
JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 1

Jaipur Engineering College & Research Centre, Jaipur

Notes

Software Engineering

[3CS4 - 07]

Prepared By:

Manju Vyas

Abhishek Jain

Geerija Lavania

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 2

VISION AND MISSION OF INSTITUTE

VISION

To become renowned centre of outcome based learning and work towards academic,

professional, cultural and social enrichments of the lives of individual and communities”

MISSION

M1. Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2. Identify areas of focus and provide platform to gain knowledge and solutions based on

informed perception of Indian, regional and global needs.

M3. Offer opportunities for interaction between academia and industry.

M4. Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

VISION AND MISSION OF DEPARTMENT

VISION

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

MISSION

M1: To impart outcome based education for emerging technologies in the field of computer

science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 3

COURSE OUTCOMES

CO1) understand the purpose of designing a system and evaluate the various models suitable

as per its requirement analysis

CO2) understand and apply software project management, effort estimation and project

scheduling.

CO3) formulate requirement analysis, process behaviour and software designing.

CO4) Implement the concept of object oriented analysis modelling with the reference of

UML and advance SE tools

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 4

Program Outcomes (PO)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problemsand design system components or processes that meet thespecified needs

with appropriate consideration for the public health and safety, andthe cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issuesand the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member

or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 5

Program Educational Objectives (PEO)

1.To provide students with the fundamentals of Engineering Sciences with more emphasis in

Computer Science & Engineering by way of analyzing and exploiting engineering challenge

2. To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

3. To inculcate professional and ethical attitude, effective communication skills, teamwork

skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self-motivated life-long learning needed for a

successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating Students along

with High moral values and Knowledge.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 6

MAPPING CO-PO

Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1

3 3 3 3 3 2 1 2 1 1 2 3

CO2

3 3 3 3 2 2 1 2 2 2 3 3

CO3

3 3 3 2 2 2 1 2 1 2 2 3

CO4

3 3 3 3 3 1 0 1 1 2 2 3

PSO

PSO1: Ability to interpret and analyze network specific and cyber security issues, automation

in real word environment.

PSO2: Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 7

SYLLABUS

UNIT 1: Introduction, software life-cycle models, software requirements specification,

formal requirements specification, verification and validation.

UNIT 2: Software Project Management: Objectives, Resources and their estimation, LOC

and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software

project scheduling.

UNIT 3: Requirement Analysis: Requirement analysis tasks, Analysis principles. Software

prototyping and specification data dictionary, Finite State Machine (FSM) models.

Structured Analysis: Data and control flow diagrams, control and process specification

behavioral modeling

UNIT 4: Software Design: Design fundamentals, Effective modular design: Data

architectural and procedural design, design documentation.

UNIT 5: Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling.

Object Oriented Design: OOD concepts, Class and object relationships, object

modularization, Introduction to Unified Modeling Language

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 8

UNIT - 1 - INTRODUCTION TO SOFTWARE ENGINEERING

The term software engineering is composed of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves

some computational purpose. Software is considered to be a collection of executable

programming code, associated libraries and documentations. Software, when made for a

specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined,

scientific principles and methods. So, we can define software engineering as an engineering

branch associated with the development of software product using well-defined scientific

principles, methods and procedures. The outcome of software engineering is an efficient

and reliable software product.

IEEE defines software engineering as: The application of a systematic, disciplined,

quantifiable approach to the development, operation and maintenance of software.

We can alternatively view it as a systematic collection of past experience. The experience is

arranged in the form of methodologies and guidelines. A small program can be written

without using software engineering principles. But if one wants to develop a large software

product, then software engineering principles are absolutely necessary to achieve a good

quality software cost effectively.

 [Reference - R1]

NEED OF SOFTWARE ENGINEERING

The need of software engineering arises because of higher rate of change in user requirements

and environment on which the software is working.

Large software - It is easier to build a wall than to a house or building, likewise, as the size

of software become large engineering has to step to give it a scientific process.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 9

Scalability- If the software process were not based on scientific and engineering concepts, it

would be easier to re-create new software than to scale an existing one.

Cost- As hardware industry has shown its skills and huge manufacturing has lower down the

price of computer and electronic hardware. But the cost of software remains high if proper

process is not adapted.

Dynamic Nature- The always growing and adapting nature of software hugely depends upon

the environment in which the user works. If the nature of software is always changing, new

enhancements need to be done in the existing one. This is where software engineering plays a

good role.

Quality Management- Better process of software development provides better and quality

software product. [Reference - R1]

CHARACTERESTICS OF GOOD SOFTWARE

A software product can be judged by what it offers and how well it can be used. This

software must satisfy on the following grounds:

• Operational

• Transitional

• Maintenance

Well-engineered and crafted software is expected to have the following characteristics:

Operational: This tells us how well software works in operations. It can be measured on:

• Budget

• Usability

• Efficiency

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 10

• Correctness

• Functionality

• Dependability

• Security

• Safety

Transitional: This aspect is important when the software is moved from one platform to

another:

• Portability

• Interoperability

• Reusability

• Adaptability

Maintenance: This aspect briefs about how well a software has the capabilities to maintain

itself in the ever-changing environment:

• Modularity

• Maintainability

• Flexibility

• Scalability

In short, Software engineering is a branch of computer science, which uses well-defined

engineering concepts required to produce efficient, durable, scalable, in-budget and on-time

software products.

 [Reference - R1]

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 11

LAYERS OF SOFTWARE ENGINEERING

Figure: Layers Of Software Engineering

Software engineering is a layered technology. Software engineering must rest on an

organizational commitment to quality. Total quality management, Six Sigma, and similar

philosophies foster a continuous process improvement culture, and it is this culture that

ultimately leads to the development of increasingly more effective approaches to software

engineering. The bedrock that supports software engineering is a quality focus.

A Software engineering process is not a rigid prescription for how to build computer

software. Rather, it is an adaptable approach that enables the people doing the work (the

software team) to pick and choose the appropriate set of work actions and tasks. The intent is

always to deliver software in a timely manner and with sufficient quality to satisfy those who

have sponsored its creation and those who will use it.

Software engineering methods provide the technical how-to’s for building software.

Methods encompass a broad array of tasks that include communication, requirements

analysis, design modeling, program construction, testing, and support. Software engineering

methods rely on a set of basic principles that govern each area of the technology and include

modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the process

and the methods. When tools are integrated so that information created by one tool can be

used by another, a system for the support of software development, called computer-aided

software engineering, is established.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 12

 [Reference - R2]

THE SOFTWARE PROCESS

A process is a collection of activities, actions, and tasks that are performed when some work

product is to be created.

An activity strives to achieve a broad objective (e.g., communication with stakeholders) and

is applied regardless of the application domain, size of the project, complexity of the effort,

or degree of rigor with which software engineering is to be applied.

An action (e.g., architectural design) encompasses a set of tasks that produce a major work

product (e.g., an architectural design model).

A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that

produces a tangible outcome.

In the context of software engineering, a process is not a rigid prescription for how to build

computer software. Rather, it is an adaptable approach that enables the people doing the work

(the software team) to pick and choose the appropriate set of work actions and tasks.

The intent is always to deliver software in a timely manner and with sufficient quality to

satisfy those who have sponsored its creation and those who will use it.

 [Reference - R3]

A GENERIC PROCESS FRAMEWORK FOR SOFTWARE ENGINEERING: A

process framework establishes the foundation for a complete software engineering process

by identifying a small number of framework activities that are applicable to all software

projects, regardless of their size or complexity.

In addition, the process framework encompasses a set of umbrella activities that are

applicable across the entire software process.

A generic process framework for software engineering encompasses five activities:

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 13

Communication: Before any technical work can commence, it is critically important to

communicate and collaborate with the customer and other stakeholders and stakeholders’

objectives for the project and to gather requirements that help define software features and

functions.

Planning: Any complicated journey can be simplified if a map exists. A software project is a

complicated journey, and the planning activity creates a “map” that helps guide the team as it

makes the journey. The map—called a software project plan—defines the software

engineering work by describing the technical tasks to be conducted, the risks that are likely,

the resources that will be required, the work products to be produced, and a work schedule.

Modeling: Whether you’re a landscaper, a bridge builder, an aeronautical engineer, a

carpenter, or an architect, you work with models every day. You create a “sketch” of the

thing so that you’ll understand the big picture—what it will look like architecturally, how the

constituent parts fit together, and many other characteristics. If required, you refine the sketch

into greater and greater detail in an effort to better understand the problem and how you’re

going to solve it. A software engineer does the same thing by creating models to better

understand software requirements and the design that will achieve those requirements.

Construction: This activity combines code generation (either manual or automated) and the

testing that is required to uncover errors in the code.

Deployment: The software (as a complete entity or as a partially completed increment) is

delivered to the customer who evaluates the delivered product and provides feedback based

on the evaluation.

These five generic framework activities can be used during the development of small, simple

programs, the creation of large Web applications, and for the engineering of large, complex

computer-based systems. The details of the software process will be quite different in each

case, but the framework activities remain the same.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 14

Figure: Activities in Generic process framework for software engineering

 [Reference - R3 & R4]

SOFTWARE LIFE CYCLE MODELS/SOFTWARE DEVELOPMENT LIFE CYCLE

MODEL (SWDLC MODELS)

A software life cycle model (also called process model) is a descriptive and diagrammatic

representation of the software life cycle.

A life cycle model represents all the activities required to make a software product transit

through its life cycle phases. It also captures the order in which these activities are to be

undertaken. In other words, a life cycle model maps the different activities performed on a

software product from its inception to retirement.

Different life cycle models may map the basic development activities to phases in different

ways. Thus, no matter which life cycle model is followed, the basic activities are included in

all life cycle models though the activities may be carried out in different orders in different

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 15

life cycle models. During any life cycle phase, more than one activity may also be carried

out.

THE NEED FOR A SOFTWARE LIFE CYCLE MODEL

The development team must identify a suitable life cycle model for the particular project and

then adhere to it. Without using of a particular life cycle model the development of a software

product would not be in a systematic and disciplined manner.

When a software product is being developed by a team there must be a clear understanding

among team members about when and what to do. Otherwise it would lead to chaos and

project failure.

This problem can be illustrated by using an example. Suppose a software development

problem is divided into several parts and the parts are assigned to the team members. From

then on, suppose the team members are allowed the freedom to develop the parts assigned to

them in whatever way they like. It is possible that one member might start writing the code

for his part, another might decide to prepare the test documents first, and some other engineer

might begin with the design phase of the parts assigned to him. This would be one of the

perfect recipes for project failure.

A software life cycle model defines entry and exit criteria for every phase. A phase can start

only if its phase-entry criteria have been satisfied. So without software life cycle model the

entry and exit criteria for a phase cannot be recognized. Without software life cycle models it

becomes difficult for software project managers to monitor the progress of the project.

Different software life cycle models

Many life cycle models have been proposed so far. Each of them has some advantages as

well as some disadvantages. A few important and commonly used life cycle models are as

follows:

Types of Software developing life cycles (SDLC)

▪ Waterfall Model

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 16

▪ Iterative Waterfall Model

▪ The V – Model

▪ Incremental Model

▪ RAD Model

▪ Prototyping Model

▪ Spiral Method

▪ Concurrent Development Model

[Reference - R5]

WATERFALL MODEL

The Waterfall Model is a LINEAR SEQUENTIAL MODEL. In which progress is seen as

flowing steadily downwards (like a waterfall) through the phases of software implementation.

This means that any phase in the development process begins only if the previous phase is

complete. The waterfall approach does not define the process to go back to the previous

phase to handle changes in requirement. The waterfall approach was the earliest approach and

most widely known that was used for software development.

Figure: Generic Waterfall Model

Phases of Waterfall model: All work flows from communication towards deployment in a

reasonably linear fashion.

• Communication: In the communication phase, the major task performed is

requirement gathering which helps in finding out the exact need of the customer.

Once all the needs of the customer are gathered the next step is planning.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 17

• Planning: In planning major activities like planning for schedule, keeping tracks on

the processes and the estimation related to the project are done. Planning is even used

to find the types of risks involved throughout the projects. Planning describes how

technical tasks are going to take place and what resources are needed and how to use

them.

• Modeling: This is one of the important phases of the architecture of the system is

designed in this phase. An analysis is carried out and depending on the analysis a

software model is designed. Different models for developing software are created

depending on the requirements gathered in the first phase and the planning done in the

second phase.

• Construction: The actual coding of the software is done in this phase. This coding is

done based on the model designed in the modeling phase. So, in this phase software is

developed and tested..

• Deployment: In this last phase, the product is rolled out or delivered & installed at

the customer’s end and support is given if required. Feedback is taken from the

customer to ensure the quality of the product.

Advantages

1. Easy to explain to the users

2. Structures approach.

3. Stages and activities are well defined.

4. Helps to plan and schedule the project

5. Verification at each stage ensures early detection of errors/misunderstanding

6. Each phase has specific deliverables.

Disadvantages

1. Very difficult to go back to any stage after it finished

2. Costly and required more time, in addition to the detailed plan.

3. Assumes that the requirements of a system can be frozen

4. A little flexibility and adjusting scope is difficult and expensive

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 18

ITERATIVE WATERFALL MODEL/ WATERFALL MODEL WITH FEEDBACK

To overcome the major shortcomings of the classical waterfall model, we come up with

the iterative waterfall model.

Figure : Iterative Waterfall Model

Here, we provide feedback paths for error correction as & when detected later in a phase.

Though errors are inevitable, but it is desirable to detect them in the same phase in which

they occur. If so, this can reduce the effort to correct the bug.

The advantage of this model is that there is a working model of the system at a very early

stage of development which makes it easier to find functional or design flaws. Finding

issues at an early stage of development enables to take corrective measures in a limited

budget. The disadvantage with this SWDLC model is that it is applicable only to large

and bulky software development projects. This is because it is hard to break a small

software system into further small serviceable increments/modules.

 [Reference - R6 Page No. - 79 - 80]

[Reference - R7]

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 19

THE V-MODEL

The V-model is a type of SDLC model where process executes in a sequential manner in V-

shape. It is also known as Verification and Validation model. It is based on the association of

a testing phase for each corresponding development stage. Development of each step directly

associated with the testing phase. The next phase starts only after completion of the previous

phase i.e. for each development activity, there is a testing activity corresponding to it.

FIGURE: V- MODEL

So V-Model contains Verification phases on one side of the Validation phases on the other

side. Verification and Validation phases are joined by coding phase in V-shape. Thus it is

called V-Model.

Design Phase:

• Requirement Analysis: This phase contains detailed communication with the customer

to understand their requirements and expectations. This stage is known as Requirement

Gathering.

• System Design: This phase contains the system design and the complete hardware and

communication setup for developing product.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 20

• Architectural Design: System design is broken down further into modules taking up

different functionalities. The data transfer and communication between the internal

modules and with the outside world (other systems) is clearly understood.

• Module Design: In this phase the system breaks dowm into small modules. The detailed

design of modules is specified, also known as Low-Level Design (LLD).

Testing Phases:

• Unit Testing: Unit Test Plans are developed during module design phase. These Unit

Test Plans are executed to eliminate bugs at code or unit level.

• Integration testing: After completion of unit testing Integration testing is performed. In

integration testing, the modules are integrated and the system is tested. Integration

testing is performed on the Architecture design phase. This test verifies the

communication of modules among themselves.

• System Testing: System testing test the complete application with its functionality, inter

dependency, and communication. It tests the functional and non-functional requirements

of the developed application.

• User Acceptance Testing (UAT): UAT is performed in a user environment that

resembles the production environment. UAT verifies that the delivered system meets

user’s requirement and system is ready for use in real world.

Advantages:

• This is a highly disciplined model and Phases are completed one at a time.

• V-Model is used for small projects where project requirements are clear.

• Simple and easy to understand and use.

• This model focuses on verification and validation activities early in the life cycle

thereby enhancing the probability of building an error-free and good quality product.

• It enables project management to track progress accurately.

Disadvantages:

• High risk and uncertainty.

• It is not a good for complex and object-oriented projects.

• It is not suitable for projects where requirements are not clear and contains high risk of

changing.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 21

• This model does not support iteration of phases.

• It does not easily handle concurrent events.

[Reference - R8]

INCREMENTAL PROCESS MODELS

THE INCREMENTAL MODEL

There are many situations in which initial software requirements are well defined, but it is not

possible to follow a purely linear process. In addition, there may be a need to provide a

limited set of software functionality to users quickly and then refine and expand on that

functionality in later software releases. In such cases, you can choose a process model that is

designed to produce the software in increments.

The incremental model combines elements of linear and parallel process flows and applies

linear sequences in a stepwise manner according to calendar. Each linear sequence

produces deliverable “increments” of the software.

For example, word-processing software developed using the incremental model may deliver:

• basic file management, editing, and document production functions in the first

increment;

• more sophisticated editing and document production capabilities in the second

increment;

• spelling and grammar checking in the third increment;

• and advanced page layout capability in the fourth increment.

It should be noted that the process flow for any increment can incorporate the prototyping

methods.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 22

Figure: The Incremental Model

When an incremental model is used, the first increment is often a core product. That is,

basic requirements are addressed but many supplementary features (some known, others

unknown) remain undelivered. The core product is used by the customer (or undergoes

detailed evaluation). As a result of use and/or evaluation, a plan is developed for the next

increment.

The plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality. This process is repeated

following the delivery of each increment, until the complete product is produced.

The incremental process model focuses on the delivery of an operational product with each

increment. Early increments are stripped-down versions of the final product, but they do

provide capability that serves the user and also provide a platform for evaluation by the user.

Incremental development is particularly useful when staffing is unavailable for a complete

implementation by the business deadline that has been established for the project.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 23

Early increments can be implemented with fewer people. If the core product is well received,

then additional staff (if required) can be added to implement the next increment. In addition,

increments can be planned to manage technical risks.

For example, a major system might require the availability of new hardware that is under

development and whose delivery date is uncertain. It might be possible to plan early

increments in a way that avoids the use of this hardware, thereby enabling partial

functionality to be delivered to end users without inordinate delay.

Advantages –

• Error Reduction (core modules are used by the customer from the beginning of the

phase and then these are tested thoroughly)

• Uses divide and conquer for breakdown of tasks.

• Lowers initial delivery cost.

• Incremental Resource Deployment.

Disadvantages –

• Requires good planning and design.

• Total cost is not lower.

• Well defined module interfaces are required.

[Reference - R6 Page No. - 80 - 81]

THE RAD (RAPID APPLICATION DEVELOPMENT) MODEL:

Rapid Application Development (RAD) is an incremental software development process

model which is a “high-speed” adaptation of the linear sequential model in which rapid

development is achieved by using component-based construction. If requirements are well

understood and project scope is constrained, the RAD process enables a development team to

create a “fully functional system” within very short time periods, such as in 60 to 90 days.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 24

(i) Communication: This step works to understand the business problems and the

information characteristics that the software must accommodate.

(ii) Planning: This is very important as multiple teams work on different systems.

(iii) Modeling: Modeling includes the major phases, like business, data, process modeling

and establishes design representation that serves as the basis for RAD’s construction

activity.

(iv) Construction: This includes the use of preexisting software components and the

application of automatic code generation.

Advantages –

• Use of reusable components helps to reduce the cycle time of the project.

• Feedback from the customer is available at initial stages.

• Reduced costs as fewer developers are required.

• Use of powerful development tools results in better quality products in comparatively

shorter time spans.

• The progress and development of the project can be measured through the various

stages.

• It is easier to accommodate changing requirements due to the short iteration time spans.

https://2.bp.blogspot.com/-4rLKAJ88edE/UPR1yliTyWI/AAAAAAAABDI/H7tKdnUlRNU/s1600/software_engineering_11.png?ref=Content+Body

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 25

Disadvantages –

• The use of powerful and efficient tools requires highly skilled professionals.

• The absence of reusable components can lead to failure of the project.

• The team leader must work closely with the developers and customers to close the

project in time.

• The systems which cannot be modularized suitably cannot use this model.

• Customer involvement is required throughout the life cycle.

• It is not meant for small scale projects as for such cases, the cost of using automated

tools and techniques may exceed the entire budget of the project.

[Reference - R6 Page No. - 82 - 83]

EVOLUTIONALRY PROCESS MODELS

PROTOTYPING MODEL

Prototyping: Often, a customer defines a set of general objectives for software, but does not

identify detailed requirements for functions and features. In other cases, the developer may be

unsure of the efficiency of an algorithm, the adaptability of an operating system, or the form

that human-machine interaction should take. In these, and many other situations, a

prototyping paradigm may offer the best approach.

Although prototyping can be used as a stand-alone process model, it is more commonly used

as a technique that can be implemented within the context of any one of the process models.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 26

Figure: Prototyping

The prototyping paradigm begins with communication. You meet with other stakeholders to

define the overall objectives for the software, identify whatever requirements are known, and

outline areas where further definition is mandatory.

A prototyping iteration is planned quickly, and modeling (in the form of a “quick design”)

occurs. A quick design focuses on a representation of those aspects of the software that will

be visible to end users (e.g., human interface layout or output display formats).

The quick design leads to the construction of a prototype. The prototype is deployed and

evaluated by stakeholders, who provide feedback that is used to further refine requirements.

Iteration occurs as the prototype is tuned to satisfy the needs of various stakeholders, while at

the same time enabling you to better understand what needs to be done.

Figure: Prototype Model

Advantages –

• The customers get to see the partial product early in the life cycle. This ensures a

greater level of customer satisfaction and comfort.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 27

• New requirements can be easily accommodated as there is scope for refinement.

• Missing functionalities can be easily figured out.

• Errors can be detected much earlier thereby saving a lot of effort and cost, besides

enhancing the quality of the software.

• The developed prototype can be reused by the developer for more complicated projects

in the future.

• Flexibility in design.

Disadvantages –

• Costly w.r.t time as well as money.

• There may be too much variation in requirements each time the prototype is evaluated

by the customer.

• Poor Documentation due to continuously changing customer requirements.

• It is very difficult for the developers to accommodate all the changes demanded by the

customer.

• There is uncertainty in determining the number of iterations that would be required

before the prototype is finally accepted by the customer.

• After seeing an early prototype, the customers sometimes demand the actual product to

be delivered soon.

• Developers in a hurry to build prototypes may end up with sub-optimal solutions.

• The customer might lose interest in the product if he/she is not satisfied with the initial

prototype.

 [Reference - R6 Page No. - 83 - 85]

THE SPIRAL MODEL

Originally proposed by Barry Boehm, the spiral model is an evolutionary software process

model that couples the iterative nature of prototyping with the controlled and systematic

aspects of the waterfall model.

It provides the potential for rapid development of increasingly more complete versions of the

software. Boehm describes the model in the following manner:

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 28

"The spiral development model is a risk-driven process model generator that is used to guide

multi-stakeholder concurrent engineering of software intensive systems. It has two main

distinguishing features. One is a cyclic approach for incrementally growing a system’s degree

of definition and implementation while decreasing its degree of risk. The other is a set of

anchor point milestones for ensuring stakeholder commitment to feasible and mutually

satisfactory system solutions."

FIGURE: TYPICAL SPIRAL MODEL

[NOTE: The arrows pointing inward along the axis separating the deployment region from

the communication region indicate a potential for local iteration along the same spiral path.]

Using the spiral model, software is developed in a series of evolutionary releases. During

early iterations, the release might be a model or prototype. During later iterations,

increasingly more complete versions of the engineered system are produced.

A spiral model is divided into a set of framework activities defined by the software

engineering team. Each of the framework activities represent one segment of the spiral path

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 29

illustrated in Figure. The spiral model can be adapted to apply throughout the life of the

computer software.

SEGMENTS:

SEGMENT 1 includes following activities: Communication (requirement gathering,

customer evaluation and understanding)

SEGMENT 2 includes following activities: Planning (estimation, scheduling and risk

analysis)

SEGMENT 3 includes following activities: Modeling (analysis and design)

SEGMENT 4 includes following activities: Construction (coding and testing)

SEGMENT 5 includes following activities: Deployment (delivery and feedback)

CIRCUITS AROUND THE SPIRAL:

As this evolutionary process begins, the software team performs activities that are implied by

a circuit around the spiral in a clockwise direction, beginning at the center.

Risk is considered as each revolution is made.

Anchor point milestones, a combination of work products and conditions that are attained

along the path of the spiral, are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product specification

and concept development of project, that starts at the core of the spiral and continues for

multiple iterations until concept development is complete.

subsequent passes around the spiral might be used to develop a prototype and then

progressively more sophisticated versions of the software.

Each pass through the planning region results in adjustments to the project plan.

Cost and schedule are adjusted based on feedback derived from the customer after delivery.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 30

In addition, the project manager adjusts the planned number of iterations required to complete

the software.

The version or build or deliverable produced at the end of Deployment phase of the last

circuit, is the final software product.

Advantages of Spiral Model: Below are some of the advantages of the Spiral Model.

• Risk Handling: The projects with many unknown risks that occur as the development

proceeds, in that case, Spiral Model is the best development model to follow due to the

risk analysis and risk handling at every phase.

• Good for large projects: It is recommended to use the Spiral Model in large and

complex projects.

• Flexibility in Requirements: Change requests in the Requirements at later phase can be

incorporated accurately by using this model.

• Customer Satisfaction: Customer can see the development of the product at the early

phase of the software development and thus, they habituated with the system by using it

before completion of the total product.

Disadvantages of Spiral Model: Below are some of the main disadvantages of the spiral

model.

• Complex: The Spiral Model is much more complex than other SDLC models.

• Expensive: Spiral Model is not suitable for small projects as it is expensive.

• Too much dependable on Risk Analysis: The successful completion of the project is

very much dependent on Risk Analysis. Without very highly experienced expertise, it is

going to be a failure to develop a project using this model.

• Difficulty in time management: As the number of phases is unknown at the start of the

project, so time estimation is very difficult.

[Reference - R6 Page No. - 86 - 88]

CONCURRENT DEVELOPMENT MODEL

The concurrent development model, sometimes called concurrent engineering.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 31

• It allows a software team to represent iterative and concurrent elements of any of the

process model.

• For example, the modeling activity defined for the spiral model is accomplished by

invoking one or more of the software engineering actions: prototyping, analysis, and

design.

• The activity—modeling—may be in any one of the states noted at any given time.

• Similarly, other activities, actions, or tasks (e.g., communication or construction) can be

represented in an similar manner.

FIGURE: CONCURRENT DEVELOPMENT MODEL

• All software engineering activities exist concurrently but reside in different states.

• For example, early in a project the communication activity (not shown in the figure) has

completed its first iteration and exists in the awaiting changes state.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 32

• The modeling activity (which existed in the inactive state while initial communication was

completed, now makes a transition into the under development state. If, however, the

customer indicates that changes in requirements must be made, the modeling activity

moves from the under development state into the awaiting changes state.

• Concurrent modeling defines a series of events that will trigger transitions from state to

state for each of the software engineering activities, actions, or tasks.

Advantages of the concurrent development model

• This model is applicable to all types of software development processes.

• It is easy for understanding and use.

• It gives immediate feedback from testing.

• It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

• It needs better communication between the team members. This may not be achieved all the

time.

• It requires to remember the status of the different activities.

[Reference - R6 Page No. - 88 - 89]

SOFTWARE REQUIREMENTS SPECIFICATION (SRS)

A software requirements specification (SRS) is a detailed description of a software system to

be developed with its functional and non-functional requirements.

The SRS is developed based the agreement between customer and contractors. It may include

the use cases of how user is going to interact with software system. The software requirement

specification document consistent of all necessary requirements required for project

development.

To develop the software system we should have clear understanding of Software system. To

achieve this we need to continuous communication with customers to gather all requirements.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 33

A good SRS defines the how Software System will interact with all internal modules,

hardware, communication with other programs and human user interactions with wide range

of real life scenarios.

Using the Software requirements specification (SRS) document on QA lead, managers

creates test plan. It is very important that testers must be cleared with every detail specified in

this document in order to avoid faults in test cases and its expected results.

It is highly recommended to review or test SRS documents before start writing test cases and

making any plan for testing.

Let’s see how to test SRS and the important point to keep in mind while testing it.

1. Correctness of SRS should be checked. Since the whole testing phase is dependent on

SRS, it is very important to check its correctness. There are some standards with which we

can compare and verify.

2. Ambiguity should be avoided. Sometimes in SRS, some words have more than one

meaning and this might confused testers making it difficult to get the exact reference. It is

advisable to check for such ambiguous words and make the meaning clear for better

understanding.

3. Requirements should be complete. When tester writes test cases, what exactly is required

from the application, is the first thing which needs to be clear. For e.g. if application needs to

send the specific data of some specific size then it should be clearly mentioned in SRS that

how much data and what is the size limit to send.

4. Consistent requirements. The SRS should be consistent within itself and consistent to its

reference documents. If you call an input “Start and Stop” in one place, don’t call it

“Start/Stop” in another. This sets the standard and should be followed throughout the testing

phase.

5. Verification of expected result: SRS should not have statements like “Work as expected”,

it should be clearly stated that what is expected since different testers would have different

thinking aspects and may draw different results from this statement.

6. Testing environment: some applications need specific conditions to test and also a

particular environment for accurate result. SRS should have clear documentation on what

type of environment is needed to set up.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 34

7. Pre-conditions defined clearly: one of the most important part of test cases is pre-

conditions. If they are not met properly then actual result will always be different expected

result. Verify that in SRS, all the pre-conditions are mentioned clearly.

8. Requirements ID: these are the base of test case template. Based on requirement Ids, test

case ids are written. Also, requirements ids make it easy to categorize modules so just by

looking at them, tester will know which module to refer. SRS must have them such as id

defines a particular module.

9. Security and Performance criteria: security is priority when a software is tested

especially when it is built in such a way that it contains some crucial information when

leaked can cause harm to business. Tester should check that all the security related

requirements are properly defined and are clear to him. Also, when we talk about

performance of a software, it plays a very important role in business so all the requirements

related to performance must be clear to the tester and he must also know when and how much

stress or load testing should be done to test the performance.

10. Assumption should be avoided: sometimes when requirement is not cleared to tester, he

tends to make some assumptions related to it, which is not a right way to do testing as

assumptions could go wrong and hence, test results may vary. It is better to avoid

assumptions and ask clients about all the “missing requirements” to have a better

understanding of expected results.

11. Deletion of irrelevant requirements: there are more than one team who work on SRS so

it might be possible that some irrelevant requirements are included in SRS. Based on the

understanding of the software, tester can find out which are these requirements and remove

them to avoid confusions and reduce work load.

12. Freeze requirements: when an ambiguous or incomplete requirement is sent to client to

analyze and tester gets a reply, that requirement result will be updated in the next SRS

version and client will freeze that requirement. Freezing here means that result will not

change again until and unless some major addition or modification is introduced in the

software.

Most of the defects which we find during testing are because of either incomplete

requirements or ambiguity in SRS. To avoid such defects it is very important to test software

requirements specification before writing the test cases. Keep the latest version of SRS with

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 35

you for reference and keep yourself updated with the latest change made to the SRS. Best

practice is to go through the document very carefully and note down all the confusions,

assumptions and incomplete requirements and then have a meeting with the client to get them

clear before development phase starts as it becomes costly to fix the bugs after the software is

developed. After all the requirements are cleared to a tester, it becomes easy for him to write

effective test cases and accurate expected results.

[Reference - R9]

FORMAL REQUIREMENT SPECIFICATION

A formal software specification is a statement expressed in a language whose vocabulary,

syntax, and semantics are formally defined. The need for a formal semantic definition means

that the specification languages cannot be based on natural language; it must be based on

mathematics.

The advantages of a formal language are:

• The development of a formal specification provides insights and understanding of the

software requirements and the software design.

• Given a formal system specification and a complete formal programming language

definition, it may be possible to prove that a program conforms to its specifications.

• Formal specification may be automatically processed. Software tools can be built to assist

with their development, understanding, and debugging.

• Depending on the formal specification language being used, it may be possible to animate a

formal system specification to provide a prototype system.

• Formal specifications are mathematical entities and may be studied and analyzed using

mathematical methods.

• Formal specifications may be used as a guide to the tester of a component in identifying

appropriate test cases.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 36

Relational and State-Oriented Notations

Relational notations are used based on the concept of entities and attributes.

Entities are elements in a system; the names are chosen to denote the nature of the elements

(e.g., stacks, queues).

Attributes are specified by applying functions and relations to the named entities.

Attributes specify permitted operations on entities, relationships among entities, and data

flow between entities.

Relational notations include implicit equations, recurrence relations, and algebraic axioms.

State-oriented specifications use the current state of the system and the current stimuli

presented to the system to show the next state of the system.

The execution history by which the current state was attained does not influence the next

state; it is dependent only on the current state and the current stimuli.

State-oriented notations include decision tables, event tables, transition tables, and finite-state

tables.

SPECIFICATION PRINCIPLES

Principle 1: Separate functionality from implementation. A specification is a statement of

what is desired, not how it is to be realized. Specifications can take two general forms. The

first form is that of mathematical functions: Given some set of inputs, produce a particular set

of outputs. The general form of such specifications is find [a/the/all] result such that P(input),

where P represents an arbitrary predicate. In such specifications, the result to be obtained has

been entirely expressed in a “what”, rather than a “how” form, mainly because the result is a

mathematical function of the input (the operation has well-defined starting and stopping

points) and is unaffected by any surrounding environment.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 37

Principle 2: A process-oriented systems specification language is sometimes required. If

the environment is dynamic and its changes affect the behavior of some entity interacting

with that environment (as in an embedded computer system), its behavior cannot be

expressed as a mathematical function of its input. Rather a process-oriented description must

be employed, in which the “what” specification is achieved by specifying a model of the

desired behavior in terms of functional responses to various stimuli from the environment.

Principle 3: The specification must provide the implementer all of the information

he/she needs to complete the program, and no more. In particular, no information about

the structure of the calling program should be conveyed.

Principle 4: The specification should be sufficiently formal that it can conceivably be

tested for consistency, correctness, and other desirable properties.

Principle 5: The specification should discuss the program in terms normally used by the

user and implementer alike.

SOME SPECIFICATION TECHNIQUES

1. Implicit Equations

Specify computation of square root of a number between 0 and some maximum value Y to a

tolerance E.

(0<=X<=Y){ABS_VALUE[(WHAT(X)) 2-X]}<=E

2. Recurrence Relation

Good for recursive computations.

Example, Fibonacci numbers 0, 1, 1, 2, 3, 5, 8,...

FI(0) = 0;

FI(1) = 1;

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 38

FI(n) = FI(n-1) + FI(n-2); for n>=1.

 [Reference - R10]

Verification and Validation

We have seen the “V-Model”. In the V Model Software Development Life Cycle, based on

requirement specification document the development & testing activity is started.

The V-model is also called as Verification and Validation model.

The testing activity is perform in the each phase of Software Testing Life Cycle.

In the first half of the model validations testing activity is integrated in each phase like review

user requirements, System Design document & in the next half the Verification testing

activity is come in picture.

Verification (ARE WE BUILDING THE PRODUCT RIGHT?)

Definition : The process of evaluating software to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase.

Verification is a static practice of verifying documents, design, code and program. It includes

all the activities associated with producing high quality software: inspection, design analysis

and specification analysis. It is a relatively objective process.

Verification will help to determine whether the software is of high quality, but it will not

ensure that the system is useful. Verification is concerned with whether the system is well-

engineered and error-free.

Methods of Verification: Static Testing

• Walkthrough

• Inspection

• Review

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 39

 Validation (ARE WE BUILDING THE RIGHT PRODUCT?)

Definition: The process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements.

Validation is the process of evaluating the final product to check whether the software meets

the customer expectations and requirements. It is a dynamic mechanism of validating and

testing the actual product.

Methods of Validation: Dynamic Testing

• Testing according to End Users

 Difference between Verification and Validation

The distinction between the two terms is largely to do with the role of specifications.

Verification is the process of checking that the software meets the specification. “Did I build

what I need?”

Validation is the process of checking whether the specification captures the customer’s

needs. “Did I build what I said I would?”

 Verification Validation

 Verification is a static practice of verifying

documents, design, code and program.

Validation is a dynamic mechanism of

validating and testing the actual product.

It does not involve executing the code. It always involves executing the code.

It is human based checking of documents

and files.

It is computer based execution of

program.

Verification uses methods like inspections,

reviews, walkthroughs, and Desk-checking

etc.

Validation uses methods like black box

(functional) testing, gray box testing,

and white box (structural) testing etc.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 40

Verification is to check whether the software

conforms to specifications.

Validation is to check whether software

meets the customer expectations and

requirements.

It can catch errors that validation cannot

catch. It is low level exercise.

 It can catch errors that verification

cannot catch. It is High Level Exercise.

Target is requirements specification,

application and software architecture, high

level, complete design, and database design

etc.

Target is actual product-a unit, a module,

a bent of integrated modules, and

effective final product.

Verification is done by QA team to ensure

that the software is as per the specifications

in the SRS document.

Validation is carried out with the

involvement of testing team.

It generally comes first-done before

validation.
It generally follows after verification.

Are we building the system right? Are we building the right system?

Verification is the process of evaluating

products of a development phase to find out

whether they meet the specified

requirements.

Validation is the process of evaluating

software at the end of the development

process to determine whether software

meets the customer expectations and

requirements.

The objective of Verification is to make sure

that the product being develop is as per the

requirements and design specifications.

The objective of Validation is to make

sure that the product actually meet up the

user’s requirements, and check whether

the specifications were correct in the first

place.

Following activities are involved

in Verification: Reviews, Meetings and

Inspections.

Following activities are involved

in Validation: Testing like black box

testing, white box testing, gray box

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 41

testing etc.

Verification is carried out by QA team to

check whether implementation software is as

per specification document or not.

Validation is carried out by testing team.

Execution of code is not comes

under Verification.

Execution of code is comes

under Validation.

Verification process explains whether the

outputs are according to inputs or not.

Validation process describes whether the

software is accepted by the user or not.

Verification is carried out before the

Validation.

Validation activity is carried out just

after the Verification.

Following items are evaluated

during Verification: Plans, Requirement

Specifications, Design Specifications, Code,

Test Cases etc,

Following item is evaluated

during Validation: Actual product or

Software under test.

Cost of errors caught in Verification is less

than errors found in Validation.

Cost of errors caught in Validation is

more than errors found in Verification.

It is basically manually checking the of

documents and files like requirement

specifications etc.

It is basically checking of developed

program based on the requirement

specifications documents & files.

 [Reference - R10]

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 42

UNIT -2 SOFTWARE PROJECT MANAGEMENT

OBJECTIVES

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. These estimates are

made within a limited time frame at the beginning of a software project and should be

updated regularly as the project progresses. In addition, estimates should attempt to define

best case and worst case scenarios so that project outcomes can be bounded. The planning

objective is achieved through a process of information discovery that leads to reasonable

estimates. In the following sections, each of the activities associated with software project

planning is discussed.

RESOURCES

The second software planning task is estimation of the resources required to accomplish the

software development effort. Figure illustrates development resources as a pyramid. The

development environment—hardware and software tools—sits at the foundation of the

resources pyramid and provides the infrastructure to support the development effort. At a

higher level, we encounter reusable software components— software building blocks that can

dramatically reduce development costs and accelerate delivery. At the top of the pyramid is

the primary resource—people. Each resource is specified with four characteristics:

description of the resource, a statement of availability, time when the resource will be

required; duration of time that resource will be applied. The last two characteristics can be

viewed as a time window.

Availability of the resource for a specified window must be established at the earliest

practical time.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 43

HUMAN RESOURCES

The planner begins by evaluating scope and selecting the skills required to complete

development. Both organizational position (e.g., manager, senior software engineer) and

specialty (e.g., telecommunications, database, client/server) are specified. For relatively small

projects (one person-year or less), a single individual may perform all software engineering

tasks, consulting with specialists as required.The number of people required for a software

project can be determined only after an estimate of development effort (e.g., person-months)

is made.

 REUSABLE SOFTWARE RESOURCES

Component-based software engineering (CBSE)5 emphasizes reusability—that is, the

creation and reuse of software building blocks [HOO91]. Such building blocks, often called

components, must be cataloged for easy reference, standardized for easy application, and

validated for easy integration.

Bennatan [BEN92] suggests four software resource categories that should be considered as

planning proceeds:

Off-the-shelf components. Existing software that can be acquired from a third party or that

has been developed internally for a past project. COTS (commercial off-the-shelf)

components are purchased from a third party, are ready for use on the current project, and

have been fully validated.

Full-experience components.

Existing specifications, designs, code, or test data developed for past projects that are similar

to the software to be built for the current project. Members of the current software team have

had full experience in the application area represented by these components. Therefore,

modifications required for full-experience components will be relatively low-risk.

Partial-experience components.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 44

Existing specifications, designs, code, or test data developed for past projects that are related

to the software to be built for the current project but will require substantial modification.

Members of the current software team have only limited experience in the application area

represented by these components. Therefore, modifications required for partial-experience

components have a fair degree of risk.

New components.

 Software components that must be built by the software team specifically for the needs of the

current project.The following guidelines should be considered by the software planner when

reusable components are specified as a resource.

DECOMPOSITION TECHNIQUES

Software Sizing

“Fuzzy logic” sizing. This approach uses the approximate reasoning techniques that are the

cornerstone of fuzzy logic. To apply this approach, the planner must identify the type of

application, establish its magnitude on a qualitative scale, and then refine the magnitude

within the original range. Although personal experience can be used, the planner should also

have access to a historical database of projects so that estimates can be compared to actual

experience.

Function point sizing. Standard component sizing. For example, the standard components

for an information system are subsystems, modules, screens, reports, interactive programs,

batch programs, files, LOC, and object-level instructions. The project planner estimates the

number of occurrences of each standard component and then uses historical project data to

determine the delivered size per standard component. To illustrate, consider an information

systems application. The planner estimates that 18 reports will be generated. Historical data

indicates that 967 lines of COBOL are required per report. This enables the planner to

estimate that 17,000 LOC will be required for the reports component. Similar estimates and

computation are made for other standard components, and a combined size value (adjusted

statistically) results.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 45

Change sizing. This approach is used when a project encompasses the use of existing

software that must be modified in some way as part of a project. The planner estimates the

number and type (e.g., reuse, adding code, changing code, deleting code) of modifications

that must be accomplished. Using an “effort ratio”for each type of change, the size of the

change may be estimated

Problem-Based Estimation

LOC-Based Estimation

FP BASED ESTIMATION:

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 46

Process-Based Estimation

PROJECT PLANNING OBJECTIVES

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. These estimates are

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 47

made within a limited time frame at the beginning of a software project and should be

updated regularly as the project progresses. In addition, estimates should attempt to define

best case and worst case scenarios so that project outcomes can be bounded.

The planning objective is achieved through a process of information discovery that leads to

reasonable estimates. In the following sections, each of the activities associated with software

project planning is discussed.

THE COCOMO MODEL

In his classic book on “software engineering economics,” Barry Boehm [BOE81] introduced

a hierarchy of software estimation models bearing the name COCOMO, for COnstructive

COst MOdel. The original COCOMO model became one of the most widely used and

discussed software cost estimation models in the industry. It has evolved into a more

comprehensive estimation model, called COCOMO II .Like its predecessor, COCOMO II is

actually a hierarchy of estimation models that address the following areas:

Application composition model. Used during the early stages of software engineering, when

prototyping of user interfaces, consideration of software and system interaction, assessment

of performance, and evaluation of technology maturity are paramount.

Early design stage model. Used once requirements have been stabilized and basic software

architecture has been established.

Post-architecture-stage model. Used during the construction of the software. Like all

estimation models for software, the COCOMO II models require sizing information.Three

different sizing options are available as part of the model hierarchy:

object points, function points, and lines of source code. The object point is an indirect

software measure that is computed using counts of the number of

(1) screens (at the user interface)

(2) reports, and

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 48

(3) Components likely to be required to build the application. Each object instance (e.g., a

screen or report) is classified into one of three complexity levels (i.e.,simple, medium, or

difficult) using criteria suggested by Boehm [BOE96]. In essence,complexity is a function of

the number and source of the client and server data tables that are required to generate the

screen or report and the number of views or sections presented as part of the screen or report.

The Software Equation

The software equation Is a dynamic multivariable model that assumes a specific distribution

of effort over the life of a software development project. The model has been derived from

productivity data collected for over 4000 contemporary software projects. Based on these

data, an estimation model of the form

E = [LOC _ B0.333/P]3 _ (1/t4) (5-3)

where E = effort in person-months or person-years

t = project duration in months or years

B = “special skills factor”16

P = “productivity parameter” that reflects:

• Overall process maturity and management practices

• The extent to which good software engineering practices are used

• The level of programming languages used

• The state of the software environment

• The skills and experience of the software team

• The complexity of the application

Typical values might be P = 2,000 for development of real-time embedded software; P =

10,000 for telecommunication and systems software; P = 28,000 for business systems

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 49

applications.17 The productivity parameter can be derived for local conditions using

historical data collected from past development efforts. It is important to note that the

software equation has two independent parameters:

(1) an estimate of size (in LOC) and (2) an indication of project duration in calendar months

or years.

RISK ANALYSIS

First, risk concerns future happenings. Today and yesterday are beyond active concern, as we

are already reaping what was previously sowed by our past actions. The question is, can we,

therefore, by changing our actions today, create an opportunity for a different and hopefully

better situation for ourselves tomorrow. This means second, that risk involves change, such as

in changes of mind, opinion, actions, or places . . . [Third,] risk involves choice, and the

uncertainty that choice itself entails.

What is it?

Risk analysis and management are a series of steps that help a software team to understand

and manage uncertainty. Many problems can plague a software project. A risk is a potential

problem—it might happen, it might not. But, regardless of the outcome, it’s a really good

idea to identify it, assess its probability of occurrence, estimate its impact, and establish a

contingency plan should the problem actually occur.

Who does it?

Everyone involved in the software process—managers, software engineers, and customers

participate in risk analysis and management.

SOFTWARE RISKS

There is general agreement that risk always involves two characteristics

 • Uncertainty—the risk may or may not happen; that is, there are no 100% probable risks.

 • Loss—if the risk becomes a reality, unwanted consequences or losses will occur.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 50

When risks are analyzed, it is important to quantify the level of uncertainty and the degree of

loss associated with each risk. To accomplish this, different categories of risks are

considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, customer, and

requirements problems and their impact on a software project.project complexity, size, and

the degree of structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced.If a

technical risk becomes a reality, implementation may become difficult or

impossible.Technical risks identify potential design, implementation, interface,

verification,and maintenance problems. In addition, specification ambiguity, technical

uncertainty, technical obsolescence, and "leading-edge" technology are also risk

factors.Technical risks occur because the problem is harder to solve than we thought it would

be.

Business risks threaten the viability of the software to be built. Business risks often

jeopardize the project or the product. Candidates for the top five business risks are

(1) building a excellent product or system that no one really wants (market risk), (2)building

a product that no longer fits into the overall business strategy for the company (strategic risk)

(3) building a product that the sales force doesn't understand

how to sell

(4) losing the support of senior management due to a change in focus or

a change in people (management risk)

(5) losing budgetary or personnel commitment (budget risks). It is extremely important to

note that simple categorization won't always work. Some risks are simply unpredictable in

advance.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 51

Another general categorization of risks has been proposed by Charette [CHA89]. Known

risks are those that can be uncovered after careful evaluation of the project plan, the business

and technical environment in which the project is being developed, and other reliable

information sources (e.g., unrealistic delivery date, lack of documented requirements or

software scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests

are serviced).

Unpredictable risks are the joker in the deck. They can and do occur, but they are extremely

difficult to identify in advance.

RISK IDENTIFICATION

Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). By identifying known and predictable risks, the project

manager takes a first step toward avoiding them when possible and controlling them when

necessary.

There are two distinct types of risks for each of the categories that have been presented earlier

: generic risks and product-specific risks.

Generic risks are a potential threat to every software project.

Product-specific risks can be identified only by those with a clear understanding of the

technology, the people, and the environment that is specific to the project at hand. To identify

product-specific risks, the project plan and the software statement of scope are examined and

an answer to the following question is developed: "What special characteristics of this

product may threaten our project plan?"

One method for identifying risks is to create a risk item checklist. The checklist can be used

for risk identification and focuses on some subset of known and predictable risks in the

following generic subcategories:

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 52

• Product size—risks associated with the overall size of the software to be built or modified.

• Business impact—risks associated with constraints imposed by management or the

marketplace.

• Customer characteristics—risks associated with the sophistication of the customer and the

developer's ability to communicate with the customer in a timely manner.

• Process definition—risks associated with the degree to which the software process has been

defined and is followed by the development organization.

• Development environment—risks associated with the availability and quality of the tools to

be used to build the product.

• Technology to be built—risks associated with the complexity of the system to be built and

the "newness" of the technology that is packaged by the system.

• Staff size and experience—risks associated with the overall technical and project experience

of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each of the

topics can be answered for each software project. The answers to these questions allow the

planner to estimate the impact of risk. A different risk item checklist format simply lists

characteristics that are relevant to each generic subcategory. Finally, a set of “risk

components and drivers" [AFC88] are listed along with their probability Although generic

risks are important to consider, usually the product-specific risks cause the most headaches.

Be certain to spend the time to identify as many product-specific risks as possible.

RISK COMPONENT & DRIVERS

The risk components are defined in the following manner:

• Performance risk—the degree of uncertainty that the product will meet its requirements and

be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be maintained.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 53

• Support risk—the degree of uncertainty that the resultant software will be easy to correct,

adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule will be maintained and

that the product will be delivered on time.

All of the risk analysis activities presented to this point have a single goal—to assist the

project team in developing a strategy for dealing with risk. An effective strategy must

consider three issues:

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 54

• risk avoidance

• risk monitoring

• risk management and contingency planning

If a software team adopts a proactive approach to risk, avoidance is always the best strategy.

This is achieved by developing a plan for risk mitigation. For example, assume that high staff

turnover is noted as a project risk, r1. Based on past history and management intuition, the

likelihood, l1, of high turnover is estimated to be 0.70 (70 percent, rather high) and the

impact, x1, is projected at level 2. That is, high turnover will have a critical impact on project

cost and schedule.

To mitigate this risk, project management must develop a strategy for reducing turnover.

Among the possible steps to be taken are

• Meet with current staff to determine causes for turnover (e.g., poor working conditions, low

pay, competitive job market).

• Mitigate those causes that are under our control before the project starts.

• Once the project commences, assume turnover will occur and develop techniques to ensure

continuity when people leave.

• Organize project teams so that information about each development activity is widely

dispersed.

• Define documentation standards and establish mechanisms to be sure that documents are

developed in a timely manner.

• Conduct peer reviews of all work (so that more than one person is "up to speed”).

• Assign a backup staff member for every critical technologist.As the project proceeds, risk

monitoring activities commence. The project manager monitors factors that may provide an

indication of whether the risk is becoming more or less likely. In the case of high staff

turnover, the following factors can be monitored:

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 55

• General attitude of team members based on project pressures.

• The degree to which the team has jelled.

• Interpersonal relationships among team members.

• Potential problems with compensation and benefits.

• The availability of jobs within the company and outside it.

In addition to monitoring these factors, the project manager should monitor the effectiveness

of risk mitigation steps. For example, a risk mitigation step noted here called for the

definition of documentation standards and mechanisms to be sure that documents are

developed in a timely manner. This is one mechanism for ensuring continuity, should a

critical individual leave the project. The project manager should monitor documents carefully

to ensure that each can stand on its own and that each imparts information that would be

necessary if a newcomer were forced to join the software team somewhere in the middle of

the project.

Risk management and contingency planning assumes that mitigation efforts have failed and

that the risk has become a reality. Continuing the example, the project is well underway and a

number of people announce that they will be leaving. If the mitigation strategy has been

followed, backup is available, information is documented, and knowledge has been dispersed

across the team. In addition, the project manager may temporarily refocus resources (and

readjust the project schedule) to those functions that are fully staffed, enabling newcomers

who must be added to the team to “get up to speed.” Those individuals who are leaving are

asked to stop all work and spend their last weeks in “knowledge transfer mode.” This might

include video-based knowledge capture, the development of “commentary documents,”

and/or meeting with other team members who will remain on the project.

It is important to note that RMMM steps incur additional project cost. For example,spending

the time to "backup" every critical technologist costs money. Part of risk management,

therefore, is to evaluate when the benefits accrued by the RMMM steps are outweighed by

the costs associated with implementing them. In essence, the project planner performs a

classic cost/benefit analysis. If risk aversion steps for high turnover will increase both project

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 56

cost and duration by an estimated 15 percent, but the predominant cost factor is "backup,"

management may decide not to implement this step. On the other hand, if the risk aversion

steps are projected to increase costs by 5 percent and duration by only 3 percent management

will likely put all into place.

For a large project, 30 or 40 risks may be identified. If between three and seven risk

management steps are identified for each, risk management may become a project in itself!

For this reason, we adapt the Pareto 80–20 rule to software risk. Experience indicates that 80

percent of the overall project risk (i.e., 80 percent of the potential for project failure) can be

accounted for by only 20 percent of the identified risks. The work performed during earlier

risk analysis steps will help the planner to determine which of the risks reside in that 20

percent (e.g., risks that lead to the highest risk exposure). For this reason, some of the risks

identified, assessed, and projected may not make it into the RMMM plan—they don't fall into

the critical 20 percent (the risks with highest project priority).

SOFTWARE PROJECT SCHEDULING

Software project scheduling is an activity that distributes estimated effort across the planned

project duration by allocating the effort to specific software engineering tasks. During early

stages of project planning, a macroscopic schedule is developed. This type of schedule

identifies all major software engineering activities and the product functions to which they

are applied. As the project gets under way, each entry on the macroscopic schedule is refined

into a detailed schedule. Here, specific software tasks (required to accomplish an activity) are

identified and scheduled. Scheduling for software engineering projects can be viewed from

two rather different perspectives. In the first, an end-date for release of a computer-based

system has already (and irrevocably) been established. The software organization is

constrained to distribute effort within the prescribed time frame. The second view of software

scheduling assumes that rough chronological bounds have been discussed but that the end-

date is set by the software engineering organization. Effort is distributed to make best use of

resources and an end-date is defined after careful analysis of the software. Unfortunately, the

first situation is encountered far more frequently than the second. Like all other areas of

software engineering, a number of basic principles guide

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 57

software project scheduling:

Compartmentalization. The project must be compartmentalized into a number of

manageable activities and tasks. To accomplish compartmentalization, both the product and

the process are decomposed .

Interdependency. The interdependency of each compartmentalized activity or task must be

determined. Some tasks must occur in sequence while others can occur in parallel. Some

activities cannot commence until the work product produced by another is available. Other

activities can occur independently.

Time allocation. Each task to be scheduled must be allocated some number of work units

(e.g., person-days of effort). In addition, each task must be assigned a start date and a

completion date that are a function of the interdependencies and whether work will be

conducted on a full-time or part-time basis.

Effort validation. Every project has a defined number of staff members. As time allocation

occurs, the project manager must ensure that no more than the allocated number of people

have been scheduled at any given time. For example, consider a project that has three

assigned staff members (e.g., 3 person-days are available per day of assigned effort5). On a

given day, seven concurrent tasks must be accomplished. Each task requires 0.50 person days

of effort. More effort has been allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a specific team

member.

Defined outcomes. Every task that is scheduled should have a defined outcome. For software

projects, the outcome is normally a work product (e.g. the design of a module) or a part of a

work product. Work products are often combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with a project

milestone. A milestone is accomplished when one or more work products has been reviewed

for quality and has been approved.

Each of these principles is applied as the project schedule evolves.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 58

SCHEDULING

Scheduling of a software project does not differ greatly from scheduling of any multitask

engineering effort. Therefore, generalized project scheduling tools and techniques can be

applied with little modification to software projects.

Program evaluation and review technique (PERT) and critical path method (CPM)

[MOD83] are two project scheduling methods that can be applied to software development.

Both techniques are driven by information already developed in earlier project planning

activities:

• Estimates of effort

• A decomposition of the product function

• The selection of the appropriate process model and task set

• Decomposition of tasks

Interdependencies among tasks may be defined using a task network. Tasks, sometimes

called the project work breakdown structure (WBS), are defined for the product as a whole or

for individual functions.

Both PERT and CPM provide quantitative tools that allow the software planner to

(1) determine the critical path—the chain of tasks that determines the duration of the project;

(2) establish “most likely” time estimates for individual tasks by applying statistical models;

(3) calculate “boundary times” that define a time "window" for a particular task.

Boundary time calculations can be very useful in software project scheduling. Slippage in the

design of one function, for example, can retard further development of other functions.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III Semester [2020-21] Page | 59

Riggs describes important boundary times that may be discerned from a PERT or CPM

network:

(1) the earliest time that a task can begin when all preceding tasks are completed in the

shortest possible time,

(2) the latest time for task initiation before the minimum project completion time is delayed,

(3) the earliest finish—the sum of the earliest start and the task duration,

(4) the latest finish the latest start time added to task duration, and

(5) the total float—the amount of surplus time or leeway allowed in scheduling tasks so that

the network critical path is maintained on schedule. Boundary time calculations lead to a

determination of critical path and provide the manager with a quantitative method for

evaluating progress as tasks are completed.

