

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Lecture Notes

on

Object Oriented Programming

3CS4-06

Unit II

Department of Computer Science & Engineering

Jaipur Engineering College & Research Centre, Jaipur

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Vision of the Institute

To become a renowned centre of outcome based learning and work toward academic,

professional, cultural and social enrichment of the lives of individuals and communities.

Mission of the Institute

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of

focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make competent

engineers & professionals with high ethical values prepared for lifelong learning.

Mission of the Department

M1: To impart outcome based education for emerging technologies in the field of computer science and

engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies.

M4: To develop aptitude of fulfilling social responsibilities.

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Program Outcomes (PO)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

Computer Science & Engineering specialization to the solution of complex Computer Science & Engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex Computer Science and
Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

3. Design/development of solutions: Design solutions for complex Computer Science and Engineeringproblems and
design system components or processes that meet the specified needs with appropriateconsideration for the public

health and safety,and the cultural, societal, and environmentalconsiderations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of Computer Science and Engineering experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT

tools including prediction and modeling to complex Computer Science Engineering activities with an understanding
of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional Computer Science
and Engineering practice.

7. Environment and sustainability: Understand the impact of the professional Computer Science and Engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the Computer

Science and Engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings in Computer Science and Engineering.

10. Communication: Communicate effectively on complex Computer Science and Engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write effective reports and
design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the Computer Science and

Engineering and management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation andability to engage in independent and

life-long learning in the broadest contextof technological changein Computer Science and Engineering.

Program Educational Objectives (PEO)

PEO1: To provide students with the fundamentals of Engineering Sciences with more emphasis in

Computer Science & Engineering by way of analyzing and exploiting engineering challenges.

PEO2:To train students with good scientific and engineering knowledge so as to comprehend, analyze,

design, and create novel products and solutions for the real life problems inComputer Science and

Engineering

PEO3: To inculcate professional and ethical attitude, effective communication skills, teamwork skills,

multidisciplinary approach, entrepreneurial thinking and an ability to relate engineering issues with social

issues for Computer Science & Engineering.

PEO4: To provide students with an academic environment aware of excellence, leadership, written ethical

codes and guidelines, and the self-motivated life-long learning needed for a successful professional career

in Computer Science & Engineering.

PEO5: To prepare students to excel in Industry and Higher education by Educating Students along with

High moral values and Knowledge in Computer Science & Engineering.

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Course Outcomes

1. Understand the paradigms of object oriented programming in comparison of procedural oriented

programming.

2. Apply the class structure as fundamental, building block for computational programming.

3. Apply the major object-oriented concepts to implement object oriented programs in C++.

4. Implement the concept of abstraction inheritance, polymorphism, dynamic binding and generic

structure in building reusable code.

Mapping of Course Outcomes with Program Outcomes

H=3, M=2, L=1

Se
m

e
st

e
r

Su
b

je
ct

C
o

d
e

L
/
T
/
P

CO

P
O
1

P
O
2

P
O
3

P
O
4

P
O
5

P
O
6

P
O
7

P
O
8

P
O
9

P
O
1
0

P
O
1
1

P
O
1
2

III

O
b

je
ct

 O
ri

e
n

te
d

 P
ro

g
ra

m
m

in
g

3
C

S
4

-0
6

L

Understand the paradigms of

object oriented programming in

comparison of procedural

oriented programming.

programming.

capacity in communication
system.

3

3

3

2

2

2

1

1

0

1

1

3

L

Apply the class structure as

fundamental, building block for

computational programming.

programming.

3

3

3

3

2

2

1

1

1

2

1

3

L

Apply the major object-oriented

concepts to implement object

oriented programs in C++.

3

3

3

3

2

1

2

2

1

2

1

3

L

Implement the concept of

abstraction inheritance,

polymorphism, dynamic binding

and generic structure in building

reusable code.

.

3

3

3

3

2

1

1

1

1

1

1

1

3

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

Syllabus

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

UNIT II

FUNCTION OVERLOADING:

Overloading refers to the use of the same thing for different purposes . C++ also permits overloading

functions .This means that we can use the same function name to creates functions that perform a

variety of different tasks. This is known as function polymorphism in oops.

Using the concepts of function overloading , a family of functions with one function name but with

different argument lists in the functions call .The correct function to be invoked is determined by

checking the number and type of the arguments but not on the function type.

For example an overloaded add() function handles different types of data as shown
below.

//Declaration

int add(int a, int b); //prototype 1

int add (int a, int b, int c); //prototype 2

double add(double x, double y); //prototype 3

double add(double p , double q); //prototype4

//function call

cout<<add(5,10); //uses prototype 1

cout<<add(15,10.0); //uses prototype 4

cout<<add(12.5,7.5); //uses prototype 3

cout<<add(5,10,15); //uses prototype 2

cout<<add(0.75,5); //uses prototype 5

A function call first matches the prototype having the same no and type of arguments and then calls

the appropriate function for execution.

The function selection invokes the following steps:-

a) The compiler first tries to find an exact match in which the types of actual

arguments are the same and use that function.

b) If an exact match is not found the compiler uses the integral promotions to the actual
arguments such as:

char to int

float to double

to find amatch

c) When either of them tails ,the compiler tries to use the built in conversions to the actual

arguments and them uses the function whose match is unique . If the conversion is possible to have

multiple matches, then the compiler will give errormessage.

Example:

long square (long n);

double square(double x);

A function call suchas:- square(lO)

Will cause an error because int argument can be converted to either long or

double .There by creating an ambiguous situation as to which version of square()should be used.

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

PROGRAM

#include<iostream.h>

int volume(double,int);

double volume(double , int);

double volume(longint ,int ,int);

main()

{

cout<<volume(10)<<endl;

cout<<volume(10)<<endl; cout<<volume(10)<<endl;

}

int volume(ini s)

{

return (s*s*s); //cube

}

double volume(double r, int h)

{

return(3.1416*r*r*h); //cylinder

}

long volume (longint 1, int b, int h)

{

return(1*b*h); //cylinder

}

output:- 1000

157.2595

112500

FRIEND FUNCTIONS:-

We know private members can not be accessed from outside the class. That is a non - member

function can't have an access to the private data of a class. However there could be a case where two

classes manager and scientist, have been defined we should like to use a function income- tax to

operate on the objects of both theseclasses.

In such situations, c++ allows the common function lo be made friendly with both the classes , there

by following the function to have access to the private data of these classes .Such a function need not

be a member of any of these classes.

To make an outside function "friendly" to a class, we have to simply declare this function as a friend
of the classes as shown below :

class ABC

{

public:

friend void xyz(void);

};

The function declaration should be preceded by the keyword friend , The function is defined else

where in the program like a normal C ++ function . The function definition does not use their the

keyword friend or the scope operator :: . The functions that are declared with the keyword friend are

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

known as friend functions. A function can be declared as a friend in any no of classes. A friend

function, as though not a member function , has full access rights to the private members of the class.

A friend function processes certain special characteristics:

a. It is not in the scope of the class to which it has been declared asfriend.
b. Since it is not in the scope of the class, it cannot be called using the object of that

class. It can be invoked like a member function without the help of anyobject.

c. Unlike memberfunctions.

Example:

#include<iostream.h>

class sample

{

public:

}

int a;

int b;

void setvalue() { a=25;b=40;}

friend float mean(sample s);

float mean (samples)

{

return (float(s.a+s.b)/2.0);

}

int main ()

{

sample x;

x . setvalue();

cout<<”mean value=”<<mean(x)<<endl;

return(0);

 }

output:

mean value : 32.5

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

A function friendly to two classes

#include<iostream.h>
class abc;

class xyz

{

public:

};

int x;

void setvalue(int x) { x-= I; }

friend void max (xyz,abc);

class abc
{

public:

};

int a;

void setvalue(int i) {a=i; }

friend void max(xyz,abc);

void max(xyz m, abc n)

{

if(m . x >= n.a)

cout<<m.x;

else

}

cout<< n.a;

int main()

{

abc j;

j . setvalue(10);

xyz s;

s.setvalue(20);

max(s , j);

return(0);

}

SWAPPING PRIVATE DATA OF CLASSES:

#include<iostream.h>

class class-2;

class class-1

{

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

public:

};

int value 1;

void indata(int a) { value=a; }

void display(void) { cout<<value<<endl; }

friend void exchange (class-1 &, class-2 &);

class class-2

{

public:

int value2;

void indata(int a) { value2=a; }
void display(void) { cout<<value2<<endl; }

friend void exchange(class-l & , class-2 &);

};

void exchange (class-1 &x, class-2 &y)

{

int temp=x. value 1;

x. value I=y.valuo2;

y.value2=temp;

}

output:

int main()

{

class-1 c1;

class-2 c2;

c1.indata(l00);

c2.indata(200);

cout<<”values before exchange:”<<endl;

c1.display();

c2.display();

exchange (c1,c2);

cout<<”values after exchange :”<< endl;

c1. display ();

c2. display ();

return(0);

}

values before exchange

100

200

values after exchange

200
100

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

PROGRAM FOR ILLUSTRATING THE USE OF FRIEND FUNCTION:

#include< iostream.h>

classaccount1;

classaccount2

{

private:

int balance;

public:
account2() { balance=567; }
void showacc2()

{

cout<<”balanceinaccount2 is:”<<balance<<endl;

friend int transfer (account2 &acc2, account1 &acc1,int amount);

};

class acount1

{

private:

int balance;
public:

account1 () { balance=345; }

void showacc1 ()

{

cout<<”balance in account1 :”<<balance<<endl;

}

friend int transfer (account2 &acc2, account1 &acc1 ,int amount);

};

int transfer (account2 &acc2, account1 & acc1, int amount)

{

if(amount <=accl . bvalance)

{

acc2. balance + = amount;

acc1 .balance - = amount;

}

}

int main()

{

account1 aa;

account2 bb;

else

return(0);

cout << “balance in the accounts before transfer:” ;

aa . showacc1();

bb . showacc2();

cout << “amt transferred from account1 to account2 is:”;
cout<<transfer (bb,aa,100)<<endl;

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

}

output:

cout<< “ balance in the accounts after the transfer:”;

aa . showacc 1 ();

bb. showacc 2();

return(0);

balance in the accounts before transfer

balance in account 1 is 345

balance in account2 is 567

and transferred from account! to account2 is 100
balance in account 1 is245

balance in account2 is667

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

RETURNING OBJECTS:

include< iostream,h>

class complex

{

public:

float x;

float y;

void input(float real , float imag)

{

x=real;

y=imag;

}
friend complex sum(complex , complex);

void show (complex);

};

complex sum (complex c1, complex c2)

{
complex c3;

c3.x=c1.x+c2.x;

c3.y=c1.y+c2.y;

return c3;}

void complex :: show (complex c)

{

cout<<c.x<<” +j “<<c.y<<endl;

}

output:

intmain()

{
complex a, b,c;

a.input(3.1,5.65);

b.input(2.75,1.2);

c=sum(a,b);

cout <<” a=”; a.show(a);

cout <<” b= “; b.show(b);
cout <<” c=” ; c.show(c);

return(0);

}

a =3.1 + j 5.65

b= 2.75+ j 1.2

c= 5.55 + j 6.85

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

POINTER TO MEMBERS;

It is possible to take the address of a member of a class and assign it to a pointer. The address

of a member can be obtained by applying the operator & to a “fully qualified” class member name.

A class member pointer can be declared using the operator :: * with the class name.

For Example:

classA

{

private:

int m;

public:

};

void show();

We can define a pointer to the member m as follows :

int A :: * ip = & A :: m

The ip pointer created thus acts like a class member in that it must be invoked with a class object. In

the above statement. The phrase A :: * means “pointer - to - member of a class” . The phrase & A ::

m means the “ Address of the m member of a class”

The following statement is not valid :

int *ip=&m ; // invalid

This is because m is not simply an int type data. It has meaning only when it is associated

with the class to which it belongs. The scope operator must be applied to both the pointer and the

member.

The pointer ip can now be used toaccessthe m inside the member function (or

friendfunction).

Let us assume that “a” is an object of “ A” declared in a member function . We can

access "m" using the pointer ip as follows.

cout<< a . * ip;

cout<< a.m;

ap=&a;

cout<< ap-> * ip;

cout<<ap->a;

The deferencing operator ->* is used as to accept a member when we use pointers to

both the object and the member. The dereferencing operator. .* is used when the object itself is used

with the member pointer. Note that * ip is used like a member name.

We can also design pointers to member functions which ,then can be invoked using

the deferencing operator in the main as shownbelow.

(object-name.* pointer-to-member function)

(pointer-to -object -> * pointer-to-memberfunction)

The precedence of () is higher than that of .* and ->* , so the parenthesis are
necessary.

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

DEREFERENCING OPERATOR:

#include<iostream.h>

class M

{

public:

int x;

int y;

void set_xy(int a,int b)

{

}

friend int sum(M);

};

int sum (M m)

{

x=a;

y=b;

int M :: * px= &M :: x; //pointer to member x

}

int main ()

{

M m;

int M :: * py- & m ::y;//pointer to y

M * pm=&m;

int s=m.* px + pm->py;

return(s);

output:

void(M::*pf)(int,int)=&M::set-xy;//pointer to function set-xy (n*pf)(10,20);
//invokes set-xy

cout<<”sum=:”<<sum(n)<<cncil;

n *op=&n; //point to object n

(op->* pf)(30,40); // invokes set-xy

cout<<”sum=”<<sum(n)<<end 1 ;

return(0);

}

sum= 30

sum=70

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

CONSTRUCTOR:

A constructor is a special member function whose task is to initialize the objects of its class .

It is special because its name is the same as the class name. The constructor is invoked when ever an

object of its associated class is created. It is called constructor because it construct the values of data

members of theclass.

A constructor is declared and defined as follows:

//'class with a constructor
class integer

{

public:

};

int m,n:

integer! void);//constructor declared

integer :: integer(void)
{

m=0;

n=0;

}

When a class contains a constructor like the one defined above it is guaranteed that an

object created by the class will be initialized automatically.

For example:-

Integer int1; //object int 1 created
This declaration not only creates the object int1 of type integerbutalso initializes its

data members m and n tozero.

A constructor that accept no parameter is called the default
constructor. The default constructor for class A is A :: A(). If no such constructor is

defined, then the compiler supplies a default constructor.

Therefore a statement such as :-

A a ;//invokes the default constructor of thecompilerof the
compiler to create the object "a";

Invokes the default constructor of the compiler to create the object a.

The constructor functions have some characteristics:-

 They should be declared in the public section.

 They are invoked automatically when the objects arecreated.

 They don't have return types, not even void and therefore
they cannot returnvalues.

 They cannot be inherited , though a derived class cancall

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

the base class constructor .

 Like other C++ function , they can have defaultarguments,

 Constructor can't bevirtual.

 An object with a constructor can't be used as a member of

union.

Example of default constructor:

#include<iostream.h>

#include<conio.h>

class abc

{

private:

char nm[];

public:

abc ()

{

}

cout<<”enter your name:”;
cin>>nm;

void display()

{

cout<<nm;

}

};

int main()

{
clrscr();

abc d;

d.display();

getch();

return(0);

}

PARAMETERIZED CONSTRUCTOR:-

the constructors that can take arguments are called parameterized constructors.

Using parameterized constructor we can initialize the various data elements of different objects with

different values when they are created.

Example:-

class integer

{

public:

int m,n;

integer(int x, int y);

};

By: Sweety Singhal & Priyanka Mitra (Dept. of CSE, JECRC)

integer:: integer (int x, int y)

{

}

m=x;n=y;

implicitly.

the argument can be passed to the constructor by calling the constructor

integer int 1 = integer(0,100); // explicit call

integerint1(0,100); //implicitecall

CLASS WITH CONSTRUCTOR:-

#include<iostream.h>

class integer

{

public:

int m,n;

integer(int,int);

void display(void)

{
cout<<”m=:”<<m ;

cout<<”n=”<<n;

}
};

integer :: integer(int x,int y) // constructor defined

{

m=x;

n=y;

}

int main()

{

output:

object 1

m=0

n=100

object2

m=25

n=25

integer int1(0,100); // implicit call

integerint2=integer(25,75);

cout<<” \nobjectl“<<endl;

int1.display();

cout<<” \n object2 “<<endl;
int2.display();

}

Example:-

#include<iostream.h>

#include<conio.h>

class abc

{

private:

char nm [30];

int age;

public:

abc (){ }// default

abc (char x[], int y);

void get()

{
cout<<”enter your name:”;

cin>>nm;

cout<<” enter your age:”;

cin>>age;

}

void display()
{

cout<<nm«endl;

cout«age;

}
};

abc : : abc(char x[], int y)

{

}

void main()

{

abc 1;

strcpy(nm,x);

age=y;

abc m=abc("computer",20000);

l.get();

l.dispalay();

m.d isplay ();

getch();
}

OVERLOADED CONSTRUCTOR:-

#include<iostream.h>

#include<conio.h>

class sum

{

private;

int a;

int b;

int c;

float d;

double e;

public:

sum ()

{

cout<<”enter a;”;

cin>>a;

cout<<”enter b;”;

cin>>b;

cout<<”sum= “<<a+b<<endl;

}

sum(int a,int b);

sum(int a, float d,double c);

};

sum :: sum(int x,int y)

{

a=x;

b=y;

}

sum :: sum(int p, float q ,double r)

{

a=p;

d=q;

e=r;

}

void main()

{
clrscr();

sum 1;

sum m=sum(20,50);

sum n= sum(3,3.2,4.55);

getch();

}

output:

enter a : 3

enter b : 8

sum=11

sum=70

sum=10.75

COPY CONSTRUCTOR:

A copy constructor is used to declare and initialize an object from another object.

Example:-

the statement

integer 12(11);

would define the object 12 and at the same time initialize it to the values of 11.

Another form of this statement is : integer 12=11;

The process of initialization through a copy constructor is known as copy initialization.

Example:-

#incliide<iostream.h>

class code
{

int id;

public

code () { } //constructor

code (int a) { id=a; } //constructor

code(code &x)

{

Id=x.id;
}

void display()

{

cout<<id;

}

};

int main()

{

code A(100);

code B(A);

code C=A;

code D;

D=A;

cout<<” \n id of A :”; A.display();

cout<<” \nid of B :”; B.display();

cout<<” \n id of C:”; C.display();

cout<<” \n id of D:”; D.display();

}

output :-
id of A:100

id of B:100

id of C:100

id ofD:100

DYNAMIC CONSTRUCTOR:-

The constructors can also be used to allocate memory while creating objects .

This will enable the system to allocate the right amount of memory for each object when the objects

are not of the same size, thus resulting in the saving of memory.

Allocate of memory to objects at the time of their construction is known as dynamic

constructors of objects. The memory is allocated with the help of new operator.

Example:-
#include<iostream.h>

#include<string.h>

class string

{
char *name;

public:
int length;

string ()

{

length=0;

name= new char [length+1]; /* one extra for \0 */

}

string(char *s) //constructor 2

{

length=strlen(s);

name=new char[length+1];

strcpy(name,s);

}

void display(void)

{

cout<<name<<endl;

}

void join(string &a .string &b)

{
length=a. length +b . length;

delete name;

name=new char[length+l]; /* dynamic allocation */

strcpy(name,a.name);

strcat(name,b.name);

}

};

int main()

{

char * first = “Joseph” ;
string name1(first),name2(“louis”),naine3(“LaGrange”),sl,s2;

sl.join(name1,name2);

s2.join(s1,name3);

namel.display();

name2.display();

name3.display();

s1.display();

s2.display();

}

output :-
Joseph

Louis

language

Joseph Louis

Joseph Louis Language

DESTRUCTOR:-

A destructor, us the name implies is used to destroy the objects that have been created by a

constructor. Like a constructor, the destructor is a member function whose name is the same as the

class name but is preceded by atilde.

For Example:-

~ integer() { }

A destructor never takes any argument nor does it return any value. It will be invoked

implicitly by the compiler upon exit from the program to clean up storage that is no longer

accessible. It is a good practice to declare destructor in a program since it releases memory space for

future use.

Delete is used to free memory which is created by new.

Example:-

matrix : : ~ matrix()
{

for(int i=0; i<11;i++)
delete p[i];
delete p;

}

IMPLEMENTATAION OF DESTRUCTORS:-

#include<iostream.h>
int count=0;

class alpha

{
public:

alpha()

{

count ++;

cout<<”\n no of object created :”<<endl;

}

~alpha()

{

}

};

int main()

{

cout<<”\n no of object destroyed :” <<endl;

coutnt--;

cout<<” \n \n enter main \n:”;

alpha A1,A2,A3,A4;

{

cout<<” \n enter block 1 :\n”;

alpha A5;

}

{
cout<<” \n \n enter block2 \n”;

alphaA6;

}
cout<<\n re-enter main \n:”;

return(0);

}

output:-

enter main

no of object created 1

no of object created 2

no of object created 3

no of object created 4

enter block1

no of object created 5

no of object destroyed 5

enter block2

no of object created 5

no of object destroyed 5

re-enter main

no of object destroyed 4

no of object created 3

no of object created 2

no of object created1

Example :-

#include<iostream.h>

int x=l;

class abc

{
public:

abc()
{

}

~abc()

{

x--;

cout<<”construct the no”<<x<<endl;

cout<<”destruct the no:”<<x<<endl;

x--;

}

};

int main()

{

abc I1,I2,I3,I4;

cout«ll«12«13«l4«endl;

return(0);

}

25 P.T.O

ptr = new data-type;

//allocte memory for one element

ptr = new data-type [size];

//allocte memory for fixed number of element

delete ptr;

//deallocte memory for one element

delete[] ptr;

//deallocte memory for array

New & Delete Operators

Dynamic memory allocation means creating memory at runtime. For example, when we declare an

array, we must provide size of array in our source code to allocate memory at compile time.

But if we need to allocate memory at runtime me must use new operator followed by data type. If

we need to allocate memory for more than one element, we must provide total number of elements

required in square bracket[]. It will return the address of first byte of memory.

Syntax of new operator

Delete operator is used to deallocate the memory created by new operator at run-time. Once the

memory is no longer needed it should by freed so that the memory becomes available again for

other request of dynamic memory.

Syntax of delete operator

Example of c++ new and delete operator

26 P.T.O

#include<iostream.h>

#include<conio.h>

27 P.T.O

void main()

{

int size,i;

int *ptr;

cout<<"\n\tEnter size of Array : ";

cin>>size;

ptr = new int[size];

//Creating memory at run-time and return first byte of address to ptr.

for(i=0;i<5;i++) //Input arrray fromuser.

{

cout<<"\nEnter any number : ";

cin>>ptr[i];

}

for(i=0;i<5;i++) //Output arrray toconsole.

cout<<ptr[i]<<", ";

delete[] ptr;

//deallocating all the memory created by new operator

}

Output :

Enter size of Array : 5

Enter any number : 78

Enter any number : 45

Enter any number : 12

Enter any number : 89

Enter any number : 56

78, 45, 12, 89, 56,

