
Jaipur Engineering College & Research Centre, Jaipur

Notes

Software Engineering

[3CS4 - 07]

Prepared By:

Manju Vyas

Abhishek Jain

Geerija Lavania

VISION AND MISSION OF INSTITUTE

VISION

To become renowned centre of outcome based learning and work towards academic,

professional, cultural and social enrichments of the lives of individual and communities”

MISSION

M1. Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2. Identify areas of focus and provide platform to gain knowledge and solutions based on

informed perception of Indian, regional and global needs.

M3. Offer opportunities for interaction between academia and industry.

M4. Develop human potential to its fullest extent so that intellectually capable and imaginatively

gifted leaders can emerge in a range of professions.

VISION AND MISSION OF DEPARTMENT

VISION

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

MISSION

M1: To impart outcome based education for emerging technologies in the field of computer

science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities.

COURSE OUTCOMES

CO1) understand the purpose of designing a system and evaluate the various models suitable as

per its requirement analysis

CO2) understand and apply software project management, effort estimation and project

scheduling.

CO3) formulate requirement analysis, process behaviour and software designing.

CO4) Implement the concept of object oriented analysis modelling with the reference of UML

and advance SE tools

Program Outcomes (PO)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problemsand design system components or processes that meet thespecified needs with

appropriate consideration for the public health and safety, andthe cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issuesand the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Program Educational Objectives (PEO)

1.To provide students with the fundamentals of Engineering Sciences with more emphasis in

Computer Science & Engineering by way of analyzing and exploiting engineering challenge

2. To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

3. To inculcate professional and ethical attitude, effective communication skills, teamwork skills,

multidisciplinary approach, entrepreneurial thinking and an ability to relate engineering issues

with social issues.

4. To provide students with an academic environment aware of excellence, leadership, written

ethical codes and guidelines, and the self-motivated life-long learning needed for a successful

professional career.

5. To prepare students to excel in Industry and Higher education by Educating Students along

with High moral values and Knowledge.

MAPPING CO-PO

Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1

3 3 3 3 3 2 1 2 1 1 2 3

CO2

3 3 3 3 2 2 1 2 2 2 3 3

CO3

3 3 3 2 2 2 1 2 1 2 2 3

CO4

3 3 3 3 3 1 0 1 1 2 2 3

PSO

PSO1: Ability to interpret and analyze network specific and cyber security issues, automation in

real word environment.

PSO2: Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

SYLLABUS

UNIT 1: Introduction, software life-cycle models, software requirements specification, formal

requirements specification, verification and validation.

UNIT 2: Software Project Management: Objectives, Resources and their estimation, LOC and

FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project

scheduling.

UNIT 3: Requirement Analysis: Requirement analysis tasks, Analysis principles. Software

prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured

Analysis: Data and control flow diagrams, control and process specification behavioral modeling

UNIT 4: Software Design: Design fundamentals, Effective modular design: Data architectural

and procedural design, design documentation.

UNIT 5: Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling.

Object Oriented Design: OOD concepts, Class and object relationships, object modularization,

Introduction to Unified Modeling Language

UNIT -3 REQUIREMENT ANALYSIS

REQUIREMENT ANALYSIS-

Requirements analysis is a software engineering task that bridges the gap between system

level requirements engineering and software design . Requirements engineering activities

result in the specification of software’s operational characteristics (function, data, and

behavior), indicate software's interface with other system elements, and establish constraints

that software must meet. Requirements analysis allows the software engineer (sometimes

called analyst in this role) to refine the software allocation and build models of the data,

functional, and behavioral domains that will be treated by software.

Requirements analysis provides the software designer with a representation of information,

function, and behavior that can be translated to data, architectural, interface, and component-

level designs. Finally, the requirements specification provides the developer and the customer

with the means to assess quality once software is built.

Software requirements analysis may be divided into five areas of effort:

(1) problem recognition,

(2) evaluation and synthesis,

(3) modeling,

(4) specification

(5) review.

Initially, the analyst studies the System Specification (if one exists) and the Software Project

Plan. It is important to understand software in a system context and to review the software

scope that was used to generate planning estimates. Next, communication for analysis must

be established so that problem recognition is ensured. The goal is recognition of the basic

problem elements as perceived by the customer/users.

Problem evaluation and solution synthesis is the next major area of effort for analysis.The

analyst must define all externally observable data objects, evaluate the flow and content of

information, define and elaborate all software functions, understand software behavior in the

context of events that affect the system, establish system interface characteristics, and

uncover additional design constraints. Each of these tasks serves to describe the problem so

that an overall approach or solution may be synthesized.

ANALYSIS PRINCIPLES-

Over the past two decades, a large number of analysis modeling methods have been

developed. Investigators have identified analysis problems and their causes and have

developed a variety of modeling notations and corresponding sets of heuristics to overcome

them. Each analysis method has a unique point of view. However, all analysis methods are

related by a set of operational principles:

1. The information domain of a problem must be represented and understood.

2. The functions that the software is to perform must be defined.

3. The behavior of the software (as a consequence of external events) must be

represented.

4. The models that depict information, function, and behavior must be partitioned

in a manner that uncovers detail in a layered (or hierarchical) fashion.

5. The analysis process should move from essential information toward implementation

detail.

By applying these principles, the analyst approaches a problem systematically. The

information domain is examined so that function may be understood more completely.

Models are used so that the characteristics of function and behavior can be

communicated in a compact fashion. Partitioning is applied to reduce complexity.

Essential and implementation views of the software are necessary to accommodate the logical

constraints imposed by processing requirements and the physical constraints imposed by

other system elements.

Davis suggests a set of guiding principles for requirements engineering:

• Understand the problem before you begin to create the analysis model. There is a

tendency to rush to a solution, even before the problem is understood. This often leads to

elegant software that solves the wrong problem!

• Develop prototypes that enable a user to understand how human/machine interaction will

occur.

Since the perception of the quality of software is often based on the perception of the

“friendliness” of the interface, prototyping (and the iteration that results) are highly

recommended.

• Record the origin of and the reason for every requirement.

This is the first step in establishing traceability back to the customer.

• Use multiple views of requirements.

Building data, functional, and behavioral models provide the software engineer with three

different views. This reduces the likelihood that something will be missed and increases the

likelihood that inconsistency will be recognized.

• Rank requirements.

Tight deadlines may preclude the implementation of every software requirement. If an

incremental process model is applied, those requirements to be delivered in the first

increment must be identified.

• Work to eliminate ambiguity.

Because most requirements are described in a natural language, the opportunity for ambiguity

abounds. The use of formal technical reviews is one way to uncover and eliminate ambiguity.

A software engineer who takes these principles to heart is more likely to develop a software

specification that will provide an excellent foundation for design.

The Information Domain

All software applications can be collectively called data processing. Interestingly, this term

contains a key to our understanding of software requirements. Software is built to process

data, to transform data from one form to another; that is, to accept input, manipulate it in

some way, and produce output. This fundamental statement of objective is true whether we

build batch software for a payroll system or real-time embedded software to control fuel flow

to an automobile engine.

The first operational analysis principle requires an examination of the information

domain and the creation of a data model. The information domain contains three different

views of the data and control as each is processed by a computer program:

(1) information content and relationships (the data model)

(2) information flow, and

(3) information structure.

To fully understand the information domain, each of these

views should be considered.

Information content represents the individual data and control objects that constitute some

larger collection of information transformed by the software. For example, the data object,

paycheck, is a composite of a number of important pieces of data: the payee's name, the net

amount to be paid, the gross pay, deductions, and so forth. Therefore, the content of

paycheck is defined by the attributes that are needed to create it. Similarly, the content of a

control object called system status might be defined by a string of bits. Each bit represents a

separate item of information that indicates whether or not a particular device is on- or off-

line.

.Information flow represents the manner in which data and control change as each moves

through a system. Referring to Figure 11.3, input objects are transformed to intermediate

information (data and/or control), which is further transformed to output. Along this

transformation path (or paths), additional information may be introduced from an existing

data store (e.g., a disk file or memory buffer). The transformations applied to the data are

functions or subfunctions that a program must perform. Data and control that move between

two transformations (functions) define the interface for each function.

Information structure represents the internal organization of various data and control items.

Are data or control items to be organized as an n-dimensional table or as a hierarchical tree

structure? Within the context of the structure, what information is related to other

information?

Modelling

We create functional models to gain a better understanding of the actual entity to be built.

When the entity is a physical thing (a building, a plane, a machine), we can build a model that

is identical in form and shape but smaller in scale. However, when the entity to be built is

software, our model must take a different form.

The second and third operational analysis principles require that we build models

of function and behavior.

Functional models. Software transforms information, and in order to

accomplish this, it must perform at least three generic functions: input, processing, and

output. When functional models of an application are created,

the software engineer focuses on problem specific functions. The functional

model begins with a single context level model (i.e., the name of the software

to be built). Over a series of iterations, more and more functional detail is

provided, until a thorough delineation of all system functionality is represented.

Behavioral models.

Most software responds to events from the outside world. This stimulus/response

characteristic forms the basis of the behavioral model. A computer program always exists in

some state—an externally observable mode of behavior (e.g., waiting, computing, printing,

polling) that is changed only when some event occurs. For example, software will remain in

the wait state until (1) an internal clock indicates that some time interval has passed, (2) an

external event (e.g., a mouse movement) causes an interrupt, or (3) an external system signals

the software to act in some manner. A behavioral model creates a representation of the states

of the software and the events that cause a software to change state.

Partitioning

Problems are often too large and complex to be understood as a whole. For this reason, we

tend to partition (divide) such problems into parts that can be easily understood and establish

interfaces between the parts so that overall function can be accomplished. The fourth

operational analysis principle suggests that the information, functional, and behavioral

domains of software can be partitioned.

In essence, partitioning decomposes a problem into its constituent parts.

Conceptually, we establish a hierarchical representation of function or information and then

partition the uppermost element by

(1) exposing increasing detail by moving vertically in the hierarchy or

(2) functionally decomposing the problem by moving horizontally in the hierarchy

Essential and Implementation Views

An essential view of software requirements presents the functions to be accomplished and

information to be processed without regard to implementation details. For example, the

essential view of the SafeHome function read sensor status does not concern itself with the

physical form of the data or the type of sensor that is used. In fact, it could be argued that

read status would be a more appropriate name for this function, since it disregards details

about the input mechanism altogether.

Similarly, an essential data model of the data item phone number (implied by the function

dial phone number) can be represented at this stage without regard to the underlying data

structure (if any) used to implement the data item. By focusing attention on the essence of the

problem at early stages of requirements engineering, we leave our options open to specify

implementation details during later stages of requirements specification and software design.

The implementation view of software requirements presents the real world manifestation of

processing functions and information structures. In some cases, a physical representation is

developed as the first step in software design. However most computer-based systems are

specified in a manner that dictates accommodation of certain implementation details. A

SafeHome input device is a perimeter sensor (not a watch dog, a human guard, or a booby

trap). The sensor detects illegal entry by sensing a break in an electronic circuit. The general

characteristics of the sensor should be noted as part of a software requirements specification.

The analyst must recognize the constraints imposed by predefined system elements (the

sensor) and consider the implementation view of function and information when such a view

is appropriate.

SOFTWARE PROTOTYPING

Analysis should be conducted regardless of the software engineering paradigm that is

applied. However, the form that analysis takes will vary. In some cases it is possible to apply

operational analysis principles and derive a model of software from which a design can be

developed. In other situations, requirements elicitation (via FAST, QFD, use-cases, or other

"brainstorming" techniques [JOR89]) is conducted, analysis principles are applied, and a

model of the software to be built, called a prototype, is constructed for customer and

developer assessment. Finally, some circumstances require the construction of a prototype at

the beginning of analysis, since the model is the only means through which requirements can

be effectively derived. The model then evolves into production software.

Selecting the Prototyping Approach

The prototyping paradigm can be either close-ended or open-ended. The close-ended

approach is often called throwaway prototyping. Using this approach, a prototype serves

solely as a rough demonstration of requirements. It is then discarded, and the software is

engineered using a different paradigm. An open-ended approach, called evolutionary

prototyping, uses the prototype as the first part of an analysis activity that will be continued

into design and construction. The prototype of the software is the first evolution of the

finished system.

Before a close-ended or open-ended approach can be chosen, it is necessary to

determine whether the system to be built is amenable to prototyping. A number of

prototyping candidacy factors [BOA84] can be defined: application area, application

complexity, customer characteristics, and project characteristics

Because the customer must interact with the prototype in later steps, it is essential that

(1) customer resources be committed to the evaluation and refinement of the

prototype

(2) the customer is capable of making requirements decisions in a

timely fashion. Finally, the nature of the development project will have a strong bearing on

the efficacy of prototyping. Is project management willing and able to work with the

prototyping method? Are prototyping tools available?

Prototyping Methods and Tools

For software prototyping to be effective, a prototype must be developed rapidly so that the

customer may assess results and recommend changes. To conduct rapid prototyping, three

generic classes of methods and tools (e.g., [AND92], [TAN89]) are available:

Fourth generation techniques.

Fourth generation techniques (4GT) encompass a broad array of database query and reporting

languages, program and application generators, and other very high-level nonprocedural

languages. Because 4GT enable the software engineer to generate executable code quickly,

they are ideal for rapid prototyping.

Reusable software components.

Another approach to rapid prototyping is to assemble, rather than build, the prototype by

using a set of existing software components. Melding prototyping and program component

reuse will work only if a library system is developed so that components that do exist can be

cataloged and then retrieved. It should be noted that an existing software product can be used

as a prototype for a "new, improved" competitive product. In a way, this is a form of

reusability for software prototyping.

Formal specification and prototyping environments.

Over the past two decades, a number of formal specification languages and tools have been

developed as a replacement for natural language specification techniques .Today, developers

of these formal languages are in the process of developing interactive environments that (1)

enable an analyst to interactively create language-based specifications of a system or

software, (2) invoke automated tools that translate the language-based specifications into

executable code, and (3) enable the customer to use the prototype executable code to refine

formal requirements.

SOFTWARE REQUIREMENT SPECIFICATION

The Software Requirements Specification is produced at the culmination of the analysis task.

The function and performance allocated to software as part of system engineering are refined

by establishing a complete information description, a detailed functional description, a

representation of system behavior, an indication of performance requirements and design

constraints, appropriate validation criteria, and other information pertinent to requirements.

The National Bureau of Standards, IEEE (Standard No. 830-1984), and the U.S. Department

of Defense have all proposed candidate formats for software requirements specifications (as

well as other software engineering

documentation).

The Introduction of the software requirements specification states the goals and

objectives of the software, describing it in the context of the computer-based

system.Actually, the Introduction may be nothing more than the software scope of the

planning document.

The Information Description provides a detailed description of the problem that the software

must solve. Information content, flow, and structure are documented. Hardware, software,

and human interfaces are described for external system elements and internal software

functions.

A description of each function required to solve the problem is presented in the

Functional Description. A processing narrative is provided for each function, design

constraints are stated and justified, performance characteristics are stated, and one or more

diagrams are included to graphically represent the overall structure of the software and

interplay among software functions and other system elements.

The Behavioral Description section of the specification examines the operation of the

software as a consequence of external events and internally generated control characteristics.

Validation Criteria is probably the most important and, ironically, the most often

neglected section of the Software Requirements Specification. How do we recognize a

successful implementation? What classes of tests must be conducted to validate function,

performance, and constraints? We neglect this section because completing it demands a

thorough understanding of software requirements—something that we often do not have at

this stage. Yet, specification of validation criteria acts as an implicit review of all other

requirements. It is essential that time and attention be given to this section.

Finally, the specification includes a Bibliography and Appendix. The bibliography contains

references to all documents that relate to the software. These include other software

engineering documentation, technical references, vendor literature, and standards. The

appendix contains information that supplements the specifications. Tabular data, detailed

description of algorithms, charts, In many cases the Software Requirements Specification may

be accompanied by an executable prototype (which in some cases may replace the

specification), a paper prototype or a Preliminary User's Manual.

The Preliminary User's Manual presents the software as a black box. That is, heavy

emphasis is placed on user input and the resultant output. The manual can serve as a valuable

tool for uncovering problems at the human/machine interface.

A review of the Software Requirements Specification (and/or prototype) is conducted by both

the software developer and the customer. Because the specification forms the foundation of

the development phase, extreme care should be taken in conducting the review.

The review is first conducted at a macroscopic level; that is, reviewers attempt to

ensure that the specification is complete, consistent, and accurate when the overall

information, functional, and behavioral domains are considered. However, to fully explore

each of these domains, the review becomes more detailed, examining not only broad

descriptions but the way in which requirements are worded. For example, when specifications

contain “vague terms” (e.g., some, sometimes, often, usually, ordinarily, most, or mostly), the

reviewer should flag the statements for further clarification.

Once the review is complete, the Software Requirements Specification is "signedoff" by both

the customer and the developer. The specification becomes a "contract" for software

development. Requests for changes in requirements after the specification is finalized will not

be eliminated. But the customer should note that each after the fact change is an extension of

software scope and therefore can increase cost and/or protract the schedule.

REPRESENTATION

We have already seen that software requirements may be specified in a variety of ways.

However, if requirements are committed to paper or an electronic presentation medium (and

they almost always should be!) a simple set of guidelines is well worth following:

Representation format and content should be relevant to the problem.

A general outline for the contents of a Software Requirements Specification

can be developed. However, the representation forms contained within

the specification are likely to vary with the application area. For example, a

specification for a manufacturing automation system might use different

symbology, diagrams and language than the specification for a programming

language compiler.

Information contained within the specification should be nested.

Representations should reveal layers of information so that a reader can move to

the level of detail required. Paragraph and diagram numbering schemes

should indicate the level of detail that is being presented. It is sometimes

worthwhile to present the same information at different levels of abstraction

to aid in understanding.

Diagrams and other notational forms should be restricted in number

and consistent in use.

Confusing or inconsistent notation, whether graphical

or symbolic, degrades understanding and fosters errors.

Representations should be revisable.

The content of a specification will change. Ideally, CASE tools should be available to update

all representations that are affected by each change.

Investigators have conducted numerous studies (e.g., [HOL95], [CUR85]) on human factors

associated with specification. There appears to be little doubt that symbology and

arrangement affect understanding. However, software engineers appear to have individual

preferences for specific symbolic and diagrammatic forms. Familiarity often lies at the root of

a person's preference, but other more tangible factors such as spatial arrangement, easily

recognizable patterns, and degree of formality often dictate an individual's choice.

SPECIFICATION PRINCIPLES

Specification, regardless of the mode through which we accomplish it, may be viewed as a

representation process. Requirements are represented in a manner that ultimately leads to

successful software implementation. A number of specification principles,

adapted from the work of Balzer and Goodman [BAL86], can be proposed:

1. Separate functionality from implementation.

2. Develop a model of the desired behavior of a system that encompasses data and the

functional responses of a system to various stimuli from the environment.

3. Establish the context in which software operates by specifying the manner in which other

system components interact with software.

4. Define the environment in which the system operates and indicate how “a highly

intertwined collection of agents react to stimuli in the environment(changes to objects)

produced by those agents” .

5. Create a cognitive model rather than a design or implementation model. The cognitive

model describes a system as perceived by its user community.

6. Recognize that “the specifications must be tolerant of incompleteness and augmentable.” A

specification is always a model—an abstraction—of some real (or envisioned) situation that

is normally quite complex. Hence, it will be incomplete and will exist at many levels of

detail.

7. Establish the content and structure of a specification in a way that will enable it to be

amenable to change. This list of basic specification principles provides a basis for

representing software requirements. However, principles must be translated into realization.

In the next section we examine a set of guidelines for creating a specification of

requirements.

THE ELEMENTS OF ANALYSIS MODEL

The analysis model must achieve three primary objectives:

(1) to describe what the customer requires

(2) to establish a basis for the creation of a software design, and

(3) to define a set of requirements that can be validated once the software is built. To

accomplish these objectives, the analysis model derived during structured analysis takes the

form illustrated in Figure 1.1.

At the core of the model lies the data dictionary—a repository that contains descriptions of

all data objects consumed or produced by the software. Three different diagrams surround the

the core.

The entity relation diagram (ERD) depicts relationships between data objects. The ERD is

the notation that is used to conduct the data modeling activity. The attributes of each data

object noted in the ERD can be described using a data object description.

The data flow diagram (DFD) serves two purposes: (1) to provide an indication of how data

are transformed as they move through the system and (2) to depict the functions (and

subfunctions) that transform the data flow. The DFD provides additional information that is

used during the analysis of the information domain and serves as a basis for the modeling of

function. A description of each function presented in the DFD is contained in a process

specification (PSPEC).

The state transition diagram (STD) indicates how the system behaves as a consequence of

external events. To accomplish this, the STD represents the various modes of behavior

(called states) of the system and the manner in which transitions are made from state to state.

The STD serves as the basis for behavioral modeling. Additional information about the

control aspects of the software is contained in the control specification (CSPEC).

DATA MODELLING

Data modeling answers a set of specific questions that are relevant to any data processing

application. What are the primary data objects to be processed by the system?

What is the composition of each data object and what attributes describe the

object? Where do the the objects currently reside? What are the relationships between each

object and other objects? What are the relationships between the objects and the processes

that transform them?

Data Objects, Attributes, and Relationships

The data model consists of three interrelated pieces of information: the data object, the

attributes that describe the data object, and the relationships that connect data objects to one

another.

Data objects

A data object is a representation of almost any composite information that must be

understood by software. By composite information, we mean something that has a number of

different properties or attributes. Therefore, width (a single value) would not be a valid data

object, but dimensions (incorporating height, width, and depth) could be defined as an object.

Data objects (represented in bold) are related to one another. For example, person can own

car, where the relationship own connotes a specific "connection” between person and car.

The relationships are always defined by the context of the problem that is being analyzed.

A data object encapsulates data only—there is no reference within a data object

to operations that act on the data.

Attributes

Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

(1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

In addition, one or more of the attributes must be defined as an identifier—that is, the

identifier attribute becomes a "key" when we want to find an instance of the data object. In

some cases, values for the identifier(s) are unique, although this is not a requirement

Relationships

Data objects are connected to one another in different ways. Consider

two data objects, book and bookstore. These objects can be represented using

the simple notation illustrated in Figure 2.a. A connection is established between book and

bookstore because the two objects are related. But what are the relationships?

To determine the answer, we must understand the role of books and bookstores

within the context of the software to be built. We can define a set of

object/relationship pairs that define the relevant relationships. For example,

• A bookstore orders books.

• A bookstore displays books.

• A bookstore stocks books.

• A bookstore sells books.

• A bookstore returns books.

Cardinality and Modality

The elements of data modeling—data objects, attributes, and relationships— provide the

basis for understanding the information domain of a problem. However, additional

information related to these basic elements must also be understood. We have defined a set of

objects and represented the object/relationship pairs that bind them. But a simple pair that

states: object X relates to object Y does not provide enough information for software

engineering purposes. We must understand how many occurrences of object X are related to

how many occurrences of object Y. This leads to a data modeling concept called cardinality.

Cardinality is the specification of the number of occurrences of one [object] that can be

related to the number of occurrences of another [object]. Cardinality is usually expressed as

simply 'one' or 'many.' For example, a husband can have only one wife (in most cultures),

while a parent can have many children. Taking into consideration all combinations of 'one'

and 'many,' two [objects] can be related as

• One-to-one (l:l)—An occurrence of [object] 'A' can relate to one and only one occurrence of

[object] 'B,' and an occurrence of 'B' can relate to only one occurrence of 'A.'

• One-to-many (l:N)—One occurrence of [object] 'A' can relate to one or many occurrences

of [object] 'B,' but an occurrence of 'B' can relate to only one occurrence of 'A.'

For example, a mother can have many children, but a child can have only one mother.

• Many-to-many (M:N)—An occurrence of [object] 'A' can relate to one or more occurrences

of 'B,' while an occurrence of 'B' can relate to one or more occurrences of 'A.'

For example, an uncle can have many nephews, while a nephew can have many uncles.

Cardinality defines “the maximum number of objects that can participate in a relationship” It

does not, however, provide an indication of whether or not a particular data object must

participate in the relationship. To specify this information, the data model adds modality to

the object/relationship pair.

Modality

The modality of a relationship is 0 if there is no explicit need for the relationship

to occur or the relationship is optional. The modality is 1 if an occurrence of

the relationship is mandatory. To illustrate, consider software that is used by a local telephone

company to process requests for field service. A customer indicates that there is a problem. If

the problem is diagnosed as relatively simple, a single repair action occurs. However, if the

problem is complex, multiple repair actions may be required. Figure 12.5 illustrates the

relationship, cardinality, and modality between the data objects customer and repair action.

Entity/Relationship Diagrams

The object/relationship pair is the cornerstone of the data model. These pairs can be

represented graphically using the entity/relationship diagram. The ERD was originally

proposed by Peter Chen for the design of relational database systems and has been extended

by others.

A set of primary components are identified for the ERD: data objects, attributes,

relationships, and various type indicators. The primary purpose of the ERD is to represent

data objects and their relationships.

Data objects are represented by a labeled rectangle. Relationships are indicated with a labeled

line connecting objects. In some variations of the ERD, the connecting line contains a

diamond that is labeled with the relationship. Connections between data objects and

relationships are established using a variety of special symbols that indicate cardinality and

modality

Fig 4

The relationship between the data objects car and manufacturer would be represented as

shown in Figure 3. One manufacturer builds one or many cars. Given the context implied by

the ERD, the specification of the data object car.

ERD notation also provides a mechanism that represents the associativity between objects. In

the figure, each of the data objects that model the individual subsystems is associated with the

data object car.

An associative data object is represented as shown in Figure 4.

Data Flow Diagrams

As information moves through software, it is modified by a series of transformations. A data

flow diagram is a graphical representation that depicts information flow and the transforms

that are applied as data move from input to output. The basic form of a data flow diagram,

also known as a data flow graph or a bubble chart. I

The data flow diagram may be used to represent a system or software at any level of

abstraction. In fact, DFDs may be partitioned into levels that represent increasing information

flow and functional detail. Therefore, the DFD provides a mechanism for functional

modeling as well as information flow modeling. In so doing, it satisfies the second

operational analysis principle (i.e., creating a functional model) .

A level 0 DFD, also called a fundamental system model or a context model, represents the

entire software element as a single bubble with input and output data indicated by incoming

and outgoing arrows, respectively.

Additional processes (bubbles) and information flow paths are represented as the level 0 DFD

is partitioned to reveal more detail. For example, a level 1 DFD might contain five or six

bubbles with interconnecting arrows. Each of the processes represented at level 1 is a

subfunction of the overall system depicted in the context model.

BEHAVIORAL MODELLING

Behavioral modeling is an operational principle for all requirements analysis methods.Yet,

only extended versions of structured analysis provide a

notation for this type of modeling. The state transition diagram represents the behavior of a

system by depicting its states and the events that cause the system to change state. In

addition, the STD indicates what actions (e.g., process activation) are taken as a consequence

of a particular event.

A state is any observable mode of behavior. For example, states for a monitoring

and control system for pressure vessels described might be monitoring

state, alarm state, pressure release state, and so on. Each of these states represents a mode of

behavior of the system. A state transition diagram indicates how the system moves from state

to state.

Control flows are shown entering and exiting individual processes and the vertical bar

representing the control specification(CSPEC) "window." For example, the paper feed

status and start/stop events flow into the CSPEC bar. This implies that each of these events

will cause some process represented in the CFD to be activated. If we were to examine the

CSPEC internals, the start/stop event would be shown to activate/deactivate the manage

copying process. Similarly, the jammed event (part of paper feed status) would activate

perform problem diagnosis. It should be noted that all vertical bars within the CFD refer to

the same CSPEC. An event flow can be input directly into

a process as shown with repro fault. However, this flow does not activate the process but

rather provides control information for the process algorithm.

The Hatley and Pirbhai extensions to basic structured analysis notation focus

less on the creation of additional graphical symbols and more on the representation and

specification of the control-oriented aspects of the software. The dashed arrow is once again

used to represent control or event flow. Unlike Ward and Mellor, Hatley and Pirbhai suggest

that dashed and solid notation be represented separately. Therefore, a control flow diagram is

defined. The CFD contains the same processes as the DFD, but shows control flow, rather

than data flow.

Instead of representing control processes directly within the flow model, a notational

reference (a solid bar) to a control specification (CSPEC) is used. In essence, the solid bar

can be viewed as a "window" into an "executive" (the CSPEC) that controls the processes

(functions) represented in the DFD based on the event that is passed through the window. A

process specification is used to describe the inner workings of a process represented in a flow

diagram.

A simplified state transition diagram for the photocopier software is shown in Figure 5. The

rectangles represent system states and the arrows represent transitions between states. Each

arrow is labeled with a ruled expression. The top value indicates the event(s) that cause the

transition to occur. The bottom value indicates the action that occurs as a consequence of the

event. Therefore, when the paper tray is full and the start button is pressed, the system

moves from the reading commands state to the making copies state. Note that states do not

necessarily correspond to processes on a one-to-one basis. For example, the state making

copies would encompass both the manage copying and produce user displays processes.

Creating an Entity/Relationship Diagram

The entity/relationship diagram enables a software engineer to fully specify the data objects

that are input and output from a system, the attributes that define the properties of these

objects, and their relationships. Like most elements of the analysis model, the ERD is

constructed in an iterative manner. The following approach is taken:

1. During requirements elicitation, customers are asked to list the “things” that

the application or business process addresses. These “things” evolve into a

list of input and output data objects as well as external entities that produce

or consume information.

2. Taking the objects one at a time, the analyst and customer define whether or

not a connection (unnamed at this stage) exists between the data object and

other objects.

3. Wherever a connection exists, the analyst and the customer create one or

more object/relationship pairs.

4. For each object/relationship pair, cardinality and modality are explored.

5. Steps 2 through 4 are continued iteratively until all object/relationships have

been defined. It is common to discover omissions as this process continues.

New objects and relationships will invariably be added as the number of iterations grows.

6. The attributes of each entity are defined.

7. An entity relationship diagram is formalized and reviewed.

Creating a Data Flow Model

The data flow diagram enables the software engineer to develop models of the information

domain and functional domain at the same time. As the DFD is refined into greater levels of

detail, the analyst performs an implicit functional decomposition of the system, thereby

accomplishing the fourth operational analysis principle for function.

At the same time, the DFD refinement results in a corresponding refinement of

data as it moves through the processes that embody the application.

A few simple guidelines can aid immeasurably during derivation of a data flow

diagram:

(1) the level 0 data flow diagram should depict the software/system as a

single bubble.

(2) primary input and output should be carefully noted.

(3) refinement should begin by isolating candidate processes, data objects, and stores to be

represented at the next level.

(4) all arrows and bubbles should be labeled with meaningful names.

(5) information flow continuity must be maintained from level to level, and

(6) one bubble at a time should be refined. There is a natural tendency to overcomplicate the

data flow diagram.

This occurs when the analyst attempts to show too much detail too early or represents

procedural aspects of the software in lieu of information flow.

THE DATA DICTIONARY

The analysis model encompasses representations of data objects, function, and control. In

each representation data objects and/or control items play a role. Therefore, it is necessary to

provide an organized approach for representing the characteristics of each data object and

control item. This is accomplished with the data dictionary.

The data dictionary has been proposed as a quasi-formal grammar for describing

the content of objects defined during structured analysis. This important modeling

notation has been defined in the following manner :

“ The data dictionary is an organized listing of all data elements that are pertinent to the

system, with precise, rigorous definitions so that both user and system analyst will have a

common understanding of inputs, outputs, components of stores and [even] intermediate

calculations “.

Today, the data dictionary is always implemented as part of a CASE "structured analysis and

design tool." Although the format of dictionaries varies from tool to tool, most contain the

following information:

• Name—the primary name of the data or control item, the data store or an

external entity.

• Alias—other names used for the first entry.

• Where-used/how-used—a listing of the processes that use the data or control

item and how it is used (e.g., input to the process, output from the process,

as a store, as an external entity.

• Content description—a notation for representing content.

• Supplementary information—other information about data types, preset values

(if known), restrictions or limitations, and so forth.

Once a data object or control item name and its aliases are entered into the data

dictionary, consistency in naming can be enforced. That is, if an analysis team member

decides to name a newly derived data item xyz, but xyz is already in the dictionary, the

CASE tool supporting the dictionary posts a warning to indicate duplicate names. This

improves the consistency of the analysis model and helps to reduce errors.

“Where-used/how-used” information is recorded automatically from the flow models. When

a dictionary entry is created, the CASE tool scans DFDs and CFDs to determine which

processes use the data or control information and how it is used. Although this may appear

unimportant, it is actually one of the most important benefits of the dictionary. During

analysis there is an almost continuous stream of changes. For large projects, it is often quite

difficult to determine the impact of a change. Many a software engineer has asked, "Where is

this data object used? What else will have to change if we modify it? What will the overall

impact of the change be?" Because the data dictionary can be treated as a database, the

analyst can ask "where used/how used" questions, and get answers to these queries.

The notation used to develop a content description is noted in the following table:

Data Construct Notation Meaning

 = is composed of

Sequence + and

Selection [|] either-or

Repetition { }n n repetitions of

() optional data

* ... * delimits comments

The notation enables a software engineer to represent composite data in one of the three

fundamental ways that it can be constructed:

1. As a sequence of data items.

2. As a selection from among a set of data items.

3. As a repeated grouping of data items. Each data item entry that is represented

as part of a sequence, selection, or repetition may itself be another composite data item that

needs further refinement within the dictionary.

The data dictionary provides us with a precise definition of telephone number for the DFD

in question. In addition it indicates where and how this data item is used and any

supplementary information that is relevant to it.

The data dictionary entry begins as follows:

name: telephone number

aliases: none

where used/how used: assess against set-up (output)

dial phone (input)

description:

telephone number = [local number|long distance number]

local number = prefix + access number

long distance number = 1 + area code + local

number area code = [800 | 888 | 561]

prefix = *a three digit number that never starts with 0

or 1* access number = * any four number string *

The content description is expanded until all composite data items have been represented

as elementary items (items that require no further expansion) or until all composite items

are represented in terms that would be well-known and unambiguous to all readers. It is

also important to note that a specification of elementary data often restricts a system. For

example, the definition of area code indicates that only three area codes (two toll-free and

one in South Florida) are valid for this system.

The data dictionary defines information items unambiguously. Although we might

assume that the telephone number represented by the DFD in Figure 12.22 could

accommodate a 25-digit long distance carrier access number, the data dictionary content

description tells us that such numbers are not part of the data that may be used.

