

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Lecture Notes

on

Object Oriented Programming

3CS4-06

Unit V

Department of Computer Science & Engineering

Jaipur Engineering College & Research Centre, Jaipur

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Vision of the Institute

To become a renowned centre of outcome based learning and work toward academic,

professional, cultural and social enrichment of the lives of individuals and communities.

Mission of the Institute

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of

focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make competent

engineers & professionals with high ethical values prepared for lifelong learning.

Mission of the Department

M1: To impart outcome based education for emerging technologies in the field of computer science and

engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies.

M4: To develop aptitude of fulfilling social responsibilities.

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Program Outcomes (PO)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

Computer Science & Engineering specialization to the solution of complex Computer Science & Engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex Computer Science and
Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

3. Design/development of solutions: Design solutions for complex Computer Science and Engineeringproblems and
design system components or processes that meet the specified needs with appropriateconsideration for the public

health and safety,and the cultural, societal, and environmentalconsiderations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of Computer Science and Engineering experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT

tools including prediction and modeling to complex Computer Science Engineering activities with an understanding
of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional Computer Science
and Engineering practice.

7. Environment and sustainability: Understand the impact of the professional Computer Science and Engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the Computer

Science and Engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings in Computer Science and Engineering.

10. Communication: Communicate effectively on complex Computer Science and Engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write effective reports and
design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the Computer Science and

Engineering and management principles and apply these to one‘s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation andability to engage in independent and

life-long learning in the broadest contextof technological changein Computer Science and Engineering.

Program Educational Objectives (PEO)

PEO1: To provide students with the fundamentals of Engineering Sciences with more emphasis in

Computer Science & Engineering by way of analyzing and exploiting engineering challenges.

PEO2:To train students with good scientific and engineering knowledge so as to comprehend, analyze,

design, and create novel products and solutions for the real life problems inComputer Science and

Engineering

PEO3: To inculcate professional and ethical attitude, effective communication skills, teamwork skills,

multidisciplinary approach, entrepreneurial thinking and an ability to relate engineering issues with social

issues for Computer Science & Engineering.

PEO4: To provide students with an academic environment aware of excellence, leadership, written ethical

codes and guidelines, and the self-motivated life-long learning needed for a successful professional career

in Computer Science & Engineering.

PEO5: To prepare students to excel in Industry and Higher education by Educating Students along with

High moral values and Knowledge in Computer Science & Engineering.

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Course Outcomes

1. Understand the paradigms of object oriented programming in comparison of procedural oriented

programming.

2. Apply the class structure as fundamental, building block for computational programming.

3. Apply the major object-oriented concepts to implement object oriented programs in C++.

4. Implement the concept of abstraction inheritance, polymorphism, dynamic binding and generic

structure in building reusable code.

Mapping of Course Outcomes with Program Outcomes

H=3, M=2, L=1

Se
m

e
st

e
r

Su
b

je
ct

C
o

d
e

L
/
T
/
P

CO

P
O
1

P
O
2

P
O
3

P
O
4

P
O
5

P
O
6

P
O
7

P
O
8

P
O
9

P
O
1
0

P
O
1
1

P
O
1
2

III

O
b

je
ct

 O
ri

e
n

te
d

 P
ro

g
ra

m
m

in
g

3
C

S
4

-0
6

L

Understand the paradigms of

object oriented programming in

comparison of procedural

oriented programming.

programming.

capacity in communication
system.

3

3

3

2

2

2

1

1

0

1

1

3

L

Apply the class structure as

fundamental, building block for

computational programming.

programming.

3

3

3

3

2

2

1

1

1

2

1

3

L

Apply the major object-oriented

concepts to implement object

oriented programs in C++.

3

3

3

3

2

1

2

2

1

2

1

3

L

Implement the concept of

abstraction inheritance,

polymorphism, dynamic binding

and generic structure in building

reusable code.

.

3

3

3

3

2

1

1

1

1

1

1

1

3

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Syllabus

perform operation which maythrow

or invoke external function ifneeded

if (failure)

throw object

catches all exceptions thrown from

within try block

UNIT V

Exception Handling:

Exception refers to unexpected condition in a program. The unusual conditions could be faults,

causing an error which in turn causes the program to fail. The error handling mechanism of c++ is

generally referred to as exception handling.

Generally , exceptions are classified into synchronous and asynchronous exceptions.. The exceptions

which occur during the program execution, due to some fault in the input data or technique that is not

suitable to handle the current class of data. with in a program is known as synchronous exception.

Example:

errors such as out of range,overflow,underflow and so on.

The exceptions caused by events or faults unrelated to the program and beyond the control of

program are asynchronous exceptions.

For example, errors such as keyboard interrupts, hardware malfunctions, disk failure and so on.

exception handling model:

When a program encounters an abnormal situation for which it in not designed, the user may transfer

control to some other part of the program that is designed to deal with the problem. This is done by

throwing an exception. The exception handling mechanism uses three blocks: try, throw and catch.

The try block must be followed immediately by a handler, which is a catch block. If an exception is

thrown in the try block the program control is transferred to the appropriate exception handler. The

program should attempt to catch any exception that is thrown by any function. The relationship of

these three exceptions handling constructs called the exception handling model is shown in figure:

invoke function having throw block

exception

try block

throw construct:

The keyword throw is used to raise an exception when an error is generated in the comutation. the

throw expression initialize a temporary object of the typeT used in thorw (T arg).

syntax:

throw T;

catch construct:

The exception handler is indicated by the catch keyword. It must be used immediately after the

statements marked by the try keyword. The catch handler can also occur immediately after another

catch Each handler will only evaluate an exception that matches.

syn:

catch(T)

{

// error meassges

}

try construct:

The try keyboard defines a boundary within which an exception can occur. A block of code in which

an exception can occur must be prefixed by the keyword try. Following the try keyword is a block of

code enclosed by braces. This indicates that the prepared to test for the existence of exceptions. If an

exception occurs, the program flow is interrupted.

try

{

…

if (failure)

throw T;

}

catch(T)

{

…

}

example:

#include<iostream.h>

void main()

{

int a,b;
cout<<‖enter two numbers:‖;

cin>>a>>b;

try

{

if (b= =0)

throw b;
else

}

cout<a/b;

catch(int x)
{

cout<<‖2nd operand can‘t be 0‖;

}

}

Array reference out of bound:

#define max 5

class array

{

private:

int a[max];
public:

int &operator[](int i)

{

if (i<0 || i>=max)
throw i;

else

}

};

return a[i];

void main()

{

array x;
try

{
cout<<‖trying to refer a[1]…‖

x[1]=3;

cout<<‖trying to refer a[13]…‖

x[13]=5;

}

catch(int i)

{

cout<<‖out of range in array references…‖;

}

}

multiple catches in a program

void test(int x)

{

try{

if (x==1)
throw x;

else if (x==-1)

throw 3.4;

else if (x==0)

throw ‗s‘;

}

catch (int i)

{

cout<<‖caught an integer…‖;

}

catch (float s)

{

cout<<‖caught a float…‖;

}

catch (char c)

{

cout<<‖caught a character…‖;

}}

void main()

{

test(1);

test(-1);

test(0);

}

catch all

void test(int x)

{

try{

if (x==1)
throw x;

else if (x==-1)

throw 3.4;
else if (x==0)

throw ‗s‘;

}

catch (…)

{

cout<<‖caught an error…‖;

}

Containership in C++

When a class contains objects of another class or its members, this kind of relationship is

called containership or nesting and the class which contains objects of another class as its members is

called as container class.

Syntax for the declaration of another class is:

Class class_name1

{

——–

——–

};

Class class_name2

{

——–

———

};

Class class_name3

{

Class_name1obj1; // object ofclass_name1

Class_name2obj2; // object ofclass_name2

———-

———–

};

//Sample Program to demonstrate Containership

#include < iostream.h >

#include < conio.h >

#include < iomanip.h >

#include< stdio.h >

const int len=80;

class employee

{

private:
char name[len];

int number;

public:

void get_data()

{

cout << "\n Enter employee name: ";

cin >> name;

cout << "\n Enter employee number:";

cin >>number;

}

void put_data()

{
cout << " \n\n Employee name: " << name;

cout << " \n\n Employee number: " <<number;

}

};

class manager

{

private:

char dept[len];

int numemp;

employee emp;

public:

void get_data()

{

emp.get_data();

cout << " \n Enter department: ";

cin >> dept;

cout << "\n Enter number of employees: ";
cin >> numemp;

}

void put_data()

{

emp.put_data();

cout << " \n\n Department: " << dept;

cout << " \n\n Number of employees: " << numemp;

}

};

class scientist

{

private:

int pubs,year;

employee emp;

public:

void get_data()

{

emp.get_data();
cout << " \n Number of publications: ";

cin >>pubs;

cout << " \n Year of publication: ";
cin >> year;

}

void put_data()

{

emp.put_data();

cout << "\n\n Number of publications: " << pubs;

cout << "\n\n Year of publication: "<< year;

}

};

void main()

{

manager m1;

scientist s1;

int ch;

clrscr();

do

{
cout << "\n 1.manager\n 2.scientist\n";

cout << "\n Enter your choice: ";

cin >> ch;
switch(ch)

{

case 1:

cout << "\n Manager data:\n";
m1.get_data();

cout << "\n Manager data:\n";
m1.put_data();

break;

case 2:cout << " \n Scientist data:\n";

s1.get_data();

cout << " \n Scientistdata:\n";

s1.put_data();

break;
}

cout << "\n\n To continue Press 1 -> ";

cin >> ch;

}
while(ch==1);

getch();

}

Difference between Inheritance and Containership :

Containership: Containership is the phenomenon of using one or more classes within the definition

of other class. When a class contains the definition of some other classes, it is referred to as

composition, containment or aggregation. The data member of a new class is an object of some

other class. Thus the other class is said to be composed of other classes and hence referred to as

containership. Composition is often referred to as a ―has-a‖ relationship because the objects of the

composite class have objects of the composed class asmembers.

Inheritance: Inheritance is the phenomenon of deriving a new class from an old one. Inheritance

supports code reusability. Additional features can be added to a class by deriving a class from it and

then by adding new features to it. Class once written or tested need not be rewritten or redefined.

Inheritance is also referred to as specialization or derivation, as one class is inherited or derived from

the other. It is also termed as ―is-a‖ relationship because every object of the class being defined is

also an object of the inherited class.

Template:

Template supports generic programming, which allows developing reusable software components

such as functions, classes, etc supporting different data types in a single frame work.

A template in c++ allows the construction of a family of template functions and classes to perform

the same operation o different data types. The templates declared for functions are called class

templates. They perform appropriate operations depending on the data type of the parameters passed

tothem.

Function Templates:

A function template specifies how an individual function can be constructed.

template <class T>

return type functionnm(T arg1,T arg2)

{

fn body;

}

For example:

Input two number and swap their values

template <class T>

void swap (T &x,T & y)

{
T z;

z=x;

x=y;

y=z;

}

void main()

{

char ch1,ch2;

cout<<‖enter two characters:‖;

cin>>ch1>>ch2;

swap(ch1,ch2);

cout<<ch1<<ch2;

int a,b;

cout<<‖enter a,b:‖;

cin>>a>>b;

swap(a,b);

cout<<a<<b;

float p,q;

cout<<‖enter p,q:‖;

cin>>p>>q;

swap(p,q);

cout<<p<<q;

}

example 2:

find maxium between two data items.

template <class T>

T max(T a,T b)

{

if (a>b)

return a;

else

return b;

}

void main()

{

char ch1,ch2;
cout<<‖enter two characters:‖;

cin>>ch1>>ch2;

cout<<max(ch1,ch2);

int a,b;

cout<<‖enter a,b:‖;

cin>>a>>b;

cout<<max(a,b);

float p,q;

cout<<‖enter p,q:‖;

cin>>p>>q;

cout<<max(p,q);

}

Overloading of function template

#include<iostream.h>

template <class T>

void print(T a)

{

cout<<a;

}

template <class T>

void print(T a, int n)

{

int i;

for(i=0;i<n;i++)
cout<<a;

}

void main()

{

print(1);

print(3.4);
print(455,3);

print(―hello‖,3);

}

Multiple arguments function template:

find sum of two different numbers

template <class T,class U>

T sum(T a,U b)
{

return a+(U)b;
}

void main()

{

cout<<sum(4,5.5);

cout<sum(5.4,3);

}

Class Template

similar to functions, classes can also be declared to operate on different data types. Such classes are

class templates. a class template specifies how individual classes can be constructed similar to

normal class definition. These classes model a generic class which support similar operations for

different datatypes.

syn:

template <class T>

class classnm

{
T member1;

T member2;

…
…

public:

T fun();

…

..
};

objects for class template is created like:

classnm <datatype> obj;

obj.memberfun();

example:

Input n numbers into an array and print the element is ascending order.(array sorting)

template <class T>

class array

{

T *a;

int n;

public:

void getdata()

{

int i;

cout<<‖enter how many no:‖;

cin>>n;

a=new T[n];

for (i=0;i<n;i++)

{
cout<<enter a number:‖;

cin>>a[i];

}

}

void putdata()

{

for (i=0;i<n;i++)

{

cout<<a[i]<<endl;

}

}

void sort()

{
T k;

int i,j;

for(i=0;i<n-1;i++)

{

for (j=0;j<n;j++)

{

if (a[i]>a[j])

{

}

}

}

}

};

k=a[i];

a[i]=a[j];

a[j]=k;

voidmain()

{
array <int>x;

x.getdata();

x.sort();

x.putdata();

array <float>y;

y.getdata():

y.sort();

y.p utdata();

}

Managing Console I/O

Introduction

One of the most essential features of interactive programming is its ability to interact

with the users through operator console usually comprising keyboard and monitor. Accordingly,

every computer language (and compiler) provides standard

input/output functions and/or methods to facilitate console operations.

C++ accomplishes input/output operations using concept of stream. A stream is a

series of bytes whose value depends on the variable in which it is stored. This way, C++ is able to

treat all the input and output operations in a uniform manner. Thus, whether it is reading from a file

or from the keyboard, for a C++ program it is simply astream.

We have used the objects cin and cout (pre-defined in the iostream.h file) for the input

and output of data of various types. This has been made possible by overloading the operators >>

and << to recognize all the basic C++ types. The >>operator is overloaded in the istream class and «

is overloaded in the ostream class.The

following is the general format for reading data from the keyboard:

cin >> variable1 >> variable2 >>… …>> variableN;

Where variable1, variable2, are valid C++ variable names that have been declared already.
This statement will cause the computer to halt the execution and look for input data from the

keyboard. The input data for this statement would be:

data1 data2. dataN

The input data are separated by white spaces and should match the type of variable in the cin

list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated location.

The reading for a variable will be terminated at the encounter of a white space or a character that

does not match the destinationtype.

For example, consider the following code:

int code;

cin >> code;

Suppose the following data is given as input:

1267E

The operator will read the characters up to 7 and the value 1267 is assigned to code. The

character E remains in the input stream and will be input to the next cin statement. The general

format of outputtingdata:

cout << iteml <<item2 <<<< itemN;
The items, item1 through itemN may be variables or constants of any basic types.

The put() and get() Functions

The classes istream and ostream define two member functions get() and put() respectively to

handle the single character input/output operations. There are two types of get() functions. We can

use both get(char*) and get(void) prototypes to fetch a character including the blank space, tab and

the newline character. The get(char*) version assigns the input character to its argument and the

get(void) version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke them

using an appropriate object. For instance, look at the code snippet given below:

char c;
cin.get (c); //get a character from keyboard and assign it to c

while (c!= '\n')

{

cout<<C; //display the character on screen cin.get(c);

//get another character

}

This code reads and displays a line of text (terminated by a newline character).

Remember, the operator>>can also be used to read a character but it will skip the white spaces and

newline character. The above while loop will not work properly if the statement

cin >> c;

is used in place of
cin.get (c);

Try using both of them and compare the results. The get(void) version is used as
follows:

char c;

c-cin.getl); //cin.get (c)replaced

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class, can be used to output a line of text, character

by character. For example,

cout << put (‘x’);

displays the character xand

cout << put (ch);

displays the value of variable ch.

The variable ch must contain a character value. We can also use a number as an argument to

the function put (). For example,

cout << put (68) ;

displays the character D. This statement will convert the int value 90 to a char value and display the

character whose ASCII value is 68,

The following segment of a program reads a line of text from the keyboard and displays it on

the screen.

char c;.

cin.get(c) //read a character

while (c!=‘\n’)

{

cout<< put(c); //display the character on screen cin.get (c) ;

}

The getline () and write () Functions

We can read and display a line of text more efficiently using the line-oriented input/output

functions getline() and write(). The getline() function reads a whole line of text that ends with a

newline character. This function can be invoked by using the object cin as follows:

cin.getline(line, size);

This function call invokes the function which reads character input into the variable line. The

reading is terminated as soon as either the newline character '\n' is encountered or size number of

characters are read (whichever occurs first). The newline. character is read but not saved. Instead, it

is replaced by the nullcharacter.

For example; consider the following code:

char name [20] ;

cin.getline(name, 20);

Assume that we have given the following input through the keyboard:

Neeraj good

This input will be read correctly and assigned to the character array name. Let us suppose the

input is as follows:

Object Oriented Programming

In this case, the input will be terminated after reading the following 19 characters:

Object Oriented Pro

array.
After reading the string/ cin automatically adds the terminating null character to thecharacter

Remember,thetwoblankspacescontainedinthestringarealsotakenintoaccount,i.e.

between Objects and Oriented and Pro.
We can also read strings using the operator >>as follows:

cin >> name;

But remember cin can read strings that do not contain white space. This means that cin can

read just one word and not a series of words such as ―Neeraj good‖.

Formatted Console I/O Operations

C++ supports a number of features that could be used for formattingtheoutput. These

featuresinclude:

 ios class functions andflags.

 Manipulators.

 User-defined outputfunctions.

The ios class contains a large number of member functions that could be used to format the

output in a number of ways. The most important ones among them are listed below.

Table 10.1

Function Task

width() To specify the required field size for displaying an output value

Precision() To specify the number of digits to be displayed after the decimal point

of a float value

fill() To specify a character that is used to fill the unused portion of a field.

self() To specify format flags that can control the form of output display

(such as Left-justification and right-justification).

Unself() To clear the flags specified.

22 P.T.O

Manipulators are special functions that can be included in these statements to alter the format

parameters of a stream. The table given below shows some important! manipulator functions that are

frequently used. To access these manipulators, the file iomanip.h should be included in the program.

Table 10.2

Manipulator Equivalent Ios function

setw() width()

Setprecision() Precision()
Setfill() fill()
setiosflags() self()

Resetiosflags() Unself()

In addition to these functions supported by the C++ library, we can create our own

manipulator functions to provide any special ouput formats.

