , personid)

 For cases when the Person is not married i.e. has no wifeID, the attribute can set to
NULL

OR

Wife

wifeid name

Persons

personid name address email wifeid

WifeID

2 – Data Models

J

Name Country

HouseID House Name

Address
Has

PersonID
Phone

Name
Address Email

Person

Has

PersonID
Phone

Name
Address Email

Person

Step 4: 1:N Relationships

 For instance, the Person can have a House from zero to many, but a House can have only
one Person.

 In such relationship place the primary key attribute of table having 1 mapping in to the
table having many cardinality as a foreign key.

 To represent such relationship the personid as the Parent table must be placed within the

Child table as a foreign key.

 It should convert to :

 Persons(personid, name, address, email)

 House (houseid, name , address, personid)

Step 5: N:N Relationships

House
houseid name address personid

Persons
personid name address email

CountryID

2 – Data Models

J

 For instance, The Person can live or work in many countries. Also, a country can have

many people. To express this relationship within a relational schema we use a separate

table as shown below:

 It should convert into :

 Persons(personid, name, address, email)

 Countries (countryid, name)

 HasRelat (hasrelatid, personid , countryid)

HasRelat

hasrelatid personid Countryid

What is E-R model (Entity-Relationship) model (diagram) also draw various symbols using

in E-R diagram.

E-R model

 Entity-relationship (ER) model/diagram is a graphical representation of entities and their
relationships to each other with their attributes.

Countries

countryid name

Persons

personid name address email

2 – Data Models

J

professor student

department

What is a Database Models?

 A database model is a type of data model that defines the logical structure of a database.

 It determine how data can be stored, accessed and updated in a database management

system

 The most popular example of a database model is the relational model, which uses a table-

based format.

 Type of Database Models are:

1. Hierarchical Model

2. Network Model

3. Entity-relationship Model

4. Relational Model

5. Object-oriented database model

1. Hierarchical Model

 The hierarchical model organizes data into a tree-like structure, where each record has a

single parent or root.

2 – Data Models

J

loan-no amount

loan

A

B C

D E F

customer-name customer-address

customer-id customer-city

borrower customer

 The hierarchy starts from the Root data, and expands like a tree, adding child nodes to the

parent nodes.

 In hierarchical model, data is organized into tree-like structure with one-to-many

relationship between two different types of data, for example, one department can have

many professors and many students.

2. Network Model

 This is an extension of the hierarchical model, allowing many-to-many relationships in a

tree-like structure that allows multiple parents.

3. Entity-relationship Model

 In this database model, relationships are created by dividing object of interest into entity

and its characteristics into attributes.

4. Relational Model

 In this model, data is organized in two-dimensional tables and the relationship is

maintained by storing a common attribute.

2 – Data Models

J

Rno SubjectID Marks

1 1 98

1 2 95

2 1 95

2 2 90

5. Object-oriented database model

 This data model is another method of representing real world objects.

 It considers each object in the world as objects and isolates it from each other.

 It groups its related functionalities together and allows inheriting its functionality to other

related sub-groups.

What is Integrity Constraints?

 Integrity constraints are a set of rules. It is used to maintain the quality of information.

 Integrity constraints ensure that the data insertion, updating, and other processes have to be

performed in such a way that data integrity is not affected.

 Thus, integrity constraint is used to guard against accidental damage to the database.

 Various Integrity Constraints are:

1. Check

 This constraint defines a business rule on a column. All the rows in that

column must satisfy this rule.

 Limits the data values of variables to a specific set, range, or list of values.

 The constraint can be applied for a single column or a group of columns.

 E.g. value of SPI should be between 0 to 10.

2. Not null

 This constraint ensures all rows in the table contain a definite value for the

column which is specified as not null. Which means a null value is not

allowed.

 E.g. name column should have some value.

SubjectID SubjectName Teacher

1 DBMS Patel
2 DS Shah

Rno StudentName Age

1 Raj 21
2 Meet 22

2 – Data Models

J

3. Unique

 This constraint ensures that a column or a group of columns in each row have

a distinct (unique) value.

 A column(s) can have a null value but the values cannot be duplicated.

 E.g enrollmentno column should have unique value.

4. Primary key

 This constraint defines a column or combination of columns which uniquely

identifies each row in the table.

 Primary key = Unique key + Not null

 E.g enrollmentno column should have unique value as well as can’t be null.

5. Foreign key

 A referential integrity constraint (foreign key) is specified between two tables.

 In the referential integrity constraints, if a foreign key column in table 1 refers

to the primary key column of table 2, then every value of the foreign key

column in table 1 must be null or be available in primary key column of table 2.

3 – Relational Query Language

Explain keys.

Super key

 A super key is a set of one or more attributes (columns) that allow us to identify each

tuple (records) uniquely in a relation (table).

 For example, the enrollment_no, roll_no, semester with department_name of a student is

sufficient to distinguish one student tuple from another. So {enrollment_no} and

{roll_no, semester, department_name} both are super key.

Candidate key

 Candidate key is a super key for which no proper subset is a super key.

 For example, combination of roll_no, semester and department_name is sufficient to

distinguish one student tuple from another. But either roll_no or semester or

department_name alone or combination of any two columns is not sufficient to

distinguish one student tuple from another. So {roll_no, semester, department_name} is

candidate key.

 Every candidate key is super key but every super key may not candidate key.

Primary key

 A Primary key is a candidate key that is chosen by database designer to identify tuples

uniquely in a relation.

Alternate key

 An Alternate key is a candidate key that is not chosen by database designer to identify

tuples uniquely in a relation.

Foreign key

 A foreign key is a set of one or more attributes whose values are derived from the

primary key attribute of another relation.

What is relational algebra? Explain relational algebraic

operation.

 Relational algebra is a language for expressing relational database queries.

 Relation algebra is a procedural query language.

 Relational algebraic operations are as follows:

Selection:-

 Operation: Selects tuples from a relation that satisfy a given condition.

It is used to select particular tuples from a relation.

It selects particular tuples but all attribute from a relation.

 Symbol: σ (Sigma)

 Notation: σ(condition) <Relation>

 Operators: The following operators can be used in a condition.

=, !=, <, >, <=,>=, Λ(AND), ∨(OR)

3 – Relational Query Language

 Consider following table

Student

Rno Name Dept CPI

101 Ramesh CE 8

108 Mahesh EC 6

109 Amit CE 7

125 Chetan CI 8

138 Mukesh ME 7

128 Reeta EC 6

133 Anita CE 9

 Example: Find out all the students of CE department.

σDept=“CE” (Student)

 Output: The above query returns all tuples which contain CE as department name.

Output of above query is as follows

Student

Rno Name Dept CPI

101 Ramesh CE 8

109 Amit CE 7

133 Anita CE 9

Projection:-

 Operation: Selects specified attributes of a relation.

It selects particular attributes but all unique tuples from a relation.

 Symbol: ∏ (Pi)

 Notation: ∏ (attribute set) <Relation>

 Consider following table

Student

Rno Name Dept CPI

101 Ramesh CE 8

108 Mahesh EC 6

109 Amit CE 7

125 Chetan CI 8

138 Mukesh ME 7

128 Reeta EC 6

133 Anita CE 9

 Example: List out all students with their roll no, name and department name.

3 – Relational Query Language

∏Rno, Name, Dept (Student)

3 – Relational Query Language

 Output: The above query returns all tuples with three attributes roll no, name and

department name.

Output of above query is as follows

Student

Rno Name Dept

101 Ramesh CE

109 Amit CE

125 Chetan CI

138 Mukesh ME

133 Anita CE

 Example: List out students of CE department with their roll no, name and department.

∏Rno, Name, Dept (σDept=“CE” (Student))

 Output: The above query returns tuples which contain CE as department with three

attributes roll no, name and department name.

Output of above query is as follows

Student

Rno Name Dept

101 Ramesh CE

109 Amit CE

133 Anita CE

Division:-

 Operation: The division is a binary relation that is written as R1 ÷ R2.

 Condition to perform operation: Attributes of R2 is proper subset of attributes of R1.

 The output of the division operator will have attributes =

All attributes of R1 – All attributes of R2

 The output of the division operator will have tuples =

Tuples in R1, which are associated with the all tuples of R2

 Symbol: ÷

 Notation: R1 ÷ R2

 Consider following table

Work

Student Task

Shah Database1

Shah Database2

Shah Compiler1

Vyas Database1

Vyas Compiler1

Patel Database1

Patel Database2

Project

Task

Database1

Database2

3 – Relational Query Language

Emp

Empid Empname Deptname

S01 Manisha Finance

S02 Anisha Sales

S03 Nisha Finance

Dept

Deptname Manager

Finance Arun

Sales Rohit

Production Kishan

 Example: Find out all students having both tasks Database1 as well as Database2.

∏(student, Task)(Work) ÷ ∏(Task)(Project)

 Output: It gives name of all students whose task is both Database1 as well as Database2.

Output of above query is as follows

Student

Shah

Patel

Cartesian product:-

 Operation: Combines information of two relations.

It will multiply each tuples of first relation to each tuples of second relation.

It is also known as Cross product operation and similar to mathematical

Cartesian product operation.

 Symbol: X (Cross)

 Notation: Relation1 X Relation2

 Resultant Relation :

 If relation1 and relation2 have n1 and n2 attributes respectively, then resultant

relation will have n1 + n2 attributes from both the input relations.

 If both relations have some attribute having same name, it can be distinguished by

combing relation-name.attribute-name.

 If relation1 and relation2 have n1 and n2 tuples respectively, then resultant

relation will have n1*n2 tuples, combining each possible pair of tuples from both

the input relations.

R R × S

A 1

B 2

D 3

S

A 1

D 2

E 3

 Consider following table

A 1 A 1
A 1 D 2

A 1 E 3

B 2 A 1

B 2 D 2

B 2 E 3

D 3 A 1

D 3 D 2

D 3 E 3

3 – Relational Query Language

Emp
Empid Empname Deptname

S01 Manisha Finance

S02 Anisha Sales

S03 Nisha Finance

Dept

Deptame Manager

Finance Arun

Sales Rohit

Production Kishan

 Example:

Emp ×

Dept

Empid Empname Emp.Deptname Dept.Deptname Manager

S01 Manisha Finance Finance Arun

S01 Manisha Finance Sales Rohit

S01 Manisha Finance Production Kishan

S02 Anisha Sales Finance Arun

S02 Anisha Sales Sales Rohit

S02 Anisha Sales Production Kishan

S03 Nisha Finance Finance Arun

S03 Nisha Finance Sales Rohit

S03 Nisha Finance Production Kishan

Join:-

Natural Join Operation (⋈)

 Operation: Natural join will retrieve information from multiple relations. It works in

three steps.

1. It performs Cartesian product

2. Then it finds consistent tuples and inconsistent tuples are deleted

3. Then it deletes duplicate attributes

 Symbol: ⋈

 Notation: Relation1 ⋈ Relation2

 Consider following table

 Example:

 Empname, Manager (Emp ⋈ Dept)

Empname Manager
Manisha Arun

Anisha Rohit

Nisha Arun

Emp ⋈ Dept

Empid Empname Deptname Manager
S01 Manisha Finance Arun

S02 Anisha Sales Rohit

S03 Nisha Finance Arun

To perform a natural join there must be
one common attribute (column) between
two relations.

3 – Relational Query Language

College

Name Id Department

Manisha S01 Computer

Anisha S02 Computer

Nisha S03 I.T.

Hostel

Name Hostel_name Room_no

Anisha Kaveri hostel K01

Nisha Godavari hostel G07

Isha Kaveri hostel K02

The Outer Join Operation

 In natural join some records are missing if we want that missing records than we have to

use outer join.

 The outer join operation can be divided into three different forms:

1. Left outer join ()

2. Right outer join ()

3. Full outer join ()

 Consider following tables

Left outer join ()

 The left outer join returns all the tuples of the left relation even through there is no

matching tuple in the right relation.

 For such kind of tuples having no matching, the attributes of right relation will be padded

with null in resultant relation.

 Example : College Hostel

College
Hostel

Name Id Department Hostel_name Room_no

Manisha S01 Computer Null Null

Anisha S02 Computer Kaveri hostel K01

Nisha S03 I.T. Godavari hostel G07

Right outer join ()

 The right outer join returns all the tuples of the right relation even though there is no

matching tuple in the left relation.

 For such kind of tuples having no matching, the attributes of left relation will be padded

with null in resultant relation.

 Example : College Hostel

College Hostel

Name Id Department Hostel_name Room_no

Anisha S02 Computer Kaveri hostel K01

Nisha S03 I.T. Godavari hostel G07

Isha Null Null Kaveri Hostel K02

3 – Relational Query Language

Full outer join ()

 The full outer join returns all the tuples of both of the relations. It also pads null values

whenever required.

 Example : College Hostel

College Hostel

Name Id Department Hostel_name Room_no

Manisha S01 Computer Null Null

Anisha S02 Computer Kaveri hostel K01

Nisha S03 I.T. Godavari hostel G07

Isha Null Null Kaveri Hostel K02

Set Operators

 Set operators combine the results of two or more queries into a single result.

 Condition to perform set operation:

 Both relations (queries) must be union compatible :

 Relations R and S are union compatible, if

 Both queries should have same (equal) number of columns, and

 Corresponding attributes should have the same data type.

 Types of set operators:

1. Union

2. Intersect (Intersection)

3. Minus (Set Difference)

Union

 Operation: Selects tuples those are in either or both of the relations.

 Symbol : U (Union)

 Notation : Relation1 U Relation2

 Example :

R S R U S

A 1

B 2

C 2
D 3

F 4

E 5

E 4

A 1

C 2

D 3

E 4

A 1

B 2

D 3

F 4

E 5

3 – Relational Query Language

Emp

Id Name

1 Manisha

2 Anisha

3 Nisha

Cst

Id Name

1 Manisha

2 Anisha

4 Isha

Emp

Id Name

1 Manisha

2 Anisha

3 Nisha

Cst

Id Name

1 Manisha

2 Anisha

4 Isha

 Consider following tables

 Example:

∏Name (Emp) U ∏Name (Cst)

Name

Manisha

Anisha

Nisha

Isha

Intersection

 Operation: Selects tuples those are common in both relations.

 Symbol : ∩ (Intersection)

 Notation : Relation1 ∩ Relation2

 Example

R S R ∩ S

 Example:

∏Name (Emp) ∩ ∏Name (Cst)

Name

Manisha

Anisha

A 1

D 3

A 1

C 2

D 3

E 4

A 1

B 2

D 3

F 4

E 5

3 – Relational Query Language

Emp

Id Name

1 Manisha

2 Anisha

3 Nisha

Cst

Id Name

1 Manisha

2 Anisha

4 Isha

Difference:-

 Operation: Selects tuples those are in first (left) relation but not in second (right)

relation.

 Symbol : — (Minus)

 Notation : Relation1 — Relation2

 Example :

R S R — S

 Example:

∏Name (Emp) - ∏Name (Cst)

Name

Nisha

∏Name (Cst) - ∏Name (Emp)

Name

Isha

Rename:-

 Operation: It is used to rename a relation or attributes.

 Symbol: ρ (Rho)

 Notation: ρA(B) Rename relation B to A.

ρA(X1,X2….Xn)(B) Rename relation B to A and its attributes to X1, X2, …., Xn.

B 2

F 4

E 5

A 1

C 2

D 3

E 4

A 1

B 2

D 3

F 4

E 5

3 – Relational Query Language

9

CPI

 Consider following table

Student

Rno Name Dept CPI

101 Ramesh CE 8

108 Mahesh EC 6

109 Amit CE 7

125 Chetan CI 8

138 Mukesh ME 7

128 Reeta EC 6

133 Anita CE 9

 Example: Find out highest CPI from student table.

∏CPI (Student) — ∏A.CPI (σ A.CPI<B.CPI (ρA (Student) X ρB (Student)))

 Output: The above query returns highest

CPI. Output of above query is as

follows

Aggregate Function:-

 Operation: It takes a more than one value as input and returns a single value as output

(result).

 Symbol: G

 Notation: G function (attribute) (relation)

 Aggregate functions: Sum, Count, Max, Min, Avg.

 Consider following table

Student

Rno Name Dept CPI

101 Ramesh CE 8

108 Mahesh EC 6

109 Amit CE 7

125 Chetan CI 8

138 Mukesh ME 7

128 Reeta EC 6

133 Anita CE 9

 Example: Find out sum of all students

CPI. G sum (CPI) (Student)

3 – Relational Query Language

Output: The above query returns sum of

CPI. Output of above query is as follows

3 – Relational Query Language

 Example: Find out max and min CPI.

G max (CPI), min (CPI) (Student)

Output: The above query returns sum of

CPI. Output of above query is as follows

max min

9 6

What is the difference between Open source and Commercial DBMS.

Open source DBMS Commercial DBMS

DBMS, which is available in the market at free

of cost.

DBMS, which is available in the market at a

certain price.

The code of open source DBMS product can be

viewed, shared or modified by the community.

The code of commercial DBMS product cannot

be view, share or modify by the community.

There are chances of malfunctioning with code

as source code is open.

The security is high and code is not accessible

to unauthorized person.

Examples: MySQL, MongoDB, SQLite etc Examples: Microsoft SQL Server, IBM Db2 etc

Consider following schema and represent given statements in relation algebra form.

* Branch(branch_name,branch_city)

* Account(branch_name, acc_no, balance)

* Depositor(customer_name, acc_no)

(i) Find out list of customer who have account at ‘abc’ branch.

∏customer_name (σbranch_name=“abc” (Depositor ⋈ Account))

(ii) Find out all customer who have an account in ‘Ahmedabad’ city and balance

is greater than 10,000.

∏customer_name (σ Branch.branch_city=“Ahmedabad” Λ σ Account.balance >10000 (Branch ⋈

Account ⋈ Depositor))

(iii) find out list of all branch name with their maximum balance.

∏branch_name , G max (balance) (Account)

sum

51

4 –Relational Database Design

Y X

Define functional dependency. OR

Explain different types of FD with the help of example.

Functional Dependency

 Let R be a relation schema having n attributes A1, A2, A3,…, An.

 Let attributes X and Y are two subsets of attributes of relation R.

 If the values of the X component of a tuple uniquely (or functionally) determine the

values of the Y component, then, there is a functional dependency from X to Y.

 This is denoted by X → Y.

 It is referred as: Y is functionally dependent on the X, or X functionally determines Y.

 The abbreviation for functional dependency is FD or fd.

 The set of attributes X is called the left hand side of the FD, and Y is called the right hand

side.

 The left hand side of the FD is also referred as determinant whereas the right hand side of

the FD is referred as dependent.

Diagrammatic representation

R:

Example

 Consider the relation Account(ano, balance, bname).

 In this relation ano can determines balance and bname. So, there is a functional

dependency from ano to balance and bname.

 This can be denoted by ano → {balance, bname}.

Account:

ano balance bname

Types of Functional Dependencies Full

Dependency

 In a relation, the attribute B is fully functional dependent on A if B is functionally

dependent on A, but not on any proper subset of A.

 Eg. {Roll_No, Department_Name, Semester} →SPI

Partial Dependency

 In a relation, the attribute B is partial functional dependent on A if B is functionally

dependent on A as well as on any proper subset of A.

 If there is some attribute that can be removed from A and the still dependency holds.

4 –Relational Database Design

 Eg. {Enrollment_No, Department_Name} → SPI

Transitive Dependency

 In a relation, if attribute(s) A→B and B→C, then C is transitively depends on A via B

(provided that A is not functionally dependent on B or C).

 Eg. Staff_No → Branch_No and Branch_No → Branch_Address

Trivial FD:

 X→Y is trivial FDif Y is a subset of X

 Eg.{Roll_No, Department_Name} → Roll_No

Nontrivial FD

 X→Y is nontrivial FDif Y is not a subset of X

 Eg.. {Roll_No, Department_Name} → Student_Name

List and explain Armstrong's axioms (inference rules).

 Let A, B, and C is subsets of the attributes of the relation R.

Reflexivity

 If B is a subset of A then A → B

Augmentation

 If A → B then AC → BC

Transitivity

 If A → B and B → C then A → C

Pseudo Transitivity

If A → B and BC → D then AC → D

Self-determination

 A → A

Decomposition

 If A → BC then A → B and A → C

Union

 If A → B and A → C then A → BC

Composition

 If A → B and C → D then A,C → BD

What is closure of a set of FDs? How to find closure of a set of FDs.

Closure of set of functional dependency (FDs)

 Given a set F set of functional dependencies, there are certain other functional

dependencies that are logically implied by F.

 E.g.: F = {A → B and B → C}, then we can infer that A → C

 The set of functional dependencies (FDs) that is logically implied by F is called the

closure of F.

 It is denoted by F+.

4 –Relational Database Design

Example-1

Suppose a relation R is given with attributes A, B, C, G, H and I.

Also, a set of functional dependencies F is given with following

FDs. F = {A → B, A → C, CG → H, CG → I, B → H}

Find Closure of F.

We have Using rule Derived FD

A → B and B → H Transitivity rule A → H

CG → H and CG → I Union rule CG → HI

A → C and CG → I Pseudo-transitivity rule AG → I

A → C and CG → H Pseudo-transitivity rule AG → H

 F+ = { A → H, CG → HI, AG → I, AG → H }

Example-2

Compute the closure of the following set F of functional dependencies for relational

schema R = (A, B, C, D, E, F):

F = (A → B, A → C, CD → E, CD → F, B → E).

We have Using rule Derived FD

A → B and A → C Union rule A → BC

CD → E and CD → F Union rule CD → EF

A → B and B → E Transitivity rule A → E

A → C and CD → E Pseudo- Transitivity rule AD → E

A → C and CD → F Pseudo- Transitivity rule AD → F

 F+ = { A → BC, CD → EF, A → E, AD → E, AD → F }

Example-3

Compute the closure of the following set F of functional dependencies for relational

schema R = (A, B, C, D, E):

F = (AB → C, D → AC, D → E).

We have Using rule Derived FD

D → AC Decomposition rule D → A and D → C

D → AC and D → E Union rule D → ACE

F+ = { D → A, D → C, D → ACE }

4 –Relational Database Design

What is closure of a set of attributes? Explain how (Write an algorithm) to find closure of a

set of attributes.

Closure of set of attributes

 Given a set of attributes α, the closure of α under F is the set of attributes that are

functionally determined by α under F.

 It is denoted by α+.

Algorithm

 Algorithm to compute α+, the closure of a under F

result = α;

while (changes to result) do

for each in F

do

begin

Example

end

if result then result = result

Consider the following relation schema Depositer_Account (cid, ano, acess_date, balance,

bname). For this relation, a set of functional dependencies F can be given as

F = { {cid, ano} → access_date and ano → {balance, bname} }

Find out the closure of {cid, ano} and ano.

Solution

 Find out { cid, ano }+

Step-1 :{ cid, ano }+ = { cid, ano }

Step-2 :{ cid, ano }+ = { cid, ano, acess_date } # {cid, ano} X+

{ cid, ano }+ = { cid, ano, acess_date, balance, bname } # ano

X+ Step-3 :{ cid, ano }+ = { cid, ano, acess_date, balance, bname }

So { cid, ano }+ = { cid, ano, acess_date, balance, bname }

 Find out ano+

Step-1 :ano+ = ano

Step-2 :ano+ = { ano, balance, bname } # ano

X+ Step-3 :ano+ = { ano, balance, bname }

So ano+ = { ano, balance, bname }

Given relation R with attributes A,B, C,D,E,F and set of FDs as A → BC, E → CF, B

→ E and CD → EF.

Find out closure {A, B}+ of the set of attributes.

Steps to find the closure {A, B}+

Step-1: result = AB

4 –Relational Database Design

Step-2: First loop

result = ABC # for A → BC, A result so result=result

BC result = ABC # for E→ CF, E result so result=result

result = ABCE # for B→ E, B result so result=result

E result = ABCE # for CD→ EF, CD result so

result=result

result before step2 is AB and after step 2 is ABCE which is different so repeat same as

step 2.

Step-3: Second loop

result = ABCE # for A → BC, A result so result=result

BC result = ABCEF # for E→ CF, E result so result=result

CF result = ABCEF # for B→ E, B result so result=result E

result = ABCEF # for CD→ EF, CD result so result=result

result before step3 is ABCE and after step 3 is ABCEF which is different so repeat same

as step 3.

Step-4: Third loop

result = ABCEF # for A → BC, A result so result=result

BC result = ABCEF # for E→ CF, E result so result=result

CF result = ABCEF # for B→ E, B result so result=result E

result = ABCEF # for CD→EF, CD result so result=result

result before step4 is ABCEF and after step 3 is ABCEF which is same so stop.

So Closure of {A, B}+ is {A, B, C, E, F}.

What is canonical cover? Consider following set F of functional dependencies on schema

R(A,B,C) and compute canonical cover for F.

A -> BC, B -> C, A -> B and AB -> C

Canonical cover

 A canonical cover of F is a minimal set of functional dependencies equivalent to F,

having no redundant dependencies or redundant parts of dependencies.

 It is denoted by Fc.

A canonical cover for F is a set of dependencies Fc such that:

 A canonical cover for F is a set of dependencies Fc such that

1) F logically implies all dependencies in Fc, and

2) Fc logically implies all dependencies in F, and

3) No functional dependency in Fc contains an extraneous attribute, and

4) Each left side of functional dependency in Fc is unique.

4 –Relational Database Design

Algorithm to find Canonical cover:

 To compute a canonical cover for F:

repeat

Step 1: Use the union rule to replace any dependencies in F

1 1 and 1 2 with 1 1 2

Step 2 : Find a functional dependency with an

extraneous attribute either in or in

If an extraneous attribute is found, delete it from

until F does not change

 Note: Union rule may become applicable after some extraneous attributes have been

deleted, so it has to be re-applied

Steps to find Canonical Cover:

 Given : R = (A, B, C) and F = {A → BC, B → C, A → B,

AB → C} Step 1: Combine A → BC and A → B

into A → BC

Set is now {A → BC, B → C, AB → C}

Step 2: A is extraneous in AB → C

Check if the result of deleting A from AB → C is implied by the other

dependencies

Yes: in fact, B → C is already

present. Set is now {A → BC, B →

C}

Step 3: C is extraneous in A → BC

Check if A → C is logically implied by A → B and the other

dependencies Yes: using transitivity on A → B and B → C.

Set is now {A → B and B → C}

Can use attribute closure of A in more complex cases

 The canonical cover is: A → B, B → C

What is decomposition? Explain different types of

decomposition.

Decomposition

 Decomposition is the process of breaking down given relation into two or more relations.

 Here, relation R is replaced by two or more relations in such a way that -

1. Each new relation contains a subset of the attributes of R, and

2. Together, they all include all tuples and attributes of R.

 Relational database design process starts with a universal relation schema R = {A1, A2,

A3,..., An), which includes all the attributes of the database. The universal relation states

that every attribute name is unique.

4 –Relational Database Design

Account

Ano Balance Bname

A01 5000 Vvn

A02 6000 Ksad

A03 7000 Anand

A04 8000 Ksad

A05 6000 Vvn

Branch

Bname Baddress

Vvn Mota bazaar, VVNagar

Ksad Chhota bazaar, Karamsad

Anand Nana Bazar, Anand

 Using functional dependencies, this universal relation schema is decomposed into a set

of relation schemas D = {R1, R2, R3,…,Rm}.

 Now, D becomes the relational database schema and D is referred as decomposition of R.

 Generally, decomposition is used to eliminate the pitfalls of the poor database design

during normalization process.

 For example, consider the relation Account_Branch given in figure:

Account_Branch

Ano Balance Bname Baddress

A01 5000 Vvn Mota bazaar, VVNagar

A02 6000 Ksad Chhota bazaar, Karamsad

A03 7000 Anand Nana bazaar, Anand

A04 8000 Ksad Chhota bazaar, Karamsad

A05 6000 Vvn Mota bazaar, VVNagar

 This relation can be divided with two different relations

1. Account (Ano, Balance, Bname)

2. Branch (Bname, Baddress)

 These two relations are shown in below figure

 A decomposition of relation can be either lossy decomposition or lossless decomposition.

 There are two types of decomposition

1. lossy decomposition

2. lossless decomposition (non-loss decomposition)

Lossy Decomposition

 The decomposition of relation R into R1 and R2 is lossy when the join of R1 and R2

does not yield the same relation as in R.

 This is also referred as lossy-join decomposition.

 The disadvantage of such kind of decomposition is that some information is lost during

retrieval of original relation. And so, such kind of decomposition is referred as lossy

decomposition.

 From practical point of view, decomposition should not be lossy decomposition.

4 –Relational Database Design

Example

 A figure shows a relation Account. This relation is decomposed into two relations

Acc_Bal and Bal_Branch.

 Now, when these two relations are joined on the common attributeBalance, the resultant

relation will look like Acct_Joined. This Acct_Joined relation contains rows in addition

to those in original relation Account.

 Here, it is not possible to specify that in which branch account A01 or A02 belongs.

 So, information has been lost by this decomposition and then join operation.

Not same

 In other words, decomposition is lossy if decompose into R1 and R2 and again combine

(join) R1 and R2 we cannot get original table as R1, over X, where R is an original

relation, R1 and R2 are decomposed relations, and X is a common attribute between these

two relations.

Lossless (Non-loss) Decomposition

 The decomposition of relation R into R1 and R2 is lossless when the join of R1 and R2

produces the same relation as in R.

 This is also referred as a non-additive (non-loss) decomposition.

 All decompositions must be lossless.

Example

 Again, the same relation Account is decomposed into two relations Acct_Bal and

Acct_Branch.

 Now, when these two relations are joined on the common column Ano, the resultant

relation will look like Acc_Joined relation. This relation is exactly same as that of

original relation Account.

 In other words, all the information of original relation is preserved here.

 In lossless decomposition, no any fake tuples are generated when a natural join is applied

to the relations in the decomposition.

Acct_Bal

Ano Balance

A01 5000

A02 5000

Acct_Joined
Ano Balance Bname

A01 5000 Vvn

A01 5000 Ksad

A02 5000 Vvn

A02 5000 Ksad

Account
Ano Balance Bname

A01 5000 Vvn

A02 5000 Ksad

Bal_Branch

Balance Bname

5000 Vvn

5000 Ksad

4 –Relational Database Design

Same

Ksad A02

Vvn A01
Bname Ano

Acct_Branch

 In other words, decomposition is lossy if R = join of R1 and R2, over X, where R is an

original relation, R1 an R2 are decomposed relations, and x is a common attribute

between these two relations.

What is an anomaly in database design? How it can be solved.

Anomaly in database design:

 Anomalies are problems that can occur in poorly planned, un-normalized database where

all the data are stored in one table.

 There are three types of anomalies that can arise in the database because of redundancy

are

 Insert anomalies

 Delete anomalies

 Update / Modification anomalies

 Consider a relation emp_dept (E#, Ename, Address, D#, Dname, Dmgr#) with E# as a

primary key.

Insert anomaly:

 Let us assume that a new department has been started by the organization but initially

there is no employee appointed for that department, then the tuple for this department

cannot be inserted in to this table as the E# will have NULL value, which is not allowed

because E# is primary key.

 This kind of problem in the relation where some tuple cannot be inserted is known as

insert anomaly.

Delete anomaly:

 Now consider there is only one employee in some department and that employee leaves

the organization, then the tuple of that employee has to be deleted from the table, but in

addition to that information about the department also will be deleted.

 This kind of problem in the relation where deletion of some tuples can lead to loss of

some other data not intended to be removed is known as delete anomaly.

Acct_Joined

Ano Balance Bname

A01 5000 Vvn

A02 5000 Ksad

Acct_Bal

Ano Balance

A01 5000

A02 5000

Account

Ano Balance Bname

A01 5000 Vvn

A02 5000 Ksad

4 –Relational Database Design

Update / Modification anomaly:

 Suppose the manager of a department has changed, this requires that the Dmgr# in all the

tuples corresponding to that department must be changed to reflect the new status. If we

fail to update all the tuples of given department, then two different records of employee

working in the same department might show different Dmgr# lead to inconsistency in the

database.

 This kind of problem is known as update or modification anomaly.

How anomalies in database design can be solved:

 Such type of anomalies in database design can be solved by using normalization.

What is normalization? What is the need of it? OR

What is normalization? Why normalization process is needed? Normalization

 Database normalization is the process of removing redundant data from your tables to

improve storage efficiency, data integrity, and scalability.

 In the relational model, methods exist for quantifying how efficient a database is. These

classifications are called normal forms (or NF), and there are algorithms for converting a

given database between them.

 Normalization generally involves splitting existing tables into multiple ones, which must

be re-joined or linked each time a query is issued.

Need of Normalization

 Eliminates redundant data

 Reduces chances of data errors

 Reduces disk space

 Improve data integrity, scalability and data consistency.

Explain different types of normal forms with example. OR

Explain 1NF, 2NF, 3NF, BCNF, 4NF and 5NF with example.

1NF

 A relation R is in first normal form (1NF) if and only if all underlying domains contain

atomic values only. OR

 A relation R is in first normal form (1NF) if and only if it does not contain any composite

or multi valued attributes or their combinations.

Example

Cid Name Address TypeofAccountHold

Society City

C01 Riya SaralSoc, Aand Saving, Current, Salary

C02 Jiya Birla Gruh, Rajkot Saving, Current

4 –Relational Database Design

Cid Name Society City

C01 Riya SaralSoc Aand

C02 Jiya Birla Gruh Rajkot

PhID Cid Contact_no

P01 C01 9879898798

P02 C01 9898052340

P03 C02 9825098254

bname balance acess_date ano cid

 Above relation has four attributes Cid, Name, Address, Contact_no. Here address is

composite attribute which is further divided in to sub attributes as Society and City.

Another attribute TypeofAccountHold is multi valued attribute which can store more than

one values. So above relation is not in 1NF.

Problem

 Suppose we want to find all customers for some particular city then it is difficult to

retrieve. Reason is city name is combined with society name and stored whole as address.

Solution

 Divide composite attributes into number of sub- attribute and insert value in proper sub

attribute. AND

 Split the table into two tables in such a way that

o first table contains all attributes except multi-valued attribute and

o other table contains multi-valued attribute and

o insert primary key of first table in second table as a foreign key.

 So above table can be created as follows.

2NF

 A relation R is in second normal form (2NF) if and only if it is in 1NF and every non-

key attribute is fully dependent on the primary key. OR

 A relation R is in second normal form (2NF) if and only if it is in 1NF and no any non-

key attribute is partially dependent on the primary key.

Example

 Above relation has five attributes cid, ano, acess_date, balance, bname and two FDS

FD1 {cid,ano} {acess_date,balance,bname} and

FD2 ano {balance,bname}

 We have cid and ano as primary key. As per FD2 balace and bname are only depend on

ano not cid. In above table balance and bname are not fully dependent on primary key

but these attributes are partial dependent on primary key. So above relation is not in

2NF.

4 –Relational Database Design

baddress bname balance ano

Problem

 For example in case of joint account multiple customers have common accounts. If some

account says ‘A02’ is jointly by two customers says ‘C02’ and ‘C04’ then data values for

attributes balance and bname will be duplicated in two different tuples of customers

‘C02’ and ‘C04’.

Solution

 Decompose relation in such a way that resultant relation does not have any partial FD.

 For this purpose remove partial dependent attribute that violets 2NF from relation. Place

them in separate new relation along with the prime attribute on which they are full

dependent.

 The primary key of new relation will be the attribute on which it if fully dependent.

 Keep other attribute same as in that table with same primary key.

 So above table can be decomposed as per following.

ano balance bname

cid ano acess_date

3NF

 A relation R is in third normal form (3NF) if and only if it is in 2NF and every non-key

attribute is non-transitively dependent on the primary key.

 An attribute C is transitively dependent on attribute A if there exist an attribute B such

that: A B and B C.

Example

 Above relation has four attributes ano, balance, bname, baddress and two FDS

FD1 ano {balance, bname, baddress} and

FD2 bname baddress

 So from FD1 and FD2 and using transitivity rule we get ano baddress.

 So there is transitively dependency from ano to baddress using bname in which baddress

is non-prime attribute.

 So there is a non-prime attribute baddress which is transitively dependent on primary key

ano.

 So above relation is not in 3NF.

4 –Relational Database Design

Problem

 Transitively dependency results in data redundancy.

 In this relation branch address will be stored repeatedly from each account of same

branch which occupy more space.

Solution

 Decompose relation in such a way that resultant relation does not have any non-prime

attribute that are transitively dependent on primary key.

 For this purpose remove transitively dependent attribute that violets 3NF from relation.

Place them in separate new relation along with the non-prime attribute due to which

transitive dependency occurred. The primary key of new relation will be this non-prime

attribute.

 Keep other attributes same as in that table with same primary key.

 So above table can be decomposed as per following.

ano balance bname

bname baddress

BCNF

 A relation R is in BCNF if and only if it is in 3NF and no any prime attribute is

transitively dependent on the primary key.

OR

 A relation R is in BCNF if and only if it is in 3NF and for every functional dependency X →

Y, X should be the super key of the table OR

 A relation R is in BCNF if and only if it is in 3NF and for every functional dependency X

→ Y, X
should be the primary key of the table.

 An attribute C is transitively dependent on attribute A if there exist an attribute B such

that A B and B C.

Example

Student_Project

Student Language Guide

Mita JAVA Patel

Nita VB Shah

Sita JAVA Jadeja

Gita VB Dave

Rita VB Shah

Nita JAVA Patel

Mita VB Dave

Rita JAVA Jadeja

4 –Relational Database Design

Student Guide

Mita Patel

Nita Shah

Sita Jadeja

Gita Dave

Rita Shah

Nita Patel

Mita Dave

Rita Jadeja

Guide Language

Patel JAVA

Shah VB

Jadeja JAVA

Dave VB

 Above relation has five attributes cid, ano, acess_date, balance, bname and two FDS

FD1 {student,language} guide and

FD2 guide language

 So from FD1 and FD2 and using transitivity rule we get student language

 So there is transitively dependency from student to language in which language is prime

attribute.

 So there is on prime attribute language which is transitively dependent on primary key

student.

 So above relation is not in BCNF.

Problem

 Transitively dependency results in data redundancy.

 In this relation one student have more than one project with different guide then records

will be stored repeatedly from each student and language and guides combination which

occupies more space.

Solution

 Decompose relation in such a way that resultant relation does not have any prime

attribute transitively dependent on primary key.

 For this purpose remove transitively dependent prime attribute that violets BCNF from

relation. Place them in separate new relation along with the non-prime attribute due to

which transitive dependency occurred. The primary key of new relation will be this non-

prime attribute.

 So above table can be decomposed as per following.

4NF

 A table is in the 4NF if it is in BCNF and has no non multivalued dependencies.

guide language student

4 –Relational Database Design

Student_Id Subject

100 Music

100 Accounting

150 Math

StudentId Activity

100 Swimming

100 Tennis

150 Jogging

Example

 The multi-valued dependency X Y holds in a relation R if for a dependency X → Y, if for

a single value of X, multiple (more than one) values of Y exists.

 Suppose a student can have more than one subject and more than one activity.

Student_Info

Student_Id Subject Activity

100 Music Swimming

100 Accounting Swimming

100 Music Tennis

100 Accounting Tennis

150 Math Jogging

 Note that all three attributes make up the Primary Key.

 Note that Student_Id can be associated with many subject as well as many activities

(multi-valued dependency).

 Suppose student 100 signs up for skiing. Then we would insert (100, Music, Skiing). This

row implies that student 100 skies as Music subject but not as an accounting subject, so

in order to keep the data consistent we must add one more row (100, Accounting, Skiing).

This is an insertion anomaly.

 Suppose we have a relation R(A) with a multivalued dependency X Y. The MVD can

be removed by decomposing R into R1(R - Y) and R2(X U Y).

 Here are the tables Normalized

5NF

 A table is in the 5NF if it is in 4NF and if for all Join dependency (JD) of (R1, R2, R3,

...,Rm) in R, every Ri is a superkey for R. OR

 A table is in the 5NF if it is in 4NF and if it cannot have a lossless decomposition in to

any number of smaller tables (relations).

 It is also known as Project-join normal form (PJ/NF).

Example

 We have a table that contains students subectwise result as per follows:

4 –Relational Database Design

ResultID RollNo StudentName SubjectName Result

1 101 Raj DBMS Pass

2 101 Raj DS Pass

3 101 Raj DE Pass

4 102 Meet DBMS Pass

5 102 Meet DS Fail

6 102 Meet DE Pass

7 103 Suresh DBMS Fail

8 103 Suresh DS Pass

9 103 Suresh DE Fail

 Above table is not in 5NF because we can decompose into sub tables.

 If we decompose above table into multiple table as per follows:

ResultID RollNo SubjectID Result

1 101 1 Pass

2 101 2 Pass

3 101 3 Pass

4 102 1 Pass

5 102 2 Fail

6 102 3 Pass

7 103 1 Fail

8 103 2 Pass

9 103 3 Fail

RollNo StudentName

101 Raj

102 Meet

103 Suresh

SubjectID SubjectName

1 DBMS

2 DS

3 DE

 We cannot decomposition any of above three tables into the sub tables so above three

tables are in 5NF.

4 –Relational Database Design

Normalize (decompose) following relation into lower to higher normal form. (From 1NF to

4 NF) OR

PLANT

MANAGE

R

MACHIN

E

SUPPLIER_NAM

E

SUPPLIER_CI

TY

Plant-A

Ravi
Lathe

Boile

r

Jay industry

Abb

aplliance

Ahmedabad

Surat

Plant-B

Meena

Cutter

Boiler

CNC

Raj machinery

Daksh

industry Jay

industry

Vadodara

Rajkot

Ahmedabad

Explain with suitable example, the process of normalization converting from 1NF to 3NF.

1 Normal Form (1NF)

PLA
NT
_ID

PLAN
T
_NAM
E

MANA
GER
_ID

MANA
GER

_NAM
E

MACH
INE
_ID

MACH
INE
_NAM
E

SUPPL
IER
_ID

SUPPLIE
R
_NAME

SUPPLIE
R

_CITY

P1 Plant-

A

E1 Ravi M1 Lathe S1 Jay industry Ahmedab

ad

P1 Plant-

A

E1 Ravi M2 Boile

r

S2 Abb

aplliance

Surat

P2 Plant-

B

E2 Meena M3 Cutte

r

S3 Raj

machinery

Vadodara

P2 Plant-

B

E2 Meena M2 Boile

r

S4 Daksh

industry

Rajkot

P2 Plant-

B

E2 Meena M4 CNC S1 Jay industry Ahmedab

ad

2 Normal Form (2NF)

Table-1

PLANT_I

D

PLANT_NA

ME

MANAGER_

ID

MANAGER_NA

ME

P1 Plant-A E1 Ravi

P2 Plant-B E2 Meena

Table-2

PLANT_I

D

MACHINE_

ID

MACHINE_NA

ME

P1 M1 Lathe

P1 M2 Boiler

P2 M3 Cutter

P2 M2 Boiler

P2 M4 CNC

4 –Relational Database Design

Table-3

MANAGER_

ID

SUPPLIER_

ID

SUPPLIER_NA

ME

SUPPLIER_C

ITY

E1 S1 Jay industry Ahmedabad

E1 S2 Abb aplliance Surat

E2 S3 Raj machinery Vadodara

E2 S4 Daksh industry Rajkot

E2 S1 Jay industry Ahmedabad

4 –Relational Database Design

3 Normal Form or BCNF (3NF or BCNF)

Table-1

PLANT_I

D

PLANT_NA

ME

P1 Plant-A

P2 Plant-B

Table-2

MANAGER_

ID

MANAGER_NA

ME

E1 Ravi

E2 Meena

Table-3

PLANT_I

D

MANAGER_

ID

P1 E1

P2 E2

Table-4

MACHINE_

ID

MANAGER_NA

ME

M1 Lathe

M2 Boiler

M3 Cutter

M4 CNC

Table-5

PLANT_I

D

MACHINE_

ID

P1 M1

P1 M2

P2 M3

P2 M2

P2 M4

Table-6

SUPPLIER_

ID

SUPPLIER_NA

ME

SUPPLIER_C

ITY

S1 Jay industry Ahmedabad

S2 Abb aplliance Surat

S3 Raj machinery Vadodara

S4 Daksh industry Rajkot

Table-7

MANAGER_

ID

SUPPLIER_

ID

4 –Relational Database Design

E1 S1

E1 S2

E2 S3

E2 S4

E2 S1

4 –Relational Database Design

4 Normal Form (4NF)

Table-1

PLANT_I

D

PLANT_NA

ME

P1 Plant-A

P2 Plant-B

Table-2

MANAGER_

ID

MANAGER_NA

ME

E1 Ravi

E2 Meena

Table-3

MACHINE_

ID

MACHINE_NA

ME

M1 Lathe

M2 Boiler

M3 Cutter

M4 CNC

Table-4

PLANT_MACHIN

E_ID

PLANT_I

D

MACHINE_

ID

PM1 P1 M1

PM2 P1 M2

PM3 P2 M3

PM4 P2 M2

PM5 P2 M4

Table-5

PLANT_MACHIN

E_ID

MANAGER_

ID

PM1 E1

PM2 E1

PM3 E2

PM4 E2

PM5 E2

Table-6

SUPPLIER_

ID

SUPPLIER_NA

ME

SUPPLIER_C

ITY

S1 Jay industry Ahmedabad

S2 Abb aplliance Surat

S3 Raj machinery Vadodara

S4 Daksh industry Rajkot

4 –Relational Database Design

Table-7

MANAGER_

ID

SUPPLIER_

ID

E1 S1

E1 S2

E2 S3

E2 S4

E2 S1

How to find key?

 Conditions to find key

1. If an attribute will not occurs on any side of any FD, then it is in every key.

2. If an attribute occurs on the left-hand side of an FD, but never occurs on the

right-hand side, then it is in every key.

3. If an attribute occurs on the right-hand side of an FD, but never occurs on the

left-hand side, then it is never in a key.

4. If an attribute occurs on both the sides of an FD, then one cannot say anything

about the attribute.

Example to find key

Let a relation R with attributes ABCD with FDs C → A, B → C.

Find keys for relation R.

1. Attribute not occur on any side of FDs (D)

2. Attribute occurs on only left-hand side of an FDs (B)

3. Attribute occurs on only right-hand side of an FDs (A)

4. Attribute occurs on both the sides of an FDs (C)

 The core is BD. B determines C which determines A, so BD is a key. Therefore it is the

only key.

Consider a relation R with five attribute A, B, C, D and E having following dependencies:

A → B, BC → E and ED → A

a) List all keys for R.

b) In which normal form table is, justify your answer. OR

Consider table R(A,B,C,D,E) with FDs as A → B, BC → E and ED →

A. The table is in which normal form? Justify your answer.

Keys for R are:

{ACD} {BCD} {CDE}

4 –Relational Database Design

 Above relation R is in 3NF because there is no non-prime attributes. That is, every

column (attribute) is a part of Super Key, so the right hand side of every FD must be a

part of super key. But it’s not in BCNF (Or 4NF or 5NF).

In the BCNF decomposition algorithm, suppose you use a functional dependency α → β

to decompose a relation schema r (α , β , γ) into r1 (α , β) and r2 (α , γ).

1. What primary and foreign-key constraint do you expect to hold on the

decomposed relations?

Ans. α should be a primary key for r1, and α should be the foreign key from r2,

referencing r1.

2. Give an example of an inconsistency that can arise due to an erroneous

update, if the foreign-key constraint were not enforced on the decomposed

relations above.

Ans. If the foreign key constraint is not enforced, then a deletion of a tuple from r1

would not have a corresponding deletion from the referencing tuples in r2.

Instead of deleting a tuple from r2, this would amount to simply setting the value

of α to null in some tuples

3. When a relation is decomposed into 3NF, what primary and foreign key

dependencies would you expect will hold on the decomposed schema?

Ans. For every schema ri(αβ) added to the schema because of a rule α → β, α should

be made the primary key. Also, a candidate key γ for the original relation is

located in some newly created relation rk, and is a primary key for that relation.

Foreign key constraints are created as follows: for each relation ri created above,

if the primary key attributes of ri also occur in any other relation rj , then a

foreign key constraint is created from those attributes in rj , referencing (the

primary key of) ri .

A college maintains details of its lecturers' subject area skills. These details comprise:

Lecturer Number, Lecturer Name, Lecturer Grade, Department Code, Department

Name, Subject

4 –Relational Database Design

Code, Subject Name and Subject Level. Assume that each lecturer may teach many

subjects but may not belong to more than one department. Subject Code, Subject Name

and Subject Level are repeating fields. Normalize this data to Third Normal Form.

UNF

 Lecturer Number, Lecturer Name, Lecturer Grade, Department Code, Department Name,

Subject Code, Subject Name, Subject Level

1NF

 Lecturer Number, Lecturer Name, Lecturer Grade, Department Code, Department Name

 Lecturer Number, Subject Code, Subject Name, Subject Level

2NF

 Lecturer Number, Lecturer Name, Lecturer Grade, Department Code, Department Name

 Lecturer Number, Subject Code

 Subject Code, Subject Name, Subject Level

3NF

 Lecturer Number, Lecturer Name, Lecturer Grade, Department Code

 Department Code, Department Name

 Lecturer Number, Subject Code

 Subject Code, Subject Name, Subject Level

A software contract and consultancy firm maintains details of all the various projects in

which its employees are currently involved. These details comprise: Employee Number,

Employee Name, Date of Birth, Department Code, Department Name, Project Code,

Project Description and Project Supervisor Assume the following:

1. Each employee number is unique.

2. Each department has a single department code.

3. Each project has a single code and supervisor.

4. Each employee may work on one or more projects.

5. Employee names need not necessarily be unique.

6. Project Code, Project Description and Project

Supervisor are repeating fields.

4 –Relational Database Design

Normalise this data to Third Normal Form.

UNF

 Employee Number, Employee Name, Date of Birth, Department Code, Department

Name, Project Code, Project Description, Project Supervisor

1NF

 Employee Number, Employee Name, Date of Birth, Department Code, Department Name

 Employee Number, Project Code, Project Description, Project Supervisor

2NF

 Employee Number, Employee Name, Date of Birth, Department Code, Department Name

 Employee Number, Project Code,

 Project Code, Project Description, Project Supervisor

3NF

 Employee Number, Employee Name, Date of Birth, Department Code

 Department Code, Department Name

 Employee Number, Project Code

 Project Code, Project Description, Project Supervisor

5 – Query Processing & Optimization

Scanning, parsing and validating

Query code generator

Explain query processing.

Query processing

 It is a process of transforming a high level query (such as SQL) in to low level language.

 Query processing refers to the range of activities involved in extracting data from a

database.

Query in high level language

Intermediate form of query

Execution plan

Code to execute the query

Result of query

 A query expressed in a high level query language such as SQL must be

 Scanned

 Parsed

 Validated

 The scanner identifies the language tokens such as SQL keywords, attribute names and

relation names in the text of the query.

 Parser checks the query syntax to determine whether it is formulated according to the

syntax rules of the query language.

 The query must also be validated by checking that all attributes and relation names are

valid and semantically meaningful names in the schema of the particular database being

queried.

 A query typically has many possible execution strategies and the process of choosing a

suitable one for processing a query is known as query optimization.

 The query optimizer module has the task of producing an execution plan and code

generator generates the code to execute that plan.

 The runtime database processor has the task of running the query code whether in

compiled or interpreted mode, to produce the query result.

Runtime database processor

Query optimizer

5 – Query Processing & Optimization

 If a runtime error results, an error message is generated by the runtime database

processor.

 Query code generator will generate code for query.

 Runtime database processor will select optimal plan and execute query and gives result.

Explain different search algorithm for selection operation. OR Explain linear search and

binary search algorithm for selection operation.

 There are two scan algorithms to implement the selection operation:

1. Linear search

2. Binary search

Linear search

 In a linear search, the systems scans each file block and tests all records to see whether

they satisfy the selection condition.

 For a selection on a key attribute, the system can terminate the scan if the requires record

is found, without looking at the other records of the relation.

 The cost of linear search in terms of number of I/O operations is br where br is the
number of blocks in file.

 Selection on key attribute has an average cost of br/2.

 It may be a slower algorithm than any another algorithm.

 This algorithm can be applied to any file regardless of the ordering of file or the

availability of indices or the nature of selection operation.

Binary search

 If the file is ordered on attribute and the selection condition is an equality comparison on

the attribute, we can use a binary search to locate the records that satisfy the condition.

 The number of blocks that need to be examined to find a block containing the required

record is log(br).

 If the selection is on non-key attribute more than one block may contain required records

and the cost of reading the extra blocks has to be added to the cost estimate.

Explain various steps involved in query evaluation. OR

Explain query evaluation process. OR

Explain evaluation expression process in query optimization.

 There are two methods for the evaluation of expression

1. Materialization

2. Pipelining

Materialization

 In this method we start from bottom of the tree and each expression is evaluated one by

one in bottom to top order. The result of each expression is materialized (stored) in

temporary relation (table) for later use.

5 – Query Processing & Optimization

Πcustomer-name (balalce<2500 (account) customer)

∏customer-name

customer

account

 In our example, there is only one such operation, selection operation on account.

 The inputs to the lowest level operation are relations in the database.

 We execute these operations and we store the results in temporary relations.

 We can use these temporary relations to execute the operation at the next level up in the

tree, where the inputs now are either temporary relations or relations stored in the

database.

 In our example the inputs to join are the customer relation and the temporary relation

created by the selection on account.

 The join can now be evaluated, creating another temporary relation.

 By repeating the process, we will finally evaluate the operation at the root of the tree,

giving the final result of the expression.

 In our example, we get the final result by executing the projection operation at the root of

the tree, using as input the temporary relation created by the join. Evaluation just

described is called materialized evaluation, since the results of each intermediate

operation are created and then are used for evaluation of the next level operations.

 The cost of a materialized evaluation is not simply the sum of the costs of the operations

involved. To compute the cost of evaluating an expression is to add the cost of all the

operation as well as the cost of writing intermediate results to disk.

 The disadvantage of this method is that it will create temporary relation (table) and that

relation is stored on disk which consumes space on disk.

 It evaluates one operation at a time, starting at the lowest level.

Pipelining

 We can reduce the number of temporary files that are produced by combining several

relations operations into pipeline operations, in which the results of one operation are

passed along to the next operation in the pipeline. Combining operations into a pipeline

eliminates the cost reading and writing temporary relations.

 In this method several expression are evaluated simultaneously in pipeline by using the

result of one operation passed to next without storing it in a temporary relation.

balalce<2500

5 – Query Processing & Optimization

Πcustomer-name (balalce<2500 (account) customer)

 First it will compute records having balance less than 2500 and then pass this result

directly to project without storing that result in any temporary relation (table). And then

by using this result it will compute the projections on customer-name.

 It is much cheaper than materialization because in this method no need to store a

temporary relation to disk.

 Pipelining is not used in sort, hash joins.

Explain the method of query optimization. OR

Explain query optimization process.

Query optimization

 It is a process of selecting the most efficient query evaluation plan from the available

possible plans for processing a given query.

 There are two phases of query optimization

1. Optimization which occur at the relational algebra level. In this phase the system

will find an expression that is equivalent to the given expression but more

efficient to execute.

2. Selecting a detailed strategy for processing the query such as choosing algorithm

and specific indices etc.

 For example consider the relational algebra expression for the query

 “Find the name of all customers who have account at any branch located in Pune”

Πcustomer-name (branch-city=”pune” (branch

 (account depositor)))

 The above query may be written as below

Πcustomer-name (branch-city=”pune” (branch)

 (account depositor))

 In the second algebra expression the size of intermediate result is smaller than first

because it will only contain the records of pune branch city. Final result of both the

expression is same.

∏customer-name ∏customer-name

σbranch-city=’pune’

σbranch-city=’pune’

branch branch account depositor

account depositor

5 – Query Processing & Optimization

 To choose from the different query evaluation plan, the optimizer has to estimate the cost

of each evaluation plan.

 Optimizer use statically information about the relation such as relation size and index

depth to make a good estimate of the cost of a plan.

Explain transformation of relational expression to equivalent relational expression.

 Two relational algebra expressions are said to be equivalent (same) if on every legal

database operation, the two expressions gives the same set of tuples (records). Sequence

of records may be different but no of records must be same.

Equivalence rules

 This rule says that expressions of two forms are same.

 We can replace an expression of first form by an expression of the second form.

 The optimizer uses equivalence rule to transform expression into other logically same

expression.

 We use

θ1, θ2, θ3 and so on to denote condition

L1, L2, L3 and so on to denote list of attributes (columns)

E1, E2, E3 and so on to denote relational algebra expression.
Rules 1

 Combined selection operation can be divided into sequence of individual selections. This

transformation is called cascade of σ.

σθ1Λθ2 (E)=σθ1(θ2 (E))

Rules 2

 Selection operations are commutative.

σθ1(θ2 (E))=σθ2(θ1 (E))

Rules 3
 If more than one projection operation is used in expression then only the outer projection

operation is required. So skip all the other inner projection operation.
∏L1 (∏L2 (… (∏Ln (E))…)) = ∏L1 (E)

Rules 4

 Selection operation can be joined with Cartesian product and theta join.

σθ (E1 E2) = E1 θ E2

σθ1 (E1 θ2 E2) = E1 θ1Λθ2 E2

Rules 5

 Theta operations are commutative.

E1 θ2 E2 = E2 θ2 E1

Rules 6

 Natural join operations are associative.

(E1 E2) E3 = E1 (E2 E3)

 Theta join operations are associative.

5 – Query Processing & Optimization

(E1 θ1E2) θ2Λθ3E3 = E1 θ1Λθ3 (E2 θ2E3)
Rules 7

 The selection operation distribute over theta join operation under the following condition

 It distribute when all the attributes in the selection condition θ0 involves only

the attributes of the one of the expression (says E1) being joined.

σθ0 (E1 E2) = (σθ0 (E1)) θ E2

 It distributes when the selection condition θ1involves only the attributes of E1 and

θ2 involves only the attributes of E2.

 σθ1Λθ2 (E1 θ E2) = (σθ1(E1) θ (σθ2 (E2)))

Explain the purpose of sorting with example with reference to query optimization.

Purpose of Sorting

 Several of the relational operations such as joins can be implemented efficiently if the

input relations are first sorted.

 We can sort a relation by building an index on the sort key and then using that index to

read the relation in sorted order.

 Such a process orders the relation only logically rather than physically.

 Hence reading of tuples in the sorted order may lead to disk access for each record.

 So it is desirable to order the records physically.

 Sorting could be applied to both relations that fit entirely in main memory and for

relations bigger than main memory.

 Sorting of relation that fit into main memory, standard sorting techniques such as quick-

sort can be used.

 Sorting of relations that do not fit in main memory is called external sorting.

 Most commonly used algorithm for this type of sorting is external sort merge algorithm.

 It consists mainly two steps:

 Step 1 (Create sorted runs)

 Let M denotes memory size (in pages).

 Create sorted runs. Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory

(b) Sort the in-memory blocks

(c) Write sorted data to run Ri; increment i.

Let the final value of i be N

 Step 2 (Merge the runs)

5 – Query Processing & Optimization

 Merge the runs (N-way merge). We assume (for now) that N < M.

1) Use N blocks of memory to buffer input runs, and 1 block to buffer

output. Read the first block of each run into its buffer page

2) repeat

I. Select the first record (in sort order) among all buffer pages

II. Write the record to the output buffer. If the output buffer is

full write it to disk.

III. Delete the record from its input buffer page.

If the buffer page becomes empty then read the next block

(if any) of the run into the buffer.

3) until all input buffer pages are empty:

 If N M, several merge passes are required.

 In each pass, contiguous groups of M - 1 runs are merged.

 A pass reduces the number of runs by a factor of M -1, and creates runs longer by

the same factor.

 E.g. If M=11, and there are 90 runs, one pass reduces the number of runs

to 9, each 10 times the size of the initial runs

 Repeated passes are performed till all runs have been merged into one.

 The output of the merge stage is the sorted relation.

 The output file is buffered to reduce the number of disk operations.

 If the relation is much larger than memory there may be M or more runs generated in the

first stage and it is not possible to allocate a page frame for each run during the merge

stage.

 In this case merge operation proceed in multiple passes.

 Since there is enough memory for M-1 input buffer pages each merge can take M-1 runs

as input.

Explain the measures of query cost, selection operation and join. OR

Explain the measures of finding out the cost of a query in query processing.

Measures of query cost

 The cost of query evaluation can be measured in terms of a number of different resources

including disk access, CPU time to execute a query and in a distributed or parallel

database system the cost of communication.

5 – Query Processing & Optimization

 The response time for a query evaluation plan i.e the time required to execute the plan

(assuming no other activity is going on) on the computer would account for all these

activities.

 In large database system, however disk accesses are usually the most important cost,

since disk access are slow compared to in memory operation.

 Moreover, CPU speeds have been improving much faster than have a disk speed.

 Therefore it is likely that the time spent in disk activity will continue to dominate the total

time to execute a query.

 Estimating the CPU time is relatively hard, compared to estimating disk access cost.

 Therefore disk access cost a reasonable measure of the cost of a query evaluation plan.

 Disk access is the predominant cost (in terms of time) relatively easy to estimate;

therefore number of block transfers from/to disk is typically used as measures.

 We use the number of block transfers from disk as a measure of actual cost.

 To simplify our computation, we assume that all transfer of blocks have same cost.

 To get more precise numbers we need to distinguish between sequential I/O where blocks

read are contiguous on disk and random I/O where blocks are non-contiguous and an

extra seek cost must be paid for each disk I/O operations.

 We also need to distinguish between read and write of blocks since it takes more time to

write a block on disk than to read a block from disk.

Selection Operation

 There are two scan algorithms to implement the selection operation:

1. Linear search

2. Binary search

Linear search

 In a linear search, the system scans each file block and tests all records to see whether

they satisfy the selection condition.

 For a selection on a key attribute, the system can terminate the scan if the requires record

is found, without looking at the other records of the relation.

 The cost of linear search in terms of number of I/O operations is br where br is the

number of blocks in file.

 Selection on key attribute has an average cost of br/2.

 It may be a slower algorithm than any another algorithm.

 This algorithm can be applied to any file regardless of the ordering of file or the

availability of indices or the nature of selection operation.

Binary search

 If the file is ordered on attribute and the selection condition is an equality comparison on

the attribute, we can use a binary search to locate the records that satisfy the condition.

5 – Query Processing & Optimization

 The number of blocks that need to be examined to find a block containing the required

record is log(br).

 If the selection is on non-key attribute more than one block may contain required records

and the cost of reading the extra blocks has to be added to the cost estimate.

Join

 Like selection, the join operation can be implemented in a variety of ways.

 In terms of disk access, the join operation can be very expensive, so implementing and

utilizing efficient join algorithms is critical in minimizing a query’s execution time.

 For example consider

depositor customer

 We assume following information about the two above relations

I. Number of records of customer ncustomer = 10,000

II. Number of blocks of customer bcustomer = 400

III. Number of records of depositor ndepositor = 5,000

IV. Number of blocks of depositor bdepositor = 100

 There are four types of algorithms for join operations.

1. Nested loop join

2. Indexed nested loop join

3. Merge join

4. Hash join

6 – Storage Strategies

Pointer Search-key

What is database Index?

 Indexes are special lookup tables that the database search engine can use to speed up data

retrieval.

 A database index is a data structure that improves the speed of data retrieval operations

on a database table.

 An index in a database is very similar to an index in the back of a book.

 Indexes are used to retrieve data from the database very fast.

 The users cannot see the indexes, they are just used to speed up searches/queries.

 Updating a table with indexes takes more time than updating a table without (because the

indexes also need an update).

 Syntax:

CREATE INDEX index_name

ON table_name (column1, column2, ...);

 Example:

CREATE INDEX

idx_studentname ON student

(studentname);

 Indexing is a way to optimize the performance of a database by minimizing the number

of disk accesses required when a query is processed.

 It is a data structure technique which is used to quickly locate and access the data in a

database.

Explain the structure of Index in database.

 Indexes are created using a few database columns.

 The first column is the Search key that contains a copy of the primary key or candidate

key of the table. These values are stored in sorted order so that the corresponding data

can be accessed quickly.

 The second column is the Data Reference or Pointer which contains a set of pointers

holding the address of the disk block where that particular key value can be found.

Explain different attributes of Indexing.

The indexing has various attributes:

 Access Types: This refers to the type of access such as value based search, range access,

etc.

 Access Time: It refers to the time needed to find particular data element or set of

elements.

 Insertion Time: It refers to the time taken to find the appropriate space and insert a new

data.

6 – Storage Strategies

Index Table Main Table

 Deletion Time: Time taken to find an item and delete it as well as update the index

structure.

 Space Overhead: It refers to the additional space required by the index.

Explain different Indexing Methods (Types).

Different indexing methods are:

 Primary Indexing

 Dense Indexing

 Parse Indexing

 Secondary Indexing

 Clustering Indexing

Primary Indexing

 If the index is created on the primary key of the table, then it is known as primary index.

 These primary keys are unique to each record.

 As primary keys are stored in sorted order, the performance of the searching operation is

quite efficient.

 Student (RollNo, Name, Address, City, MobileNo) [RollNo is primary

key] CREATE INDEX idx_StudentRno

ON Student (RollNo);

 The primary index can be classified into two types:

 Dense index

 Sparse index

Dense Index

6 – Storage Strategies

6 – Storage Strategies

Index Table Main Table

 In dense index, there is an index record for every search key value in the database.

 This makes searching faster but requires more space to store index records.

 In this, the number of records in the index table is same as the number of records in the

main table.

 Index records contain search key value and a pointer to the actual record on the disk.

Sparse Index

 In sparse index, index records are not created for every search key.

 The index record appears only for a few items in the data file.

 It requires less space, less maintenance overhead for insertion, and deletions but is slower

compared to the dense index for locating records.

 To search a record in sparse index we search for a value that is less than or equal to value

in index for which we are looking.

 After getting the first record, linear search is performed to retrieve the desired record.

 In the sparse indexing, as the size of the main table grows, the size of index table also

grows.

6 – Storage Strategies

Secondary Index

 In secondary indexing, to reduce the size of mapping, another level of indexing is

introduced.

 In this method, the huge range for the columns is selected initially so that the mapping

size of the first level becomes small.

 Then each range is further divided into smaller ranges.

 The mapping of the first level is stored in the primary memory, so that address fetch is

faster.

 The mapping of the second level and actual data are stored in the secondary memory

(hard disk).

 If you want to find the record of roll 112, then it will search the highest entry which is

smaller than or equal to 112 in the first level index. It will get 101 at this level.

 Then in the second index level, again it does max (112) <= 112 and gets 111. Now using

the address 111, it goes to the data block and starts searching each record till it gets 112.

 This is how a search is performed in this method.

 Inserting, updating or deleting is also done in the same manner.

Main
Table

Primary
Index

 Secondary
Index

6 – Storage Strategies

Clustering Index

 Sometimes the index is created on non-primary key columns which may not be unique

for each record.

 In this case, to identify the record faster, we will group two or more columns to get the

unique value and create index out of them. This method is called a clustering index.

 The records which have similar characteristics are grouped, and indexes are created for

these group.

Explain B-tree.

 B-tree is a data structure that store data in its node in sorted order.

 We can represent sample B-tree as follows.

Intermediary

Node

11
Root Node

Leaf

Node

3, 6 16, 20

1,2 4,5 7,1

0

12, 13,

14

18,

19

24, 25

Main Table Index Table

6 – Storage Strategies

 B-tree stores data in such a way that each node contains keys in ascending order.

 Each of these keys has two references to another two child nodes.

6 – Storage Strategies

 The left side child node keys are less than the current keys and the right side child node

keys are greater than the current keys.

Searching a record in B-tree

 Suppose we want to search 18 in the above B tree structure.

 First, we will fetch for the intermediary node which will direct to the leaf node that can

contain a record for 18.

 So, in the intermediary node, we will find a branch between 16 and 20 nodes.

 Then at the end, we will be redirected to the fifth leaf node. Here DBMS will perform a

sequential search to find 18.

Explain hashing with its types.

 For a huge database, it can be almost next to impossible to search all the index values

through all its level and then reach the destination data block to retrieve the desired data.

 Hashing is a technique to directly search the location of desired data on the disk without

using index structure.

 Data is stored in the form of data blocks whose address is generated by applying a hash

function in the memory location where these records are stored known as a data block or

data bucket.

 Hashing uses hash functions with search keys as parameters to generate the address of a

data record.

 Data bucket: Data buckets are the memory locations where the records are stored.

 Hash Function: Hash function is a mapping function that maps all the set of search keys

to actual record address. Generally, hash function uses primary key to generate the hash

index – address of the data block.

Types of hashing methods

1. Static hashing

2. Dynamic hashing

Static hashing

 In the static hashing, the resultant data bucket address will always remain the same.

 Therefore, if you generate an address for say Student_ID = 10 using hashing function

mod(3), the resultant bucket address will always be 1. So, you will not see any change in

the bucket address.

 Therefore, in this static hashing method, the number of data buckets in memory always

remains constant.

6 – Storage Strategies

0

1

Dynamic hashing

 The drawback of static hashing is that that it does not expand or shrink dynamically as the

size of the database grows or shrinks.

 In dynamic hashing, data buckets grows or shrinks (added or removed dynamically) as the

records increases or decreases.

 Dynamic hashing is also known as extended hashing.

 In dynamic hashing, the hash function is made to produce a large number of values.

 For Example, there are three data records D1, D2 and D3 .

 The hash function generates three addresses 1001, 0101 and 1010 respectively.

 This method of storing considers only part of this address – especially only first one bit to

store the data.

 So it tries to load three of them at address 0 and 1.

D1

D2

D3

 But the problem is that no bucket address is remaining for D3.

 The bucket has to grow dynamically to accommodate D3.

 So it changes the address have 2 bits rather than 1 bit, and then it updates the existing

data to have 2 bit address.

 Then it tries to accommodate D3.

6 – Storage Strategies

00

10

11

01 D1

D2

D3

7 – Transaction Processing

What is transaction? List and explain ACID property of

transaction with example.

Transaction

 A transaction is a part of program execution that accesses and updates various data items.

 A transaction can be defined as a group of tasks in which a single task is the minimum

processing unit of work, which cannot be divided further.

 A transaction is a logical unit of work that contains one or more SQL statements.

 A transaction is an atomic unit (transaction either complete 0% or 100%).

 A database transaction must be atomic, meaning that it must be either entirely completed

or aborted.

ACID property

Atomicity

 Either all operations of the transaction are properly reflected in the database or none are.

 Means either all the operations of a transaction are executed or not a single operation is
executed.

 For example consider below transaction to transfer Rs. 50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 In above transaction if Rs. 50 is deducted from account A then it must be added to account

B.

Consistency

 Execution of a transaction in isolation preserves the consistency of the database.

 Means our database must remain in consistent state after execution of any transaction.

 In above example total of A and B must remain same before and after the execution of

transaction.

Isolation

 Although multiple transactions may execute concurrently, each transaction must be
unaware of other concurrently executing transactions.

 Intermediate transaction results must be hidden from other concurrently executed
transactions.

 In above example once your transaction start from step one its result should not be access
by any other transaction until last step (step 6) is completed.

7 – Transaction Processing

Partial

committed

Committed

Active

Failed Aborted

Durability

 After a transaction completes successfully, the changes it has made to the database persist,
even if there are system failures.

 Once your transaction completed up to step 6 its result must be stored permanently. It

should not be removed if system fails.

Explain different states in transaction processing in database.

OR

Explain State Transition Diagram (Transaction State Diagram).

 Because failure of transaction may occur, transaction is broken up into states to handle

various situations.

 Following are the different states in transaction processing in database

 Active

 Partial committed

 Failed

 Aborted

 Committed

Active
Fig. State Transition Diagram

 This is the initial state. The transaction stays in this state while it is executing.

Partially Committed

 This is the state after the final statement of the transaction is executed.

 At this point failure is still possible since changes may have been only done in main

memory, a hardware failure could still occur.

 The DBMS needs to write out enough information to disk so that, in case of a failure, the

system could re-create the updates performed by the transaction once the system is brought

back up.

 After it has written out all the necessary information, it is committed.

7 – Transaction Processing

Failed

 After the discovery that normal execution can no longer proceed.
 Once a transaction cannot be completed, any changes that it made must be undone rolling it

back.

Aborted

 The state after the transaction has been rolled back and the database has been restored to
its state prior to the start of the transaction.

Committed

 The transaction enters in this state after successful completion of the transaction.

 We cannot abort or rollback a committed transaction.

Explain following terms.

Schedule

 A schedule is the chronological (sequential) order in which instructions are executed in a

system.

 A schedule for a set of transaction must consist of all the instruction of those transactions

and must preserve the order in which the instructions appear in each individual transaction.

 Example of schedule (Schedule 1)

T1

read(A)

A:=A-

50

write(A)

read(B)

B:= B+

50

write(B)

Serial schedule

T2

read(A)

temp: A * 0.1

A: A-temp

write (A)

read(B)

B:=B +temp

write(B)

 Schedule that does not interleave the actions of different transactions.

 In schedule 1 the all the instructions of T1 are grouped and run together. Then all the
instructions of T2 are grouped and run together.

 Means schedule 2 will not start until all the instructions of schedule 1 are complete. This
type of schedules is called serial schedule.

7 – Transaction Processing

Interleaved schedule

 Schedule that interleave the actions of different transactions.
 Means schedule 2 will start before all instructions of schedule 1 are completed. This type

of schedules is called interleaved schedule.

T1

read(A)
A:=A-

50

write(A)

T2

read(A)

temp: A * 0.1

A: A-temp

write (A)

read(B)

B:= B+

50

write(B)

Equivalent schedules

read(B)

B:=B +temp

write(B)

 Two schedules are equivalent schedule if the effect of executing the first schedule is

identical (same) to the effect of executing the second schedule.

 We can also say that two schedule are equivalent schedule if the output of executing the
first schedule is identical (same) to the output of executing the second schedule.

Serializable schedule

 A schedule that is equivalent (in its outcome) to a serial schedule has the serializability
property.

 Example of serializable schedule

 In above example there are two schedules as schedule 1 and schedule 2.

 In schedule 1 and schedule 2 the order in which the instructions of transaction are executed

is not the same but whatever the result we get is same. So this is known as serializability of

transaction.

Schedule 2

T1 T2 T3

read(X)

write(X)

read(Y)

write(Y)

read(Z)

write(Z)

Schedule 1

T1 T2 T3

read(X)
write(X)

read(Y)
write(Y)

read(Z)
write(Z)

7 – Transaction Processing

Explain serializability of transaction. OR

Explain both the forms of serializability with example. Also explain relation between two

forms. OR

Explain conflict serializability and view serializability with example.

Conflict serializability

 Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there

exists some item Q accessed by both li and lj, and at least one of these instructions wrote
Q.

1. If li and lj access different data item then li and lj don’t conflict.

2. li = read(Q), lj = read(Q). li and lj don’t conflict.

3. li = read(Q), lj = write(Q). li and lj conflict.

4. li = write(Q), lj = read(Q). li and lj conflict.

5. li = write(Q), lj = write(Q). li and lj conflict.

 Intuitively, a conflict between li and lj forces a (logical) temporal order between them.

 If a schedule S can be transformed into a schedule S´ by a series of swaps of non-
conflicting instructions, we say that S and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is conflict equivalent to a serial
schedule.

Example

 Schedule S can be transformed into Schedule S’ by swapping of non-conflicting series of

instructions. Therefore Schedule S is conflict serializable.

 Instruction Ii of transaction T1 and Ij of transaction T2 conflict if both of these instruction

access same data A and one of these two instructions performs write operation on that data
(A).

 In above example the write(A) instruction of transaction T1 conflict with read(A)

instruction of transaction T2 because both the instructions access same data A. But

write(A) instruction of transaction T2 is not conflict with read(B) instruction of

transaction T1 because both the instructions access different data. Transaction T2 performs

write operation in A and transaction T1 is reading B.

Schedule S’
T1 T2

read(A)
write(A)
read(B)
write(B)

 read(A)
write(A)

 read(B)
write(B)

Schedule S
T1 T2

read(A)

write(A)

 read(A)
 write(A)

read(B)

write(B)

 read(B)
 write(B)

7 – Transaction Processing

 So in above example in schedule S two instructions read(A) and write(A) of transaction

T2 and two instructions read(B) and write(B) of transaction T1 are interchanged and we

get schedule S’.

 Therefore Schedule S is conflict serializable.

Schedule S’’

T3 T4

read(Q)

 write(Q)

write(Q)

 We are unable to swap instructions in the above schedule S’’ to obtain either the serial

schedule < T3, T4 >, or the serial schedule < T4, T3 >.

 So above schedule S’’ is not conflict serializable.

View serializability

 Let S and S´ be two schedules with the same set of transactions. S and S´ are view

equivalent if the following three conditions are met, for each data item Q,
1. If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also

transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was produced by

transaction Tj (if any), then in schedule S’ also transaction Ti must read the value

of Q that was produced by the same write(Q) operation of transaction Tj .

3. The transaction Ti (if any) that performs the final write(Q) operation in schedule

S then in schedule S’ also the final write(Q) operation must be performed by Ti.

 A schedule S is view serializable if it is view equivalent to a serial schedule.

 Every conflict serializable schedule is also view serializable but every view serializable is

not conflict serializable.

 Below is a schedule which is view serializable but not conflict serializable.

Schedule S

T3 T4 T6

read(Q)

 write(Q)

write(Q)

 write(Q)

 Above schedule is view serializable but not conflict serializable because all the

transactions can use same data item (Q) and all the operations are conflict with each other

due to one operation is write on data item (Q) and that’s why we cannot interchange any

non conflict operation of any transaction.

7 – Transaction Processing

Explain two phase commit protocol. OR

Explain working of two phase commit protocol.

Two phase commit protocol

• The two phase commit protocol provides an automatic recovery mechanism in case a
system or media failure occurs during execution of the transaction.

• The two phase commit protocol ensures that all participants perform the same action
(either to commit or to roll back a transaction).

• The two phase commit strategy is designed to ensure that either all the databases are
updated or none of them, so that the databases remain synchronized.

• In two phase commit protocol there is one node which is act as a coordinator and all other
participating node are known as cohorts or participant.

• Coordinator – the component that coordinates with all the participants.

• Cohorts (Participants) – each individual node except coordinator are participant.

• As the name suggests, the two phase commit protocol involves two phases.

1. The first phase is Commit Request phase OR phase 1

2. The second phase is Commit phase OR phase 2

Commit Request Phase (Obtaining Decision)

 To commit the transaction, the coordinator sends a request asking for “ready for commit”

to each cohort.

 The coordinator waits until it has received a reply from all cohorts to “vote” on the request.

 Each participant votes by sending a message back to the coordinator as follows:

 It votes YES if it is prepared to commit

 It may vote NO for any reason if it cannot prepare the transaction due to a local

failure.

 It may delay in voting because cohort was busy with other work.
Commit Phase (Performing Decision)

 If the coordinator receives YES response from all cohorts, it decides to commit. The
transaction is now officially committed. Otherwise, it either receives a NO response or
gives up waiting for some cohort, so it decides to abort.

 The coordinator sends its decision to all participants (i.e. COMMIT or ABORT).

 Participants acknowledge receipt of commit or about by replying DONE.

What is system recovery?

 Database recovery is the process of restoring a database to the correct state in the event of
a failure.

 Database recovery is a service that is provided by the DBMS to ensure that the database is
reliable and remain in consistent state in case of a failure.

 Restoring a physical backup means reconstructing it and making it available to the
database server.

7 – Transaction Processing

 To recover a restored backup, data is updated using redo command after the backup was
taken.

 Database server such as SQL server or ORACLE server performs cash recovery and
instance recovery automatically after an instance failure.

 In case of media failure, a database administrator (DBA) must initiate a recovery

operation.

 Recovering a backup involves two distinct operations: rolling the backup forward to a

more recent time by applying redo data and rolling back all changes made in uncommitted

transactions to their original state.

 In general, recovery refers to the various operations involved in restoring, rolling forward
and rolling back a backup.

 Backup and recovery refers to the various strategies and operations involved in protecting
the database against data loss and reconstructing the database.

Explain Log based recovery method.

Log based recovery

 The most widely used structure for recording database modification is the log.

 The log is a sequence of log records, recording all the update activities in the database.

 In short Transaction log is a journal or simply a data file, which contains history of all

transaction performed and maintained on stable storage.

 Since the log contains a complete record of all database activity, the volume of data stored

in the log may become unreasonable large.

 For log records to be useful for recovery from system and disk failures, the log must reside

on stable storage.

 Log contains

1. Start of transaction

2. Transaction-id

3. Record-id

4. Type of operation (insert, update, delete)

5. Old value, new value

6. End of transaction that is committed or aborted.

 All such files are maintained by DBMS itself. Normally these are sequential files.

 Recovery has two factors Rollback (Undo) and Roll forward (Redo).

 When transaction Ti starts, it registers itself by writing a <Ti start>log record

 Before Ti executes write(X), a log record <Ti, X, V1, V2> is written, where V1 is the

value of X before the write, and V2 is the value to be written to X.

 Log record notes that Ti has performed a write on data item Xj

 Xj had value V1 before the write, and will have value V2 after the write.

 When Ti finishes it last statement, the log record <Ti commit> is written.

 Two approaches are used in log based recovery

1. Deferred database modification

2. Immediate database modification

7 – Transaction Processing

Log based Recovery Techniques

 Once a failure occurs, DBMS retrieves the database using the back-up of database and
transaction log. Various log based recovery techniques used by DBMS are as per below:

1. Deferred Database Modification

2. Immediate Database Modification

 Both of the techniques use transaction logs. These techniques are explained in following

sub-sections.

Explain Deferred Database Modification log based recovery method.

Concept

 Updates (changes) to the database are deferred (or postponed) until the transaction

commits.

 During the execution of transaction, updates are recorded only in the transaction log and

in buffers. After the transaction commits, these updates are recorded in the database.

When failure occurs

 If transaction has not committed, then it has not affected the database. And so, no need to

do any undoing operations. Just restart the transaction.

 If transaction has committed, then, still, it may not have modified the database. And so,
redo the updates of the transaction.

Transaction Log

 In this technique, transaction log is used in following ways:

 Transaction T starts by writing <T start> to the log.

 Any update is recorded as <T, X, V>, where V indicates new value for data item X. Here,

no need to preserve old value of the changed data item. Also, V is not written to the X in

database, but it is deferred.

 Transaction T commits by writing <T commit> to the log. Once this is entered in log,
actual updates are recorded to the database.

 If a transaction T aborts, the transaction log record is ignored, and no any updates are
recorded to the database.

Example

 Consider the following two transactions, T0 and T1 given in figure, where T0 executes

before T1. Also consider that initial values for A, B and C are 500, 600 and 700
respectively.

Transaction – T0 Transaction – T1

Read (A)
A =A -
100

Read
(C)
C=C-
200

Write (A)
Read (B)
B =B+
100
Write (B)

Write (C)

7 – Transaction Processing

 The following figure shows the transaction log for above two transactions at three
different instances of time.

Time Instance (a) Time Instance (b) Time Instance (c)

<T0 start>

< T0, A, 400>

< T0, B, 700>

< T0 start>

< T0, A, 400>

< T0, B, 700>

< T0 commit>

< T0 start>

< T0, A, 400>

< T0, B, 700>

< T0 commit>

 <T1 start>

<T1, C, 500>

< T1 start>

< T1, C, 500>
< T1 commit>

 If failure occurs in case of

1. No any REDO actions are required.

2. As Transaction T0 has already committed, it must be redone.

3. As Transactions T0 and T1 have already committed, they must be redone.

Explain Immediate Database Modification log based recovery method.

Concept

 Updates (changes) to the database are applied immediately as they occur without waiting
to reach to the commit point.

 Also, these updates are recorded in the transaction log.
 It is possible here that updates of the uncommitted transaction are also written to the

database. And, other transactions can access these updated values.

When failure occurs

 If transaction has not committed, then it may have modified the database. And so, undo the
updates of the transaction.

 If transaction has committed, then still it may not have modified the database. And so, redo
the updates of the transaction.

Transaction Log

 In this technique, transaction log is used in following ways:

 Transaction T starts by writing <T start> to the log.

 Any update is recorded as <T, X, Vold, Vnew > where Vold indicates the original value

of data item X and Vnew indicates new value for X. Here, as undo operation is required, it

requires preserving old value of the changed data item.

 Transaction T commits by writing <T commit> to the log.

 If a transaction T aborts, the transaction log record is consulted, and required undo

operations are performed.

Example

 Again, consider the two transactions, T0 and T1, given in figure, where T0 executes

before T1.

 Also consider that initial values for A, B and C are 500, 600 and 700 respectively.

7 – Transaction Processing

 The following figure shows the transaction log for above two transactions at three different

instances of time. Note that, here, transaction log contains original values also along with

new updated values for data items.

 If failure occurs in case of -

 Undo the transaction T0 as it has not committed, and restore A and B to 500 and 600

respectively.

 Undo the transaction T1, restore C to 700; and, Redo the Transaction T0 set A and B to

400 and 700 respectively.

 Redo the Transaction T0 and Transaction T0; and, set A and B to 400 and 700

respectively, while set C to 500.

Time Instance (a) Time Instance (b) Time Instance (c)

<T0 start> < T0 start> < T0 start>

< T0, A, 500, 400> < T0, A, 500, 400> < T0, A, 500, 400>
< T0, B, 600, 700> < T0, B, 600, 700> < T0, B, 600, 700>

 < T0 commit> < T0 commit>

 <T1 start> < T1 start>

 <T1, C, 700, 500> < T1, C, 700, 500>

 < T1 commit>

Explain system recovery procedure with Checkpoint record concept.

Problems with Deferred & Immediate Updates

 Searching the entire log is time-consuming.

 It is possible to redo transactions that have already been stored their updates to the
database.

Checkpoint

 A point of synchronization between database and transaction log file.

 Specifies that any operations executed before this point are done correctly and stored
safely.

 At this point, all the buffers are force-fully written to the secondary storage.

 Checkpoints are scheduled at predetermined time intervals

 Used to limit -

1. The size of transaction log file

2. Amount of searching, and

3. Subsequent processing that is required to carry out on the transaction log file.

When failure occurs

 Find out the nearest checkpoint.

 If transaction has already committed before this checkpoint, ignore it.

 If transaction is active at this point or after this point and has committed before failure,

redo that transaction.

 If transaction is active at this point or after this point and has not committed, undo that

7 – Transaction Processing

T1

T2

T3

T4

transaction.

Example

 Consider the transactions given in following figure. Here, Tc indicates checkpoint, while

Tf indicates failure time.

 Here, at failure time -

1. Ignore the transaction T1 as it has already been committed before checkpoint.

2. Redo transaction T2 and T3 as they are active at/after checkpoint, but have
committed before failure.

3. Undo transaction T4 as it is active after checkpoint and has not committed.

Time Tc Tf

Checkpoint Time Failure

Explain Shadow Paging Technique.

Concept

 Shadow paging is an alternative to transaction-log based recovery techniques.

 Here, database is considered as made up of fixed size disk blocks, called pages. These
pages are mapped to physical storage using a table, called page table.

 The page table is indexed by a page number of the database. The information about
physical pages, in which database pages are stored, is kept in this page table.

 This technique is similar to paging technique used by Operating Systems to allocate
memory, particularly to manage virtual memory.

 The following figure depicts the concept of shadow paging.

Execution of Transaction

 During the execution of the transaction, two page tables are maintained.

1. Current Page Table: Used to access data items during transaction execution.

2. Shadow Page Table: Original page table, and will not get modified during
transaction execution.

 Whenever any page is about to be written for the first time

1. A copy of this page is made onto an free page,

2. The current page table is made to point to the copy,

3. The update is made on this copy.

7 – Transaction Processing

Page 5
Page 1

Page 4

Page 2

Page 3
Page 6

1

 6

 5

 4

 3

2 














 1

 6

 5

 4

 3

 2

 At the start of the transaction, both tables are same and point· to same pages.

 The shadow page table is never changed, and is used to restore the database in case of any

failure occurs. However, current page table entries may change during transaction

execution, as it is used to record all updates made to the database.

 When the transaction completes, the current page table becomes shadow page table. At

this time, it is considered that the transaction has committed.

 The following figure explains working of this technique.

 As shown in this figure, two pages - page 2 & 5 - are affected by a transaction and
copied to new physical pages. The current page table points to these pages.

 The shadow page table continues to point to old pages which are not changed by the
transaction. So, this table and pages are used for undoing the transaction.

Pages Page Table

Current Shadow

Page Tale Pages Page Table

Advantages

 No overhead of maintaining transaction log.

 Recovery is quite faster, as there is no any redo or undo operations required.

Disadvantages

 Copying the entire page table is very expensive.

 Data are scattered or fragmented.

 After each transaction, free pages need to be collected by garbage collector. Difficult to
extend this technique to allow concurrent transactions.

Page 5(old)
Page 1

Page 4

Page 2(old)
Page 3

Page 6

Page 2(new)

Page 5(new)

7 – Transaction Processing

What is concurrency? What are the methods to control

concurrency?

Concurrency

 Concurrency is the ability of a database to allow multiple (more than one) users to access
data at the same time.

Methods to control concurrency (Mechanisms)

 Optimistic - Delay the checking of whether a transaction meets the isolation and other

integrity rules (e.g., serializability and recoverability) until its end, without blocking any

of its (read, write) operations and then abort a transaction to prevent the violation, if the

desired rules are to be violated upon its commit. An aborted transaction is immediately

restarted and re-executed, which incurs an obvious overhead. If not too many transactions

are aborted, then being optimistic is usually a good strategy.

 Pessimistic - Block an operation of a transaction, if it may cause violation of the rules,

until the possibility of violation disappears. Blocking operations is typically involved with

performance reduction.

 Semi-optimistic - Block operations in some situations, if they may cause violation of

some rules, and do not block in other situations while delaying rules checking (if needed)

to transaction's end, as done with optimistic.

Methods to control concurrency (Methods)

 Locking (Two-phase locking - 2PL) - Controlling access to data by locks assigned to the

data. Access of a transaction to a data item (database object) locked by another transaction

may be blocked (depending on lock type and access operation type) until lock release.

 Serialization graph checking (also called Serializability, or Conflict, or Precedence

graph checking) - Checking for cycles in the schedule's graph and breaking them by

aborts.

 Timestamp ordering (TO) - Assigning timestamps to transactions, and controlling or
checking access to data by timestamp order.

 Commitment ordering (Commit ordering or CO) - Controlling or checking

transactions' chronological order of commit events to be compatible with their respective

precedence order.

What are the three problems due to concurrency? How the problems can be avoided.

Three problems due to concurrency

1. The lost update problem: This problem indicate that if two transactions T1 and T2

both read the same data and update it then effect of first update will be overwritten by

the second update.

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Serializability
http://en.wikipedia.org/wiki/Serializability#Correctness_-_recoverability
http://en.wikipedia.org/wiki/Two-phase_locking
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Timestamp-based_concurrency_control

7 – Transaction Processing

T1 Time T2

--- T0 ---

Read X T1 ---

--- T2 Read X

Update X T3 ---

--- T4 Update X

--- T5 ---

How to avoid: In above example a transaction T2 must not update the data item (X)
until the transaction T1 can commit data item (X).

2. The dirty read problem: The dirty read arises when one transaction update some

item and then fails due to some reason. This updated item is retrieved by another

transaction before it is changed back to the original value.

T1 Time T2

--- T0 ---

--- T1 Update X

Read
X

T2 ---

--- T3 Rollback

--- T5 ---

How to avoid: In above example a transaction T1 must not read the data item (X)

until the transaction T2 can commit data item (X).

3. The incorrect retrieval problem: The inconsistent retrieval problem arises when one

transaction retrieves data to use in some operation but before it can use this data

another transaction updates that data and commits. Through this change will be
hidden from first transaction and it will continue to use previous retrieved data. This
problem is also known as inconsistent analysis problem.

Balance (A=200 B=250 C=150)

T1 Time T2

--- T0 ---

Read (A)

Sum 200

T1 ---

Read (B)

Sum Sum + 250 = 450

T2 ---

--- T3 Read (C)

--- T4 Update (C)

150 150 – 50 = 100

--- T5 Read (A)

--- T6 Update (A)

200 200 + 50 = 250

--- T7 COMMIT

Read (C)

Sum Sum + 100 = 550

T8 ---

7 – Transaction Processing

How to avoid: In above example a transaction T2 must not read or update data item

(X) until the transaction T1 can commit data item (X).

What is concurrency control? Why Concurrency control is needed?

Concurrency control

 The technique is used to protect data when multiple users are accessing (using) same data
concurrently (at same time) is called concurrency control.

Concurrency control needed

 If transactions are executed serially, i.e., sequentially with no overlap in time, no

transaction concurrency exists. However, if concurrent transactions with interleaving

operations are allowed in an uncontrolled manner, some unexpected, undesirable result may

occur. Here are some typical examples:

1. The lost update problem: This problem indicates that if two transactions T1 and T2

both read the same data and update it then effect of first update will be overwritten by

the second update.

2. The dirty read problem: The dirty read arises when one transaction updates some

item and then fails due to some reason. This updated item is retrieved by another

transaction before it is changed back to the original value.

3. The incorrect retrieval problem: The inconsistent retrieval problem arises when one

transaction retrieves data to use in some operation But before it can use this data

another transaction update that data and commits. Through this change will be hidden

from first transaction and it will continue to use previous retrieved data. This problem

is also known as inconsistent analysis problem.

 Most high-performance transactional systems need to run transactions concurrently to meet

their performance requirements. Thus, without concurrency control such systems can

neither provide correct results nor maintain their databases consistent.

Define lock. Define locking. Explain lock based protocol.

Lock

 A lock is a variable associated with data item to control concurrent access to that data
item.

 Lock requests are made to concurrency-control manager.

 Transaction can proceed only after request is granted.

Locking

 One major problem in databases is concurrency.

 Concurrency problems arise when multiple users try to update or insert data into a database
table at the same time. Such concurrent updates can cause data to become corrupt or
inconsistent.

 Locking is a strategy that is used to prevent such concurrent updates to data.

Lock based protocol

 A lock is a mechanism to control concurrent access to a data item

7 – Transaction Processing

 Data items can be locked in two modes :

1. Exclusive (X) mode. Data item can be both read as well as written. X-lock is

requested using lock-X instruction.

2. Shared (S) mode. Data item can only be read. S-lock is requested using lock-S

instruction.

 Lock requests are made to concurrency-control manager.

 Transaction can proceed only after request is granted.

 Lock-compatibility matrix

 S X

S TRUE FALS

E

X FALS
E

FALS
E

 A transaction may be granted a lock on an item if the requested lock is compatible with
locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item, but if any transaction holds

an exclusive on the item no other transaction may hold any lock on the item.

 If a lock cannot be granted, the requesting transaction is made to wait till all incompatible

locks held by other transactions have been released. The lock is then granted.

T1 T2 Concurrency

Control
Manager

Lock-

X(B)

Read(B
) B=B-
50

Write(B)
Unlock(B
)

Lock-

X(A)

Read(A

)
A=
A+
50

Write
(A)
Unlo
ck(A)

Lock-S(A)

Read (A) Unlock(A) Lock-S(B)

Read (B) Unlock(B) Display(A+B)

7 – Transaction Processing

Grant-X(B,T1)

Grant-S(A,T2)

Grant-S(B,T2)

Grant-X(A,T1)

7 – Transaction Processing

 This locking protocol divides transaction execution phase into three parts.

1. In the first part, when transaction starts executing, transaction seeks grant for locks it

needs as it executes.

2. Second part is where the transaction acquires all locks and no other lock is required.

Transaction keeps executing its operation.

3. As soon as the transaction releases its first lock, the third phase starts. In this phase a

transaction cannot demand for any lock but only releases the acquired locks.

Lock

acquisition

phase

Lock releasing

phase

T begin T end Time

Explain two phase locking protocol. What are its advantages and disadvantages? OR

Explain two phase locking. Explain its advantage and

disadvantage.

Two-Phase Locking Protocol

 The use of locks has helped us to create neat and clean concurrent schedule.

 The Two Phase Locking Protocol defines the rules of how to acquire the locks on a data
item and how to release the locks.

 Two phase locking (2PL) is a concurrency control method that guarantees serializability.
 The protocol utilizes locks, applied by a transaction on data, which may block (stop) other

transactions from accessing the same data during the transaction's life.

 The Two Phase Locking Protocol assumes that a transaction can only be in one of two
phases.

Phase 1 - Growing Phase

 In this phase the transaction can only acquire locks, but cannot release any lock.

 The transaction enters the growing phase as soon as it acquires the first lock it

wants.

 From now on it has no option but to keep acquiring all the locks it would need.

 It cannot release any lock at this phase even if it has finished working with a
locked data item.

 Ultimately the transaction reaches a point where all the lock it may need has been
acquired. This point is called Lock Point.

Phase 2 - Shrinking Phase

 After Lock Point has been reached, the transaction enters the shrinking phase.

http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Serializability
http://en.wikipedia.org/wiki/Lock_(computer_science)

7 – Transaction Processing

 In this phase the transaction can only release locks, but cannot acquire any new
lock.

 The transaction enters the shrinking phase as soon as it releases the first lock after
crossing the Lock Point.

 From now on it has no option but to keep releasing all the acquired locks.

 Initially the transaction is in growing phase, that is the transaction acquires locks as

needed.

 Once the transaction releases lock, it enters the shrinking phase and no more lock request

may be issued.

 Upgrading of lock is not possible in shrinking phase, but it is possible in growing phase.

 The two phase locking protocol ensures serializability.

 There are two different versions of the Two Phase Locking Protocol.

1) Strict Two Phase Locking Protocol

2) Rigorous Two Phase Locking Protocol.

Explain strict two phase locking. Explain its advantage and disadvantage.

Strict Two Phase Locking Protocol

 In this protocol, a transaction may release all the shared locks after the Lock Point has

been reached, but it cannot release any of the exclusive locks until the transaction commits

or aborts.

 This ensures that any data is written by an uncommitted transaction are locked in exclusive

mode until the transaction commits and preventing other transaction from reading that data.

 This protocol solves dirty read problem.

Rigorous Two Phase Locking Protocol

In Rigorous Two Phase Locking Protocol, a transaction is not allowed to release any lock

(either shared or exclusive) until it commits. This means that until the transaction commits,

other transaction might acquire a shared lock on a data item on which the uncommitted

transaction has a shared lock; but cannot acquire any lock on a data item on which the

uncommitted transaction has an exclusive lock.

Advantages

 Recovery is very easy.

Disadvantages

 Concurrency is reduced

Explain time stamp based protocol.

Time stamp based protocol

 This protocol uses either system time or logical counter to be used as a time-stamp.

 Every transaction has a time-stamp associated with it and the ordering is determined by the

age of the transaction.

7 – Transaction Processing

 A transaction created at 0002 clock time would be older than all other transaction, which
come after it.

 For example, any transaction 'y' entering the system at 0004 is two seconds younger and
priority may be given to the older one.

 In addition, every data item is given the latest read and write-timestamp. This lets the

system know, when last read was and write operation made on the data item.

Time stamp ordering protocol

 The timestamp-ordering protocol ensures serializability among transaction in their

conflicting read and writes operations.

 This is the responsibility of the protocol system that the conflicting pair of tasks should be

executed according to the timestamp values of the transactions.

 Time-stamp of Transaction Ti is denoted as TS(Ti).

 Read time-stamp of data-item X is denoted by R-timestamp(X).

 Write time-stamp of data-item X is denoted by W-timestamp(X).

 Timestamp ordering protocol works as follows:

 If a transaction Ti issues read(X) operation:

 If TS(Ti) < W-timestamp(X)

 Operation rejected.

 If TS(Ti) >= W-timestamp(X)

 Operation executed.

 All data-item Timestamps updated.

 If a transaction Ti issues write(X) operation:

 If TS(Ti) < R-timestamp(X)

 Operation rejected.

 If TS(Ti) < W-

timestamp(X)

 Operation rejected and Ti rolled back.

 Otherwise, operation executed.

What is deadlock? Explain wait-for-graph. When it occurs?

OR

Define deadlock. Explain wait-for-graph. Explain different

conditions that lead to deadlock.

Deadlock

 A deadlock is a condition when two or more transactions are executing and each

transaction is waiting for the other to finish but none of them are ever finished. So all the

transactions will wait for infinite time and not a single transaction is completed.

7 – Transaction Processing

Wait for
Table 2 Hold by

Transaction 2 Transaction 1

Wait-for-graph

 In the above figure there are two transactions 1 and 2 and two table’s as table1 and table
2.

 Transaction 1 hold table 1 and wait for table 2. Transaction 2 hold table 2 and wait for
table 1.

 Now the table 1 is wanted by transaction 2 and that is hold by transaction 1 and same way

table 2 is wanted by transaction 1 and that is hold by transaction 2. Until any one can’t get

this table they can’t precede further so this is called wait for graph. Because both of these
transaction have to wait for some resources.

When dead lock occurs

 A deadlock occurs when two separate processes struggle for resources are held by one
another.

 Deadlocks can occur in any concurrent system where processes wait for each other and a

cyclic chain can arise with each process waiting for the next one in the chain.

 Deadlock can occur in any system that satisfies the four conditions:

1. Mutual Exclusion Condition: only one process at a time can use a resource or
each resource assigned to 1 process or is available.

2. Hold and Wait Condition: processes already holding resources may request new
resources.

3. No Preemption Condition: only a process holding a resource can release it

voluntarily after that process has completed its task or previously granted resources

cannot forcibly taken away from any process.

4. Circular Wait Condition: two or more processes forms circular chain where each

process requests a resource that the next process in the chain holds.

Explain deadlock detection and recovery.

Resource-Allocation Graph

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

1. P = {P1, P2, …, Pn}, the set consisting of all the processes in the

system.

Held by
Table 1

Wait for

7 – Transaction Processing

P1 P2 P3

R4 R2

R3 R1

P1 P2 P3

R4 R2

R3 R1

2. R = {R1, R2, …, Rm}, the set consisting of all resource types in the

system.

 request edge – directed edge Pi → Rj

 assignment edge – directed edge Rj → Pi

 Process -

 Resource

 Process Pi requests resource Rj -

 Process Pi is holding resource Rj

 If graph contains no cycles then no deadlock.

 If graph contains cycles then deadlock.

No cycle (circular chain)

created So no

deadlock

Cycle (circular chain) created

(P2, R3, P3, R4, P2) So

deadlock

 When a deadlock is detected, the system must recover from the deadlock.
 The most common solution is to roll back one or more transactions to break the deadlock.

 Choosing which transaction to abort is known as Victim Selection.

 In the above wait-for graph transactions R3 and R4 are deadlocked.

 In order to remove deadlock one of the transaction out of these two (R3, R4) transactions
must be roll backed.

 We should rollback those transactions that will incur the minimum cost.
 When a deadlock is detected, the choice of which transaction to abort can be made using

following criteria:

 The transaction which have the fewest locks

 The transaction that has done the least work

 The transaction that is farthest from completion

–

7 – Transaction Processing

Explain deadlock prevention methods. OR

Explain methods to prevent deadlock.

Deadlock prevention

 A protocols ensure that the system will never enter into a deadlock state.

 Some prevention strategies :

 Require that each transaction locks all its data items before it begins execution

(predeclaration).

 Impose partial ordering of all data items and require that a transaction can lock

data items only in the order specified by the partial.

 Following schemes use transaction timestamps for the sake of deadlock prevention

alone.

1. Wait-die scheme — non-preemptive

• If an older transaction is requesting a resource which is held by younger

transaction, then older transaction is allowed to wait for it till it is available.

• If an younger transaction is requesting a resource which is held by older

transaction, then younger transaction is killed.

2. Wound-wait scheme — preemptive

• If an older transaction is requesting a resource which is held by younger

transaction, then older transaction forces younger transaction to kill the

transaction and release the resource.

• If an younger transaction is requesting a resource which is held by older

transaction, then younger transaction is allowed to wait till older transaction will

releases it.

3. Timeout-Based Schemes :

• A transaction waits for a lock only for a specified amount of time. After that, the

wait times out and the transaction is rolled back. So deadlocks never occur.

• Simple to implement; but difficult to determine good value of the timeout

interval.

 Wait/Die Wound/Wait

O needs a resource held by Y O waits Y dies

Y needs a resource held by O Y dies Y waits

8 – Database Security

What is data security? (Define data security). What are the objectives while designing secure

database?

Data security

 Data security is the protection of the data from unauthorized users.

 Only the authorized users are allowed to access the data.

 Most of the users are allowed to access a part of database i.e., the data that is related to

them or related to their department.

 Mostly, the DBA or head of department can access all the data in the database.

 Some users may be permitted only to retrieve data, whereas others are allowed to retrieve as
well as to update data.

 The database access is controlled by the DBA.

 He/she creates the accounts of users and gives rights to access the database.

 Users or group of users are given usernames protected by passwords.

 The user enters his/her account number (or user name) and password to access the data
from database.

 For example, if you have an account in the "yahoo.com", then you have to give your correct
username and password to access your account of e-mail.

 Similarly, when you insert your ATM card into the Automated Teller Machine (ATM), the

machine reads your ID number printed on the card and then asks you to enter your pin code

(or password). In this way you can access your account.

What is the difference between security and integrity?

Data Security Data Integrity

Data security defines a prevention of data

corruption through the use of controlled

access mechanisms.

Data integrity defines a quality of data, which

guarantees the data is complete and has a

whole structure.

Data security deals with protection of data Data integrity deals with the validity of data

Data security is making sure only the people
who should have access to the data are the

only ones who can access the data.

Data integrity is making sure the data is
correct and not corrupt.

Data security refers to the making sure that
data is accessed by its intended users, thus

ensuring the privacy and protection of data.

Data integrity refers to the structure of the data
and how it matches the schema of the

database.

Authentication/authorization, encryptions

and masking are some of the popular means of

data security.

Backing up, designing suitable user interface

and error detection/correction in data are some

of the means to preserve integrity.

8 – Database Security

Explain (Describe) data encryption in detail (brief). OR

Write short note on data encryption OR

Data encryption

 Encryption is a technique of encoding data, so that only authorized user can understand
(read) it.

 The data encryption technique converts readable data into unreadable data by using some

techniques so that unauthorized person cannot read it

Data encryption process

 In above figure sender having data that he/she wants to send his/her data is known as

plaintext.

 In first step sender will encrypt data (plain text) using encryption algorithm and some key.

 After encryption the plaintext becomes ciphertext.

 This ciphertext is not able to read by any unauthorized person.

 This ciphertext is send to receiver.

 The sender will send that key separately to receiver.

 Once receiver receives this ciphertext, he/she will decrypt it by using that key send by
sender and decryption algorithm.

 After applying decryption algorithm and key, receiver will get original data (plaintext) that

is sended by sender.

 This technique is used to protect data when there is a chance of data theft.

 In such situation if encrypted data is theft then it cannot be used (read) directly without
knowing the encryption technique and key.

8 – Database Security

 There are two different method of data encryption

1. Symmetric key encryption / Private key encryption

 In symmetric key schemes, the encryption and decryption keys are the same.

 This same key is used by the sender to encrypt the data, and again by the

receiver to decrypt the data.

 Symmetric encryption is fast in execution.

2. Asymmetric key encryption / Public key encryption

 In asymmetric key schemes, the encryption and decryption keys are the different

(Public Key and Private Key).

 Messages are encrypted by sender with one key (Public Key) and can be

decrypted by receiver only by the other key (Private Key).

 Asymmetric Encryption is slow in execution due to the high computational

burden.

Explain types of access control methods of data security OR

Explain discretionary access control and mandatory access control of data security.

 There are two different methods of data access control:-

1. Discretionary access control

2. Mandatory access control

Discretionary access control

 In this method, user is given access rights (privileges) to access database object or data
items such as table or view.

 This method is based on the concept of access rights and mechanisms for giving rights to
user.

 In this method a single user can have different rights on different data items, as well as
different user can have different rights on the same data item.

 SQL support discretionary access control through the GRANT and REVOKE commands.

GRANT

 This command gives rights to user for a data items.

Syntax:-

GRANT privilege ON object TO user [WITH GRANT OPTION]

REVOKE

 This command takes back rights from user for a data items.

Syntax:-

REVOKE privilege ON object FROM user {RESTRICT/CASCADE}

 Privileges are various operations that we will perform on table or view E.g. INSERT,
UPDATE, DELETE, SELECT etc.

8 – Database Security

 Object is table or view or any data item.

 User is the name of user.

 The grant option is used when user wants to pass the rights to other user. Means if a user

get a rights with the grant option then he/she can give this rights to another user.

 When user executes a REVOKE command with the cascade option then it will take back

given rights from all the users who get those rights from this user.

Mandatory access control

 In this method individual user cannot get rights. But all the users as well as all the objects

are classified into different categories. Each user is assigned a clearance level and each

object is assigned a security level.

 A user can access object of particular security level only if he has proper clearance level.
 The DBMS determines whether a given user can read or write a given object based on

some rules.

 This rule contains security level of object and clearance level of the user.

 This rule makes sure that sensitive data can never be passed to a user without necessary

clearance.

Components

 The commonly used mandatory access control technique for multi-level security uses four
components as given below

1. Subjects:-Such as users, accounts, programs etc.

2. Objects:-Such as relation (table), tuples (records), attribute (column), view etc.

3. Clearance level:-Such as top secret (TS), secret (S), confidential (C),

Unclassified (U). Each subject is classified into one of these four classes.

4. Security level: -Such as top secret (TS), secret (S), confidential (C), Unclassified (U).

Each object is classified into one of these four classes.

 In the above system TS>S>C>U, where TS>S means class TS data is more sensitive than

class S data.

Rules:-

 A user can access data by following two rules

1. Security property:-

 Security property states that a subject at a given security level may not read an
object at a higher security level.

2. Star (*) security property:-

 Star (*) property states that a subject at a given security level may not write to

any object at a lower security level.

Role based access control (RBAC) rules

 Role based access control (RBAC) rules

 It restricts database access based on a person's role within an organization. The roles in

RBAC refer to the levels of access that employees have to the network.

 Employees are only allowed to access the information necessary to effectively perform

their job duties.

8 – Database Security

 Access can be based on several factors, such as authority, responsibility, and job
competency.

 In addition, access to computer resources can be limited to specific tasks such as the
ability to view, create, or modify a file.

 Lower-level employees usually do not have access to sensitive data if they do not need it

to fulfil their responsibilities.

 Using RBAC will help in securing your company’s sensitive data and important

applications.

What is Intrusion Detection System?

 An Intrusion Detection System (IDS) is a system or software application that monitors

network traffic or system for suspicious activity or policy violations and issues alerts when

such activity is discovered.

 It is a software application that scans a network or a system for harmful activity or policy
breaching.

 Any malicious venture or violation is normally reported either to an administrator or
collected centrally using a security information and event management (SIEM) system.

 A SIEM system integrates outputs from multiple sources and uses alarm filtering
techniques to differentiate malicious activity from false alarms.

Types of Intrusion Detection Systems (IDS)

1. Network Intrusion Detection Systems (NIDS)

2. Host Intrusion Detection Systems (HIDS)

3. Knowledge-based (Signature-based) IDS

4. Behavior-based (Anomaly-based) IDS

Features of an Intrusion Detection System:

 It monitors and analysis the user and system activities.

 It performs auditing of the system files and other configurations and the operating system.

 It assesses the integrity of system and data files

 It conducts analysis of patterns based on known attacks.

 It detects errors in system configuration.

 It detects and cautions if the system is in danger.

Advantages of Intrusion Detection Systems

 The network or computer is constantly monitored for any invasion or attack.

 The system can be modified and changed according to needs of specific client and can

help outside as well as inner threats to the system and network.

 It effectively prevents any damage to the network.

 It provides user friendly interface which allows easy security management systems.

 Any alterations to files and directories on the system can be easily detected and reported.

8 – Database Security

What is SQL injection?

 SQL injection, also known as SQLI, is a common attack vector that uses malicious SQL

code for backend database manipulation to access information that was not intended to be

displayed.

 This information may include any number of items, including sensitive company data, user
lists or private customer details.

 A successful attack may result in the unauthorized viewing of user lists, the deletion of

entire tables, gaining administrative rights to a database, all of which are highly

detrimental to a business.

What is authorization and authentication? OR

What is difference between authorization and authentication?

Authorization Authentication

It is protecting the data to ensure privacy and
access control of data. Authorization is giving

access to authorized users.

Authentication is providing integrity control
and security to the data.

Authorization is the process of verifies what

you are authorized to do or not to do.

Authentication is the process of verifying who

you are.

Accessing a file from hard disk is authorization

because the permissions are given to you to

access that file allow you access it that is
authorization.

Logging on to a PC with a username and
password is authentication.

What is audit trail (audit log)?

 An audit trail (audit log) is one record which will be generated against each and every

transactions.

 Regarding the transaction, it will keep certain information.

 An audit trail (audit log) records

1. Who (user or the application program and a transaction number)

2. When (date and time)

3. From where (location of the user and/or terminal)

4. What (identification of the data affected, as well as a before-and-after image of
that portion of the database that was affected by the update operation)

9 – SQL Concepts

Oracle constraints

Referential

integrity
Entity integrity

Key constraints Domain integrity

constraint

1. Not null
2. Check

1. Unique
2. Primary key

1. Foreign key

What is constraint? Explain types of constraints. OR

What are integrity constraints? Explain various types of integrity constraints with

suitable example.

 A constraint is a rule that restricts the values that may be present in the database.

 Constraints can be mainly classified in to two categories.

1. Entity integrity constraints

2. Referential integrity constraints

Not Null constraint

 A null value indicates ‘not applicable’, ‘missing’, or ‘not known’.

 A null value is distinct from zero or blank space.

 A column, defined as a not null, cannot have a null value.

 Such a column becomes a mandatory (compulsory) column and cannot be left empty for any
record.

 Syntax : ColumnName datatype (size) NOT NULL

 Example :

create table Account (ano int,

Balance decimal(8,2) NOT NULL,

Branch varchar(10));

 Now, if we insert NULL value to Balance column then it will generate an error.

Check constraint

 The check constraint is used to implement business rule. So, it is also called business rule

constraint.

 Example of business rule: A balance in any account should not be negative.

 Business rule define a domain for a particular column.

9 – SQL Concepts

 The check constraint is bound to a particular column.
 Once check constraint is implemented, any insert or update operation on that table must

follow this constraint.

 If any operation violates condition, it will be rejected.

 Syntax : ColumnName datatype (size) check(condition)

 Example :

create table Account (ano int,

Balance decimal(8,2) CHECK (balance >= 0),
Branch varchar(10));

 Any business rule validations can be applied using this constraint.

 A condition must be some valid logical expression.

 A check constraint takes longer time to execute.

 On violation of this constraint, oracle display error message like – “check constraint

violated”.

Unique Constraint

 Sometime there may be requirement that column cannot contain duplicate values.

 A column, defined as a unique, cannot have duplicate values across all records.

 Syntax : ColumnName datatype (size) UNIQUE

 Example :

create table Account (ano int UNIQUE,

Balance decimal(8,2),

Branch varchar(10));

 Though, a unique constraint does not allow duplicate values, NULL values can be
duplicated in a column defined as a UNIQUE column.

 A table can have more than one column defined as a unique column.
 If multiple columns need to be defined as composite unique column, then only table level

definition is applicable.

 Maximum 16 columns can be combined as a composite unique key in a table.

Primary key Constraint

 A primary key is a set of one or more columns used to identify each record uniquely in a
column.

 A single column primary key is called a simple key, while a multi-column primary key is
called composite primary key.

 Oracle provides a primary key constraint to define primary key for a table.

 A column, defined as a primary key, cannot have duplicate values across all records and

cannot have a null value.

 Syntax : ColumnName datatype (size) primary key

9 – SQL Concepts

 Example :

create table Account (ano int NOT NULL PRIMARY KEY,

Balance decimal(8,2),
Branch varchar(10));

 A primary key constraint is combination of UNIQUE constraint and NOT NULL constraint.

 A table cannot have more than one primary key.

 If multiple columns need to be defined as primary key column, then only table level

definition is applicable.

 Maximum 16 columns can be combined as a composite primary key in a table.

Foreign Key Constraint

 A foreign key constraint is also called referential integrity constraint, is specified

between two tables.

 This constraint is used to ensure consistency among records of the two tables.

 The table, in which a foreign key is defined, is called a foreign table, detail table or child
table.

 The table, of which primary key or unique key is defined, is called a primary table,
master table or parent table.

 Restriction on child table :

 Child table contains a foreign key. And, it is related to master table.
 Insert or update operation involving value of foreign key is not allowed, if

corresponding value does not exist in a master table.

 Restriction on master table :
 Master table contains a primary key, which is referred by foreign key in child

table.

 Delete or update operation on records in master table are not allowed, if

corresponding records are present in child table.

 Syntax : ColumnName datatype (size) REFERENCES TableName (ColumnName)

 Example :

create table Account (ano int,

Balance decimal(8,2),

BranchID varchar(10) REFERENCES branchs(branchID));

 Master table must be exist before creating child table.

Explain DDL, DML, DCL and DQL. OR

Describe component of SQL.

DDL (Data Definition Language)

 It is a set of SQL commands used to create, modify and delete database objects such as
tables, views, indices, etc.

 It is normally used by DBA and database designers.

9 – SQL Concepts

 It provides commands like:

 CREATE: to create objects in a database.

 ALTER: to alter the schema, or logical structure of the database.

 DROP: to delete objects from the database.

 TRUNCATE: to remove all records from the table.

CREATE: Create is used to create the database or its objects like table, view, index etc.

 Create Table

The CREATE TABLE statement is used to create a new table in a database.

Syntax:

CREATE TABLE

table_name (

Column1 Datatype(Size) [NULL | NOT
NULL], Column2 Datatype(Size) [NULL |
NOT NULL],

...

);

Example:

CREATE TABLE

Students (

Explanation:

Roll_No int(3) NOT NULL,

Name varchar(20),
Subject varchar(20)

);

 The column should either be defined as NULL or NOT NULL. By default, a column can
hold NULL values.

 The NOT NULL constraint enforces a column to NOT accept NULL values. This enforces

a field to always contain a value, which means that you cannot insert a new record, or

update a record without adding a value to this field.

ALTER: ALTER TABLE statement is used to add, modify, or drop columns in a table.

 Add Column

The ALTER TABLE statement in SQL to add new columns in a table.

Syntax:

ALTER TABLE table_name

ADD Column1 Datatype(Size), Column2 Datatype(Size), … ;

Example:

ALTER TABLE
Students ADD Marks
int;

 Drop Column

9 – SQL Concepts

The ALTER TABLE statement in SQL to drop a column in a table.

9 – SQL Concepts

Syntax:

ALTER TABLE table_name

DROP COLUMN

column_name;

Example:

ALTER TABLE Students
DROP COLUMN Subject;

 Modify Column

The ALTER TABLE statement in SQL to change the data type/size of a column in a table.

Syntax:

ALTER TABLE table_name

ALTER COLUMN column_name datatype(size);

Example:

ALTER TABLE Students

ALTER COLUMN Roll_No float;

DROP: Drop is used to drop the database or its objects like table, view, index etc.

 Drop Table

The DROP TABLE statement is used to drop an existing table in a database.

Syntax:

DROP TABLE table_name;

Example:

DROP TABLE Students;

TRUNCATE: Truncate is used to remove all records from the table.

Syntax:

TRUNCATE TABLE table_name;

Example:

TRUNCATE TABLE Students;

DML (Data Manipulation Language)

 It is a set of SQL commands used to insert, modify and delete data in a database.

 It is normally used by general users who are accessing database via pre-developed
applications.

 It provides commands like:

 INSERT: to insert data into a table.

 UPDATE: to modify existing data in a table.

 DELETE: to delete records from a table.

INSERT: The INSERT STATEMENT is used to insert data into a table.

9 – SQL Concepts

Syntax:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

OR
INSERT INTO table_name
VALUES (value1, value2, value3, ...);

Example:

INSERT INTO Students (Roll_No,Name,Subject)
VALUES (1,’anil’,’Maths’);

UPDATE: The UPDATE STATEMENT is used to modify existing data in a table.

Syntax:

UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

Example:

UPDATE Students

SET Name= ‘Mahesh’

WHERE Roll_No=1;

DELETE: The DELETE STATEMENT is used to delete records from a table.

Syntax:

DELETE FROM table_name

WHERE condition;

Example:

DELETE FROM Students

WHERE Subject=’Maths’;

DQL (Data Query Language)

 It is a component of SQL that allows data retrieval from the database.

 It provides command like SELECT. This command is a heart of SQL, and allows data

retrieval in different ways.

SELECT: The SELECT statement is used to select data from a database. The data returned
is stored in a result table, called the result-set.

Syntax:

SELECT column1, column2, ...

FROM table_name
WHERE condition;

OR
SELECT *
FROM table_name
WHERE condition;

9 – SQL Concepts

Example:
SELECT *
FROM Students

WHERE

Roll_No>=1;

DCL (Data Control Language)

 It is set of SQL commands used to control access to data and database. Occasionally DCL

commands are grouped with DML commands.

 It provides commands like:

 GRANT: to give access privileges to users on the database.

 REVOKE: to withdraw access privileges given to users on the database.

TCL (Transaction Control Language)

 TCL is abbreviation of Transactional Control Language. It is used to manage different

transactions occurring within a database.

 COMMIT – Saves work done in transactions

 ROLLBACK – Restores database to original state since the last COMMIT command

in transactions

 SAVE TRANSACTION – Sets a save point within a transaction.

Explain Transaction Control Commands. OR

Explain commit, rollback and savepoint command.

 Transaction Control Command (TCL) is a set of SQL commands that are used to control

transactional processing in a database.

 A transaction is logical unit of work that consists of one or more SQL statements, usually

a group of Data Manipulation Language (DML) statements.

 Transaction Control Commands (TCL) commands include

1. COMMIT:

 COMMIT command is used to permanently save any transaction into the database.

 When we use any DML command like INSERT, UPDATE or DELETE, the changes

made by these commands are not permanent, until the current session is closed, the

changes made by these commands can be rolled back.

 To avoid that, COMMIT is used to mark the changes as permanent.

Example: Consider following table

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

3 Mahesh 7

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Data_Manipulation_Language

9 – SQL Concepts

BEGIN TRANSACTION t1

DELETE FROM STUDENT WHERE SPI

<8; COMMIT TRANSACTION t1;

Output:

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

Note:

 A transaction is a set of operations performed so that all operations are

guaranteed to succeed or fail as one unit.

 If you place the BEGIN TRANSACTION before your SQL statement, the

transaction will automatically turn into the explicit transaction and it will

lock the table until the transaction is committed or rolled back.

2. ROLLBACK:

 The ROLLBACK command is the transactional control command used to undo

transactions that have not already been saved to the database.

 Rollbacks a transaction to the beginning of the transaction.

 It is also used with SAVEPOINT command to jump to a savepoint in an ongoing

transaction.

 You can use ROLLBACK TRANSACTION to erase all data modifications made

from the start of the transaction or to a savepoint.

Example: Consider following table

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

3 Mahesh 7

BEGIN TRANSACTION t1

DELETE FROM STUDENT WHERE SPI

<8; ROLLBACK TRANSACTION t1;

9 – SQL Concepts

Output:

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

3 Mahesh 7

3. SAVEPOINT:

 A SAVEPOINT is a point in a transaction when you can roll the transaction back to a

certain point without rolling back the entire transaction.

 The ROLLBACK command is used to undo a group of transactions.

Example: Consider following table

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

3 Mahesh 7

BEGIN

TRANSACTION t1

SAVE

TRANSACTION s1

INSERT INTO Student Values (4,’Anil’,6);

SAVE TRANSACTION s2

INSERT INTO Student Values (5, Gita’,9);

ROLLBACK TRANSACTION s2;

Output:

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

3 Mahesh 7

4 Anil 6

9 – SQL Concepts

Explain Security Privileged Commands. OR

Explain Grant and Revoke command. OR

Explain Data Control Language (DCL) Commands.

 DCL commands are used to enforce (implement) database security in a multiple user

database environment.

 These commands are used to give or take back permission on any object to/from any user.

 Two types of DCL commands are GRANT and REVOKE.

 Only Database Administrator or owner of the database object can provide/remove

privileges on a database object.

1. GRANT: GRANT is a command used to provide access or privileges or rights on

the database objects to the users.

Syntax:

GRANT privilege_name

ON object_name

TO {user_name

|PUBLIC} [WITH

GRANT OPTION];

Explanation:
 privilege_name is the access right or privilege granted to the user. Some of

the access rights are ALL, EXECUTE, and SELECT.

 object_name is the name of an database object like TABLE, VIEW,

STORED PROC and SEQUENCE.

 user_name is the name of the user to whom an access right is being granted.

 PUBLIC is used to grant access rights to all users.
 WITH GRANT OPTION - allows a user to grant (give) access rights to

other users.

2. REVOKE: The REVOKE is a command used to take back access or privileges or

rights on the database objects from the users.

Syntax:

REVOKE

privilege_name ON

object_name

FROM {user_name |PUBLIC }

Explanation:

 privilege_name is the access right or privilege want to take back from the

user. Some of the access rights are ALL, EXECUTE, and SELECT.

9 – SQL Concepts

 object_name is the name of an database object like TABLE, VIEW,
STORED PROC and SEQUENCE.

 user_name is the name of the user from whom an access right is being taken
back.

 PUBLIC is used to take back access rights to all users.

Explain “on delete cascade” with example.

 A foreign key with cascade delete means that if a record in the Parent (Master) table is

deleted, then the corresponding records in the Child (Foreign) table with automatically be

deleted. This is called a cascade delete in Oracle.

 A foreign key with a cascade delete can be defined in either a CREATE TABLE
statement or an ALTER TABLE statement.

 Syntax (Create table)

CREATE TABLE

table_name (

column1 datatype null/not null,

column2 datatype null/not null,

...

CONSTRAINT fk_column

FOREIGN KEY (column1, column2, ... column_n)

REFERENCES parent_table (column1, column2, ...

column_n) ON DELETE CASCADE

);

 Syntax (Alter table)

ALTER TABLE table_name

ADD CONSTRAINT constraint_name

FOREIGN KEY (column1, column2, ... column_n)

REFERENCES parent_table (column1, column2, ...

column_n) ON DELETE CASCADE;

Describe the following SQL functions.

SQL Function Descriptio

n

SQL Query Example

Math function
Abs(n) Returns the absolute value of n. Select Abs(-15);

O/P : 15
Sign(n) Returns the sign of x as -1,0,1 Select Sign(-15);

O/P : -1

9 – SQL Concepts

Ceiling(n) Returns the smallest integer value

that is smaller than or equal to

a number.

Select ceil(24.8);

O/P : 25

Floor(n) Returns the largest integer value
that is greater than or equal to a

number.

Select Floor(24.8);

O/P : 24

Power (m,n) Returns m raised to nth power. Select power(3,2);

O/P : 9
Round (n,m) Returns n rounded to m places the

right of decimal point.

Select round(15.91,1);

O/P : 15.9
Square(n) Returns square of n. Select Square(4);

O/P : 16
Sqrt(n) Returns square root of n. Select sqrt(25);

O/P : 5
Exp(n) Returns e raised to the nth power,

e=2.17828183.

Select

exp(1); O/P :

1

X%Y Returns reminder of X modulus Y. Select 5%3;

O/P : 2
Pi() Returns the value of pi. Select Pi();

O/P : 3.14159265358979
Sin(n) Returns the sine value of n. Select Sin(0);

O/P : 0
Cos(n) Returns the cosine value of n. Select Cos(0);

O/P : 1
Tan(n) Returns the tangent value of n. Select Tan(0);

O/P : 0
Rand(n) Returns a random decimal number

between 0 and 1.

Select Rand();

O/P : 0.845610816728278
Log(n) Returns the log value of n having

base e.

Select Log(1);

O/P : 0
Log10(n) Returns the log value of n having

base 10.

Select Log10(1000);

O/P : 3

String function

ASCII(x) Returns ASCII value of character. Select ASCII(‘A’);

O/P : 65
Char(x) Returns a character of int ASCII

code.

Select CHAR(65);

O/P : A
Concat() Concatenates two strings. Select CONCAT(‘great’,’DIET’);

O/P : greatDIET
Len () Returns the number of character in

x.

Select LEN(‘DIET’);

O/P : 4
Lower() Converts the string to lower case. Select LOWER(‘DIET’);

O/P : diet

9 – SQL Concepts

Upper() Converts the string to upper case. Select UPPER(‘diet’);

O/P : DIET
Ltrim() Trim blanks from the left of x. Select LTRIM(‘ diet ’);

O/P : diet

9 – SQL Concepts

Rtrim() Trim blanks from the right of x. Select RTRIM(‘ diet ’);

O/P : diet
Replace() Looks for the string and replace the

string every time it occurs.

Select Replace(‘this is

college’,’is’,’may be’);

O/P :thmay be may be college
Substring() Returns the part of string Select Substring(‘this is college’,6,7);

O/P : is my c
Left() Returns the specified number of

characters from the left.

Select Left(‘this is college’,7);

O/P : this is
Right() Returns the specified number of

characters from the right.

Select Right(‘this is college’,7);

O/P : college
Reverse() Returns the reversed string. Select Reverse(‘DIET’);

O/P : TEID
Space() Returns n number of spaces Select Space(10);

O/P :
Replicate() Returns repeated string for n

number of times.

Select Replicate(‘DIET’,2);

O/P :DIETDIET

Date function

Getdate() Returns current date and time. Select Getdate();

O/P : 2018-09-08 10:42:02.113
Day() Returns day of a given date. Select Day(‘23/JAN/2018’);

O/P : 23
Month() Returns month of a given date. Select Month(‘23/JAN/2018’);

O/P : 1
Year() Returns year of a given date. Select Year(‘23/JAN/2018’);

O/P : 2018
Isdate() Returns 1 if the expression is a

valid

date, otherwise 0.

Select Isdate(‘31/FEB/2018’);

O/P : 0

Datename() Returns the specified part of a
given

date as varchar value.

Select Datename(month,‘1-23-2018’);

O/P : January

Datepart() Returns the specified part of a
given

date as int value.

Select Datepart(month,‘1-23-2018’);

O/P : 1

Dateadd() Returns datetime after adding n

numbers of datepart to a given

date.

Select Dateadd(day,5,‘23/JAN/2018’);

O/P : 2018-01-28 00:00:00.000

Datediff() Returns the difference between two
date values, based on the interval

specified.

Select Datediff(day,5,

‘23/JAN/2018’,’23/FEB/2018’);

O/P : 31
Eomonth() Returns the last day of month. Select Eomonth(’23/FEB/2018’);

O/P : 2018-01-31

Discuss aggregate functions with example(s).

9 – SQL Concepts

 Aggregate functions perform a calculation on a set of values and return a single value.

 Aggregate functions ignore NULL values except COUNT(*).

 It is used with the GROUP BY clause of the SELECT statement.

9 – SQL Concepts

Example: Consider following table

Student

Rollno Name SPI

1 Raju 8

2 Hari 9

3 Mahesh 7

4 NULL 9

5 Anil 5

1. Avg() : It returns the average of the data values.

Select Avg(SPI) FROM Student;

Output: 7

2. Sum() : It returns the addition of the data values.

Select Sum(SPI) FROM Student;

Output: 38

3. Max() : It returns maximum value for a column.

Select Max(SPI) FROM Student;

Output: 9

4. Min() : It returns Minimum value for a column.

Select Min(SPI) FROM Student;

Output: 5

5. Count() : It returns total number of values in a given column.

Select Count(Name) FROM Student;

Output: 4

6. Count(*) : It returns the number of rows in a table.

Select Count(*) FROM Student;

Output: 5

What is join? List and explain various types of joins.

 A SQL Join statement is used to combine data or rows from two or more tables based on a

common field between them.

 Different types of Joins are:

 Inner Join

 Outer Join

1. Left Outer Join

2. Right Outer Join

3. Full Outer Join

 Cross join

 Self Join

9 – SQL Concepts

INNER JOIN

 It returns records that have matching values in both tables.

Syntax:

SELECT columns

FROM table1 INNER JOIN table2

ON table1.column = table2.column;

Example:

Consider the following tables:

SELECT Student.RNO, Student.Name, Student.Branch,
Result.SPI FROM Student

INNER JOIN Result

ON Student.RNO = Result.RNO;

Output:

Inner Join

RNO Name Branc
h

SPI

101 Raju CE 8.8

102 Amit CE 9.2

104 Neha EC 8.2

105 Meera EE 7

LEFT OUTER JOIN

 The LEFT JOIN keyword returns all records from the left table (table1), and the matched
records from the right table (table2).

 The result is NULL from the right side, if there is no match.

Syntax:

SELECT columns

FROM table1 LEFT OUTER JOIN

table2 ON table1.column =

table2.column;

Example:

Result

RNO SPI
101 8.8

102 9.2

104 8.2
105 7

107 8.9

Student

RNO Name Branch
101 Raju CE

102 Amit CE

103 Sanjay ME
104 Neha EC

105 Meera EE
106 Mahesh ME

9 – SQL Concepts

Consider the Student and result tables:

9 – SQL Concepts

SELECT Student.RNO, Student.Name, Student.Branch,
Result.SPI FROM Student LEFT OUTER JOIN Result

ON Student.RNO = Result.RNO;

Output:

Left Join

RNO Name Branc

h

SPI

101 Raju CE 8.8

102 Amit CE 9.2

103 Sanjay ME NUL
L

104 Neha EC 8.2

105 Meera EE 7

106 Mahesh ME NUL
L

RIGHT OUTER JOIN

 The RIGHT JOIN keyword returns all records from the right table (table2), and the
matched records from the left table (table1).

 The result is NULL from the left side, if there is no match.

Syntax:

SELECT columns

FROM table1 RIGHT OUTER JOIN

table2 ON table1.column =

table2.column;

Example:

Consider the Student and result tables:

SELECT Student.RNO, Student.Name, Student.Branch,

Result.SPI FROM Student RIGHT OUTER JOIN Result

ON Student.RNO = Result.RNO;

Output:

Right Join

RNO Name Branch SPI

101 Raju CE 8.8

102 Amit CE 9.2

104 Neha EC 8.2

105 Meera EE 7

NUL

L

NULL NULL 8.9

FULL OUTER JOIN

 The FULL OUTER JOIN keyword return all records when there is a match in either left

9 – SQL Concepts

(table1) or right (table2) table records.

9 – SQL Concepts

Syntax:

SELECT columns

FROM table1 FULL OUTER JOIN
table2 ON table1.column =
table2.column;

Example:

Consider the Student and result tables:

SELECT Student.RNO, Student.Name, Student.Branch,
Result.SPI FROM Student FULL OUTER JOIN Result

ON Student.RNO = Result.RNO;

Output:

Full Join

RNO Name Branch SPI

101 Raju CE 8.8

102 Amit CE 9.2

103 Sanjay ME NUL
L

104 Neha EC 8.2

105 Meera EE 7

106 Mahesh ME NUL
L

NUL

L

NULL NULL 8.9

CROSS JOIN

 When each row of first table is combined with each row from the second table, known as
Cartesian join or cross join.

 SQL CROSS JOIN returns the number of rows in first table multiplied by the number of
rows in second table.

Syntax:

SELECT columns

FROM table1 CROSS JOIN table2;

Example:

Consider the following tables:

SELECT Color.Code, Color.Name,

Size.Amount FROM Color CROSS JOIN

Size;

Size
Amount

Small

Large

Color
Code Name

1 Red

2 Blue

9 – SQL Concepts

Output:

Cross Join

Code Name Amount

1 Red Small

2 Blue Small

1 Red Large

2 Blue Large

SELF JOIN

 A self join is a regular join, but the table is joined with itself.

 Here, we need to use aliases for the same table to set a self join between single table.

Syntax:

SELECT a.column, b.column

FROM tablename a CROSS JOIN tablename
b WHERE a.column=b.column;

Example:

Consider the following table:

Employee

EmpN

o

Name MngrN

o

E01 Tarun E02

E02 Rohan E05

E03 Priya E04

E04 Milan NULL

E05 Jay NULL

E06 Anjana E03

SELECT e.Name as Employee, m.Name as

Employee FROM Employee e INNER JOIN

Employee m

ON e.MngrNo=m.EmpNo;

Output:

Employee

Employe
e

Manage
r

Tarun Rohan

Rohan Jay

Priya Milan

Anjana Priya

Define view. What are the types of view? Write syntax to create view of each type. Give an

example of view.

9 – SQL Concepts

 Views are virtual tables that are compiled at runtime.

9 – SQL Concepts

 The data associated with views are not physically stored in the view, but it is stored in the
base tables of the view.

 A view can be made over one or more database tables.
 Generally, we put those columns in view that we need to retrieve/query again and again.

 Once you have created the view, you can query view like as table.

TYPES OF VIEW

1. Simple View

2. Complex View

Syntax:

CREATE VIEW

view_name AS

SELECT column1, column2...

FROM table_name
[WHERE
condition];

Simple View

 When we create a view on a single table, it is called simple view.

 In a simple view we can delete, update and Insert data and that changes are applied on

base table.

 Insert operation are perform on simple view only if we have primary key and all not null

fields in the view.

Example:

Consider following table:

Employee

Eid Ename Salary Department

101 Raju 5000 Admin

102 Amit 8000 HR

103 Sanjay 3000 IT

104 Neha 7000 Sales

--Create View

CREATE VIEW

EmpSelect AS

SELECT Eid, Ename, Department

FROM Employee;

--Display View

Select * from EmpSelect;

9 – SQL Concepts

Output

Eid Ename Department

101 Raju Admin

102 Amit HR

103 Sanjay IT

104 Neha Sales

Complex View

 When we create a view on more than one table, it is called complex view.

 We can only update data in complex view.

 You can't insert data in complex view.
 In particular, complex views can contain: join conditions, a group by clause, an order by

clause etc.

Example:

Consider following table:

--Create View

CREATE VIEW
Empview AS

SELECT Employee.Eid, Employee.Ename,
ConcactDetails.City FROM Employee Inner Join
ConcactDetails

On Employee.Eid= ConcactDetails.Eid;

--Display View

Select * from Empview;

Output

Eid Ename City

101 Raju Rajkot

102 Amit Ahmedabad

103 Sanjay Baroda

104 Neha Rajkot

ContactDetails
Eid City Mobile

101 Rajkot 1234567890

102 Ahmedabad 2345678901

103 Baroda 3456789120

104 Rajkot 4567891230

Employee
Eid Ename Salary Department

101 Raju 5000 Admin

102 Amit 8000 HR

103 Sanjay 3000 IT

104 Neha 7000 Sales

9 – SQL Concepts

What is materialized view? Explain Query optimization with materialized view.

 View: View is just a named query. It doesn't store anything. When there is a query on
view, it runs the query of the view definition. Actual data comes from table.

A view uses a query to pull data from the underlying tables.
 Materialized views: Stores data physically and get updated periodically. While querying

MV, it gives data from MV.

A materialized view is a table on disk that contains the result set of a query.

 Materialized views are primarily used to increase application performance when it isn't
feasible or desirable to use a standard view with indexes applied to it.

Materialized views can be updated on a regular basis either through triggers or by using

the ON COMMIT REFRESH option.

10 – PL/SQL Concepts

1

Explain the advantages of PL/SQL.

Advantages of PL/SQL

 Block structure: PL/SQL consist of block of code, which can be nested within each

other. Each block forms a unit of a task or a logical module. PL/SQL blocks can be stored

in the database and reused.

 Procedural language capability: PL/SQL consist of procedural constructs such as

conditional statements (if, if else, nested if, else if ladder) and loops (for, while, do while).

 Better performance: PL/SQL engine processes multiple SQL statements simultaneously

as a single block, thereby reducing network traffic.

 Error handling: PL/SQL handles errors or exceptions effectively during the execution of

PL/SQL program. Once an exception is caught, specific action can be taken depending

upon the type of the exception or it can be displayed to the user with message.

Write short note on stored procedure in PL/SQL. OR

Explain stored procedures in PL/SQL.

 A stored procedure (proc) is a group of PL/SQL statements that performs specific task.

 A procedure has two parts, header and body.

 The header consists of the name of the procedure and the parameters passed to the

procedure.

 The body consists of declaration section, execution section.

 A procedure may or may not return any value. A procedure may return more than one

value.

General Syntax to create or Alter a procedure

CREATE [OR ALTER] PROCEDURE proc_name [list of

parameters] Declaration section

AS

Explanation

Execution section

Create:-It will create a procedure.

Alter:- It will re-create a procedure if it already exists.

We can pass parameters to the procedures in three ways.

1. IN-parameters: - These types of parameters are used to send values to stored procedures.

2. OUT-parameters: - These types of parameters are used to get values from stored

procedures. This is similar to a return type in functions but procedure can return values

for more than one parameters.

3. IN OUT-parameters: - This type of parameter allows us to pass values into a procedure

and get output values from the procedure.

AS indicates the beginning of the body of the procedure.

The syntax within the brackets [] indicates that they are optional.

10 – PL/SQL Concepts

2

By using CREATE OR ALTER together the procedure is created if it does not exist and if it

exists then it is replaced with the current code (The only disadvantage of CREATE OR ALTER

is that it does not work in SQL Server versions prior to SQL Server 2016).

How to execute a Stored Procedure?

 There are two ways to execute a procedure.

1) From the SQL prompt.

Syntax: EXECUTE [or EXEC] procedure_name (parameter);

2) Within another procedure – simply use the procedure name.

Syntax: procedure_name (parameter);

Example 1 (Using IN)

CREATE PROCEDURE

get_studentname_by_id @id int

AS

BEGI

N

END;

SELECT

studentname FROM

stu_tbl

WHERE studentID = @id;

Execute:- EXECUTE get_studentname_by_id 10; OR

get_studentname_by_id 10;

Explanation:- Above procedure gives the name of student whose id is 10.

Example 2 (Using OUT)

CREATE PROCEDURE

multiplication @mult1

int,

@mult2 int, @result

int OUTPUT

AS

BEGI

N

END

SELECT @result = @mult1 * @mult2

Execute:- DECLARE @result int

EXEC multiplication 5,6,@result

output PRINT @result

Explanation:- Above procedure gives the multiplication of 5 and 6 that is equal to 30.

10 – PL/SQL Concepts

3

Advantages of procedure

 Security:- We can improve security by giving rights to selected persons only.

 Faster Execution:- It is precompiled so compilation of procedure is not required every

time you call it.

 Sharing of code:- Once procedure is created and stored, it can be used by more than one

user.

 Productivity:- Code written in procedure is shared by all programmers. This eliminates

redundant coding by multiple programmers so overall improvement in productivity.

Explain database trigger with example. OR

Write short note on database triggers in PL/SQL. OR

What is trigger? Explain its type with their syntax.

 A trigger is a PL/SQL block structure which is triggered (executed) automatically when

DML statements like Insert, Delete, and Update is executed on a table.

 There are three types of triggers.

 Data Definition Language (DDL) triggers

 In SQL Server we can create triggers on DDL statements (like CREATE,

ALTER and DROP) and certain system-defined Stored Procedures that

does DDL-like operations.

 Data Manipulation Language (DML) triggers

 In SQL Server we can create triggers on DML statements (like INSERT,

UPDATE and DELETE) and Stored Procedures that do DML-like

operations. DML Triggers are of two types.

1. After trigger (using FOR/AFTER CLAUSE)

 After trigger (using FOR/AFTER CLAUSE): After triggers are

executed after completing the execution of DML statements.

 Example: If you insert a record/row into a table then the trigger

related/associated with the insert event on this table will executed

only after inserting the record into that table.

 If the record/row insertion fails, SQL Server will not execute the

after trigger.

 Instead of trigger (using INSTEAD OF CLAUSE)

 Instead of Trigger (using INSTEAD OF CLAUSE) : Instead of

trigger are executed before starts the execution of DML statements.

 An instead of trigger allows us to skip an INSERT, DELETE, or

UPDATE statement to a table and execute other statements defined

in the trigger instead. The actual insert, delete, or update operation

does not occur at all.

 Example: If you insert a record/row into a table then the trigger

related/associated with the insert event on this table will be

executed before inserting the record into that table.

10 – PL/SQL Concepts

4

 If the record/row insertion fails, SQL Server will execute the Instead

of Trigger.

 Logon triggers

 This type of trigger is executed against a LOGON event before a user session is

established to the SQL Server.

 We cannot pass parameters into triggers like stored procedure.

 Triggers are normally slow.

 When triggers can be used,

 Based on change in one table, we want to update other table.

 Automatically update derived columns whose values change based on other

columns.

 Logging.

 Enforce business rules.

Syntax of Trigger

CREATE [OR ALTER] TRIGGER

trigger_name ON table_name

{ FOR | AFTER | INSTEAD OF }

{ [INSERT] [,] [UPDATE] [,] [DELETE] }

AS

BEGI

N

END;

Executable statements

CREATE [OR ALTER] TRIGGER trigger_name:- This clause creates a trigger with the

given name or overwrites an existing trigger.

[ON table_name]:- This clause identifies the name of the table to which the trigger is related.

[FOR | AFTER | INSTEAD OF]:- This clause indicates at what time the trigger should be fired.

FOR and AFTER are similar.

[INSERT / UPDATE / DELETE]:- This clause determines on which kind of statement the

trigger should be fired. Either on insert or update or delete or combination of any or all. More

than one statement can be used together separated by Comma. The trigger gets fired at all the

specified triggering event.

Example 1

Trigger to display a message when we perform insert operation on student table.

CREATE TRIGGER

student_msg on Student

AFTER INSERT

10 – PL/SQL Concepts

5

AS

BEGI

N

END

print ‘Record inserted successfully'

OUTPUT:- Trigger is created.

 Now when you perform insert operation on student table.

Insert into student values (1, ’Raj’, ‘CE’);

It displays following message after executing insert statement.

Output:- (1 row(s) affected)

Record inserted successfully

Example 2

Trigger to insert history into Audit table when we perform insert operation on student table.

CREATE TRIGGER

tgr_student_forinsert ON Student

FOR

INSERT

AS

BEGIN

DECLARE @id int

SELECT @rno= rno from

INSERTED INSERT INTO Audit

VALUES

('New student with rno=‘ + cast(@rno as varchar(10)) +

'is added in student table ‘)

END

OUTPUT:- Trigger is created.

 Explanation:- Now when you perform insert operation on student table.

Insert into student values (1, ’Raj’, ‘CE’);

It insert one record in Audit table as “'New student with rno = 1 is added

in student table”

What is cursor? Explain with example. OR

Write short note on cursors and its types.

 Cursors are database objects used to traverse the results of a select SQL query.

 It is a temporary work area created in the system memory when a select SQL statement is

executed.

 This temporary work area is used to store the data retrieved from the database, and

manipulate this data.

10 – PL/SQL Concepts

6

 It points to a certain location within a record set and allow the operator to move forward

(and sometimes backward, depending upon the cursor type).

10 – PL/SQL Concepts

7

 We can process only one record at a time.

 The set of rows the cursor holds which is called the active set (active data set).

 Cursors are often criticized for their high overhead.

 There are two types of cursors in PL/SQL:

1. Implicit cursors:

 These are created by default by ORACLE itself when DML statements

like, insert, update, and delete statements are executed.

 They are also created when a SELECT statement that returns just one row

is executed.

 We cannot use implicit cursors for user defined work.

2. Explicit cursors:

 Explicit cursors are user defined cursors written by the developer.

 They can be created when a SELECT statement that returns more than one

row is executed.

 Even though the cursor stores multiple records, only one record can be

processed at a time, which is called as current row.

 When you fetch a row, the current row position moves to next row.

Steps to manage explicit cursor:-

1) Declare a cursor:-

A cursor is defined in the declaration section of PL/SQL block.

Syntax:-

DECLARE cursorname CURSOR FOR SELECT ………

2) Open a cursor:-

Once cursor is declared we can open it.

When cursor is opened following operations are performed.

a. Memory is allocated to store the data.

b. Execute SELECT statement associated with cursor

c. Create active data set by retrieving data from table

d. Set the cursor row pointer to point to first record in active data set.

Syntax:-

OPEN cursorname;

3) Fetching data:-

We cannot process selected row directly. We have to fetch column values of a row into

memory variables. This is done by FETCH statement.

Syntax:-

FETCH NEXT FROM cursorname INTO variable1, variable2………

4) Processing data:-

This step involves actual processing of current row.

10 – PL/SQL Concepts

8

5) Closing cursor:-

A cursor should be closed after the processing of data completes. Once you close the

cursor it will release memory allocated for that cursor.

Syntax:-

CLOSE cursorname;

6) Deallocating cursor:-

It is used to delete a cursor and releases all resources used by cursor.

Syntax:-

DEALLOCATE cursorname;

Example 1:- Cursor to insert record from student table to student1 table if branch is CE. DECLARE

@rno int, @name varchar(50),@branch varchar(50);

DECLARE cursor_student CURSOR

FOR SELECT rno, name, branch FROM

student; OPEN cursor_student;

FETCH NEXT FROM cursor_student INTO @rno, @name,

@branch; WHILE @@FETCH_STATUS = 0

BEGI

N

END;

IF (@branch='CE')

INSERT INTO student1 values (@rno, @name, @branch)

FETCH NEXT FROM cursor_student INTO @rno, @name,

@branch;

CLOSE cursor_student;

DEALLOCATE

cursor_student;

Example 2:- Cursor to update SPI (SPI=SPI-7) if SPI remains greater than or equal to ZERO after

update.

DECLARE

@rno int, @spi decimal(8,2);

DECLARE cursor_student

CURSOR FOR SELECT rno, spi

FROM student;

OPEN cursor_student;

FETCH NEXT FROM cursor_student

INTO @rno, @spi;

WHILE

@@FETCH_STATUS = 0

BEGIN

set @spi=@spi-

10 – PL/SQL Concepts

9

7 if (@spi<0)

10 – PL/SQL Concepts

10

else
print 'SPI must be greater than 0'

update student

set spi=@spi

where rno=@rno

FETCH NEXT FROM cursor_student

INTO @rno, @spi;

END;

CLOSE cursor_student;

DEALLOCATE

cursor_student;

Write a PL/SQL block to print the sum of Numbers from 1 to 50.

DECLARE

@V1 INT,

@SUM INT

SET @V1 = 1

SET @SUM =

0

WHILE (@V1 <=

50) BEGIN

SET @SUM = @SUM +

@V1 SET @V1 = @V1 +

1

END

PRINT @SUM

Write a PL/SQL block to print the given number is Odd or Even.

DECLARE @V1 INT

SET @V1 =

20 BEGIN

IF @V1%2 = 0

PRINT 'NO IS

EVEN'; ELSE

PRINT ' NO IS ODD';

END

Write a PL/SQL block to print sum of even numbers between 1 and 20.

DECLARE

@V1 INT,

@SUM INT

SET @V1 = 1

SET @SUM =

0

10 – PL/SQL Concepts

11

WHILE (@V1 <=

20) BEGIN

IF @V1%2 = 0

SET @SUM = @SUM +

@V1 SET @V1 = @V1 +

1

END

PRINT @SUM

Write a PL/SQL program for inserting even numbers in EVEN table and odd number in

ODD table from number 1 to 50.

DECLARE

@V1 INT

SET

@V1=1

WHILE (@V1 <=

50) BEGIN

IF

@V1%2=0

BEGIN

EN

D

ELSE

BEGI

N

END

INSERT INTO EVEN (NO) VALUES (@V1);

INSERT INTO ODD (NO) VALUES (@V1);

SET @V1 = @V1

+ 1 END

	Vision of Institute
	Course Outcomes
	Database Management System (4CS4-05)

	Mapping of Course Outcomes with Program Outcomes (CO – PO Mapping)
	Define the following terms.
	Information
	Database
	DBMS (Database Management System)
	Metadata
	Data dictionary
	Data warehouse
	Field
	Record

	Explain disadvantages of file system (file processing systems) compare to Database management system. OR Explain disadvantages of conventional file-based system compared to Database management system.
	Data Redundancy
	Data Inconsistency
	Difficulty in Accessing Data
	Limited Data Sharing
	Integrity Problems
	Atomicity Problems
	Concurrent Access Anomalies
	Security Problems

	Explain advantages (benefits) of DBMS over file management system. OR
	Minimal Data Redundancy (Duplication)
	Shared Data
	Data Consistency
	Data Access
	Data Integrity
	Data Security
	Concurrent Access
	Guaranteed Atomicity

	List and explain the applications of DBMS.
	Airlines and railways
	Banking
	Education
	Telecommunications
	Credit card transactions
	E-commerce
	Health care information systems and electronic patient record
	Digital libraries and digital publishing
	Finance
	Sales
	Human resources

	Describe functions (responsibility, roles, and duties) of DBA to handle DBMS.
	DBA
	Schema Definition
	Storage Structure and Access Method Definition
	Defining Security and Integrity Constraints
	Granting of Authorization for Data Access
	Liaison with Users
	Assisting Application Programmers
	Monitoring Performance
	Backup and Recovery

	Explain three levels ANSI SPARC Database System. OR
	Internal Level
	Conceptual Level
	External Level

	Explain Mapping. OR
	Mapping
	Types of Mapping
	Conceptual/Internal Mapping
	External/Conceptual Mapping

	Explain Data Independence.
	Data Independence
	Types of data independence
	Physical data independence
	Logical data independence

	Explain Data Abstraction in DBMS.
	Explain different database users.
	Application programmers
	Sophisticated users
	Specialized users
	Naive users

	Differentiate the DA and DBA.
	Components of a DBMS
	Query Processor Units:
	Storage Manager Units:

	Explain database system 3 tier architecture with clear diagram in detail.
	Database (Data) Tier
	Application (Middle) Tier
	User (Presentation) Tier
	Entity
	Entity sets
	Relationship
	Relationship set
	Attributes
	Types of attributes
	Descriptive attributes
	Recursive relationship set
	Degree of relationship
	Explain various mapping cardinality (cardinality constraint).
	Mapping cardinality (cardinality constraints)
	One-to-one relationship
	One-to-many relationship
	Many-to-one relationship
	Many-to-many relationship

	Explain various participation constraints.
	Participation constraints
	Total participation
	Partial participation

	Explain weak entity set with the help of example.
	Weak entity set

	Explain the Superclass and Subclass in E-R diagram with the help of example.
	Superclass
	Subclass

	Explain the difference between Specialization and Generalization in E-R diagram.
	Specialization
	Generalization

	Explain types of constraints on specialization and Generalization.
	Disjoint Constraint
	1. Disjoint Constraint
	2. Non-disjoint (Overlapping)

	Participation Constraint
	1. Total (Mandatory)
	2. Partial (Optional)

	Explain aggregation in E-R diagram.
	Explain the steps to reduce the ER diagram to ER database schema.
	Step 1: Entities and Simple Attributes:
	Step 2: Multi-Valued Attributes
	Step 3: 1:1 Relationship
	OR
	Step 5: N:N Relationships

	What is E-R model (Entity-Relationship) model (diagram) also draw various symbols using in E-R diagram.
	E-R model

	What is a Database Models?
	1. Hierarchical Model
	2. Network Model
	3. Entity-relationship Model
	4. Relational Model
	5. Object-oriented database model

	What is Integrity Constraints?

	Explain keys.
	Super key
	Candidate key
	Primary key
	Alternate key
	Foreign key

	What is relational algebra? Explain relational algebraic operation.
	Selection:-
	Projection:-
	Division:-
	 The output of the division operator will have attributes =
	 The output of the division operator will have tuples =
	 Symbol: ÷

	Cartesian product:-
	 Resultant Relation :
	 Example:
	 Symbol: ⋈
	 Example: (1)

	The Outer Join Operation
	Left outer join ()
	Right outer join ()
	Full outer join ()
	Set Operators
	 Condition to perform set operation:
	 Types of set operators:

	Union
	 Example :
	 Example:
	 Example
	 Example: (1)
	 Example : (1)
	 Example: (2)

	Aggregate Function:-
	 Symbol: G

	What is the difference between Open source and Commercial DBMS.
	(i) Find out list of customer who have account at ‘abc’ branch.
	(ii) Find out all customer who have an account in ‘Ahmedabad’ city and balance
	(iii) find out list of all branch name with their maximum balance.

	Define functional dependency. OR
	Functional Dependency
	Diagrammatic representation
	Types of Functional Dependencies Full Dependency
	Partial Dependency
	Transitive Dependency
	Trivial FD:
	Nontrivial FD

	List and explain Armstrong's axioms (inference rules).
	Reflexivity
	Augmentation
	Transitivity
	Pseudo Transitivity
	Self-determination
	Decomposition
	Union
	Composition

	What is closure of a set of FDs? How to find closure of a set of FDs.
	Closure of set of functional dependency (FDs)
	Example-1
	Suppose a relation R is given with attributes A, B, C, G, H and I. Also, a set of functional dependencies F is given with following FDs. F = {A → B, A → C, CG → H, CG → I, B → H}

	Example-2
	Compute the closure of the following set F of functional dependencies for relational schema R = (A, B, C, D, E, F):

	Example-3
	Compute the closure of the following set F of functional dependencies for relational schema R = (A, B, C, D, E):

	What is closure of a set of attributes? Explain how (Write an algorithm) to find closure of a set of attributes.
	Closure of set of attributes
	Algorithm
	begin

	Solution

	Given relation R with attributes A,B, C,D,E,F and set of FDs as A → BC, E → CF, B → E and CD → EF.
	Steps to find the closure {A, B}+
	So Closure of {A, B}+ is {A, B, C, E, F}.

	A canonical cover for F is a set of dependencies Fc such that:
	Algorithm to find Canonical cover:
	Steps to find Canonical Cover:

	What is decomposition? Explain different types of decomposition.
	Decomposition
	Lossy Decomposition
	Example
	Lossless (Non-loss) Decomposition
	Example (1)

	What is an anomaly in database design? How it can be solved.
	Anomaly in database design:
	Insert anomaly:
	Delete anomaly:
	Update / Modification anomaly:

	How anomalies in database design can be solved:

	What is normalization? What is the need of it? OR What is normalization? Why normalization process is needed? Normalization
	Need of Normalization

	Explain different types of normal forms with example. OR
	1NF
	Example
	Problem
	Solution
	2NF
	Example (1)
	Problem (1)
	Solution (1)
	3NF
	Example (2)
	Problem (2)
	Solution (2)
	BCNF
	Example (3)
	Problem (3)
	Solution (3)
	4NF
	Example (4)
	5NF
	Example (5)

	Normalize (decompose) following relation into lower to higher normal form. (From 1NF to 4 NF) OR
	1 Normal Form (1NF)
	Table-1

	Example to find key
	Consider a relation R with five attribute A, B, C, D and E having following dependencies:
	Keys for R are:

	In the BCNF decomposition algorithm, suppose you use a functional dependency α → β to decompose a relation schema r (α , β , γ) into r1 (α , β) and r2 (α , γ).
	2. Give an example of an inconsistency that can arise due to an erroneous update, if the foreign-key constraint were not enforced on the decomposed relations above.
	3. When a relation is decomposed into 3NF, what primary and foreign key dependencies would you expect will hold on the decomposed schema?
	A college maintains details of its lecturers' subject area skills. These details comprise: Lecturer Number, Lecturer Name, Lecturer Grade, Department Code, Department Name, Subject
	UNF
	1NF
	2NF
	3NF

	A software contract and consultancy firm maintains details of all the various projects in which its employees are currently involved. These details comprise: Employee Number, Employee Name, Date of Birth, Department Code, Department Name, Project Code...
	UNF
	1NF
	2NF
	3NF

	Explain query processing.
	Query processing

	Explain different search algorithm for selection operation. OR Explain linear search and binary search algorithm for selection operation.
	Linear search
	Binary search

	Explain various steps involved in query evaluation. OR Explain query evaluation process. OR Explain evaluation expression process in query optimization.
	Materialization
	Pipelining

	Explain the method of query optimization. OR
	Query optimization

	Explain transformation of relational expression to equivalent relational expression.
	Equivalence rules

	Explain the purpose of sorting with example with reference to query optimization.
	Purpose of Sorting
	2) repeat

	Explain the measures of query cost, selection operation and join. OR
	Measures of query cost
	Selection Operation
	Linear search
	Binary search
	Join

	What is database Index?
	Explain the structure of Index in database.
	Explain different attributes of Indexing.
	The indexing has various attributes:

	Explain different Indexing Methods (Types).
	Different indexing methods are:
	Primary Indexing
	Dense Index
	Sparse Index
	Secondary Index
	Clustering Index
	Searching a record in B-tree

	Explain hashing with its types.
	Types of hashing methods
	Static hashing
	Dynamic hashing
	Transaction
	ACID property
	Consistency
	Isolation
	Durability
	Explain different states in transaction processing in database.
	Active
	Partially Committed
	Failed
	Aborted
	Committed

	Explain following terms.
	Schedule
	T1

	Serial schedule
	Interleaved schedule
	T1

	Equivalent schedules
	Serializable schedule

	Explain serializability of transaction. OR Explain both the forms of serializability with example. Also explain relation between two forms. OR Explain conflict serializability and view serializability with example.
	Conflict serializability
	Example

	View serializability

	Explain two phase commit protocol. OR
	Two phase commit protocol
	Commit Request Phase (Obtaining Decision)
	Commit Phase (Performing Decision)

	What is system recovery?
	Explain Log based recovery method.
	Log based recovery
	Log based Recovery Techniques
	1. Deferred Database Modification

	Explain Deferred Database Modification log based recovery method.
	Concept
	When failure occurs
	Transaction Log
	Example

	Explain Immediate Database Modification log based recovery method.
	Concept
	When failure occurs
	Transaction Log
	Example

	Explain system recovery procedure with Checkpoint record concept.
	Problems with Deferred & Immediate Updates
	Checkpoint
	When failure occurs
	Example

	Explain Shadow Paging Technique.
	Concept
	Execution of Transaction
	Advantages
	Disadvantages

	What is concurrency? What are the methods to control concurrency?
	Concurrency
	Methods to control concurrency (Mechanisms)
	Methods to control concurrency (Methods)

	What are the three problems due to concurrency? How the problems can be avoided.
	Three problems due to concurrency

	What is concurrency control? Why Concurrency control is needed?
	Concurrency control
	Concurrency control needed

	Define lock. Define locking. Explain lock based protocol.
	Lock
	Locking
	Lock based protocol
	T1 T2 Concurrency Control Manager

	Explain two phase locking protocol. What are its advantages and disadvantages? OR
	Two-Phase Locking Protocol
	Phase 1 - Growing Phase
	Phase 2 - Shrinking Phase

	Explain strict two phase locking. Explain its advantage and disadvantage.
	Strict Two Phase Locking Protocol
	Rigorous Two Phase Locking Protocol
	Advantages
	Disadvantages

	Explain time stamp based protocol.
	Time stamp based protocol
	Time stamp ordering protocol

	What is deadlock? Explain wait-for-graph. When it occurs?
	Deadlock
	Wait-for-graph
	When dead lock occurs

	Explain deadlock detection and recovery.
	Resource-Allocation Graph

	Explain deadlock prevention methods. OR Explain methods to prevent deadlock.
	Deadlock prevention

	What is data security? (Define data security). What are the objectives while designing secure database?
	Data security

	What is the difference between security and integrity?
	Explain types of access control methods of data security OR Explain discretionary access control and mandatory access control of data security.
	Discretionary access control
	GRANT
	Syntax:-

	REVOKE
	Syntax:-

	Mandatory access control
	Components
	Rules:-
	Role based access control (RBAC) rules

	What is Intrusion Detection System?
	Types of Intrusion Detection Systems (IDS)
	Features of an Intrusion Detection System:
	Advantages of Intrusion Detection Systems

	What is SQL injection?
	What is authorization and authentication? OR
	What is constraint? Explain types of constraints. OR What are integrity constraints? Explain various types of integrity constraints with suitable example.
	Not Null constraint
	 Example :

	Check constraint
	 Example :

	Unique Constraint
	 Example :

	Primary key Constraint
	 Example :

	Foreign Key Constraint
	 Example :

	Explain DDL, DML, DCL and DQL. OR
	DDL (Data Definition Language)
	 Create Table
	Syntax:
	Example:
	 Add Column
	Syntax: (1)
	Example: (1)
	 Drop Column
	Syntax: (2)
	Example: (2)
	 Modify Column
	Syntax: (3)
	Example: (3)
	 Drop Table
	Syntax: (4)
	Example: (4)
	Syntax: (5)
	Example: (5)

	DML (Data Manipulation Language)
	Syntax:
	Example:
	Syntax: (1)
	Example: (1)
	Syntax: (2)
	Example: (2)

	DQL (Data Query Language)
	Syntax:
	Example:

	DCL (Data Control Language)
	TCL (Transaction Control Language)

	Explain Transaction Control Commands. OR
	1. COMMIT:
	Output:
	2. ROLLBACK:
	Output: (1)
	Output: (2)
	Syntax:
	Explanation:
	Syntax: (1)
	Explanation: (1)

	Explain “on delete cascade” with example.
	Describe the following SQL functions.
	What is join? List and explain various types of joins.
	INNER JOIN
	Syntax:
	Example:
	Output:
	Syntax: (1)
	Example: (1)
	Output: (1)
	Syntax: (2)
	Example: (2)
	Output: (2)
	Syntax: (3)
	Example: (3)
	Output: (3)
	Syntax: (4)
	Example: (4)
	Output: (4)
	Syntax: (5)
	Example: (5)
	Output: (5)
	TYPES OF VIEW
	Syntax: (6)
	Simple View
	Example: (6)
	Complex View
	Example: (7)

	What is materialized view? Explain Query optimization with materialized view.

	Explain the advantages of PL/SQL.
	Advantages of PL/SQL

	Write short note on stored procedure in PL/SQL. OR
	General Syntax to create or Alter a procedure
	Explanation
	How to execute a Stored Procedure?
	Example 1 (Using IN)
	Example 2 (Using OUT)
	Advantages of procedure

	Explain database trigger with example. OR Write short note on database triggers in PL/SQL. OR What is trigger? Explain its type with their syntax.
	 Data Definition Language (DDL) triggers
	 Data Manipulation Language (DML) triggers
	 Logon triggers
	Example 1
	Example 2

	What is cursor? Explain with example. OR
	1. Implicit cursors:
	2. Explicit cursors:
	1) Declare a cursor:-
	Syntax:-
	2) Open a cursor:-
	Syntax:- (1)
	3) Fetching data:-
	Syntax:- (2)
	4) Processing data:-
	5) Closing cursor:-
	Syntax:- (3)
	6) Deallocating cursor:-
	Syntax:- (4)

	Write a PL/SQL block to print the sum of Numbers from 1 to 50.
	Write a PL/SQL block to print the given number is Odd or Even.
	Write a PL/SQL block to print sum of even numbers between 1 and 20.
	Write a PL/SQL program for inserting even numbers in EVEN table and odd number in ODD table from number 1 to 50.

