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for all sufficiently small positive and negative values of h.
  f (x0) £ f (x0 + h)

A function f (x) with single variable is said to have a local (relative) minima at x = xo if
Local Minima

for all sufficiently small positive and negative values of h.
  f (x0) ≥ f (x0 + h)

A function f (x) with single variable is said to have a local (relative) maxima at x = xo if
Local Maxima

Let f (x) be a continuous function of single variable x defined in interval [a, b].

2.2.1  Single Variable Optimization Problems

2.2 unconstraIned optImIzatIon problems

Kuhn-Tucker conditions, for getting optimum solutions.
constrained problems we use Lagrange’s multiplier method and for inequality constrained, the 
minimum points for unconstrained and constrained continuous objective functions. For equality 
differentiable functions. Such types of techniques are analytical in nature to obtain maximum and 
techniques are very useful to obtain the optimal solution of problems involving continuous and 
inequality constraints have also been discussed in detail with examples. The classical optimization 
multivariable  optimization  problems.  Constrained  multivariable  problems  with  equality  and 
and  sufficient  conditions  for  obtaining  the  optimum  solution  of  unconstrained  single  and 
In  the  present  chapter,  we  shall  discuss  the  classical  optimization  techniques  with  necessary

2.1 IntroductIon
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Step 1: Differentiate f (x1, x2) partially with respect to x1 and x2, we get
∂
∂

f

x1

 and ∂
∂

f

x2
Step 2: For extreme points, we have

  ∂
∂

f

x1

 = 0

and ∂
∂

f

x2

 = 0

Solving these equations we get some points as (a1, b1), (a2, b2),…etc.

Step 3: Differentiate again partially to get

r = ∂
∂
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x
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∂
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x x
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x
Step 4: At (a1, b1), calculate r and rt – s2

Case I: If rt  – s2 > 0 and r < 0 then f (x1, x2) is maximum at (a1, b1).

Case II: If rt – s2 > 0 and r > 0 then f (x1, x2) is minimum at (a1, b1).

Case III: If rt  – s2 < 0 then f (x1, x2) has neither maxima nor minima at (a1, b1).

Case IV: If rt  – s2 = 0 then f (x1, x2) has point of inflexion at (a1, b1).

2.3.2  Working Rule to Find the Extreme Points of Functions of n-Variables

Let us consider u = f (x1, x2, x3,…, xn) as a function of x1, x2, x3,…, xn.

Necessary Conditions

 ∂
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Sufficient Conditions

The Hessian matrix at P for n variables will be
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Its leading minors are defined as

  H1 = ∂
∂

2

1
2

f

x
,

  H2 = 

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

2

1
2

2

1 2

2

2 1

2

2
2

f

x

f

x x

f

x x

f

x

,

  H3 = 
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 Hence, the following cases will arise:

Case I: If H1, H2, H3,… are positive (i.e., H is positive definite) then f (x1, x2, x3,…, xn) has 
minimum at P.

Case II: If H1, H2, H3,… are alternately negative, positive, negative (i.e., H is negative definite) 
then f (x1, x2, x3,…, xn) has maximum at P.

Case III: H1 and H3,… are not of same sign and H2 = 0 (i.e., semidefinite or indefinite) then 
f (x1, x2, x3,… xn) has a saddle point at P.

solved examples
Example 1: Assume the following relationship for revenue and cost functions. Find out at what 
level of output x, where x is measured in tons per week, profit is maximum.

R(x) = 1000x – 2x2 and C (x) = x3 – 59x2 + 1315x + 5000.

Solution: The profit function is
   P (x) = R(x) – C (x) 
    = 1000x – 2x2 – x3 + 59x2 – 1315x – 5000
    = –  x3 + 57x2 – 315x – 5000 …(1)
Differentiating both sides of (1) with respect to x, we get

  dP

dx
 = – 3x2 + 114x – 315 …(2)

For maxima and minima, we have

  dP

dx
 = 0
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fi  –  3x2 + 114x – 315 = 0
fi  x = 3, 35.

Differentiating both sides of (2) again with respect to x, we get
d P

dx

2

2
 = –  6x + 114

At x  = 3, d P

dx

2

2
 = 96 > 0, i.e., P is minimum at x = 3.

At x = 35, d P

dx

2

2
 = 96 < 0, i.e., P is maximum at x = 35.

Hence, the profit is maximum at x = 35 tons per week.

Example 2: The profit P earned, by a company, on some item is function of its units produced 
say x and is given by

P = 800x – 2x2

If the company’s expenditure or interest, rent and salary of the staff be Rs. 1 lakh, show that 
the company will always be in loss.

Solution: Given that
 P = 800x – 2x2 …(1)

Differentiate both sides of (1) with respect to x, we get

  dP

dx
 = 800 – 4x …(2)

For maxima and minima, we have

 dP

dx
 = 0

 800 – 4x = 0
 x = 200

Differentiate both sides of (2) again with respect to x, we get

d P

dx

2

2
 = – 4 (negative)

So, profit (P) is maximum for (x = 200).
The net profit = P – expenditure

 = 800(200) – 2(200)2 – 1,00,000
 = –  20,000.

Hence, the company will always be in loss.

Example 3: Assuming that the petrol burnt (per hour) in driving a motor boat varies as the 
cube of its velocity, show that the most economical speed when going against a current of c 

kmph is 3

2

c  km per hour.
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Solution: Let the velocity of the boat be v km per hour, the current’s velocity is c km per hour 
and the relative velocity of the boat is (v – c) km per hour. 

If the total distance travelled ‘a’ km then the time taken = a

v c-
 hour.

According to given the petrol burnt in one hour is proportional to v3, i.e. = lv3 where l is a 
suitable positive constant.

The petrol burnt for distance ‘a’ is given by

  P = lv3. a

v c-
 …(1)

Differentiate both sides of (1) with respect to v, we get

  dP

dv
 = la 3 2 3

2

v v c v

v c

( )

( )
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È
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˘

˚
˙
˙

 …(2)

  = la 2 33 2

2

v cv

v c

-
-

È

Î
Í
Í

˘

˚
˙
˙( )

 

For maxima and minima, we have

 dP

dv
 = 0

fi la 2 33 2

2

v cv

v c

-
-

È

Î
Í
Í

˘

˚
˙
˙( )
 = 0

fi 2v3 – 3cv2 = 0

fi v = 0, 3

2

c

Differentiate both sides of (2) again with respect to v, we get

 d P

dv

2

2
 = la ( )( ) ( ). ( )

( )

6 6 2 3 22 2 3 2

4
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v c

- - - - -
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˘

˚
˙
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 d P

dv

2

2
 = la 6 2 2 32 2

3

v v c v v c

v c

( ) ( )
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- - -
-

È
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Í

˘

˚
˙
˙

At v = 0, d P

dv

2

2
 = 0, i.e., P = 0 fi no petrol is burnt.

At v = 
3

2

2

2

c d P

dv
,  is positive, i.e., P is minimum at v = 3

2

c .

Hence, the most economical speed is  v = 3

2

c  km per hour.
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Example 4: A beam of length l is supported at one end. If w is the uniformly distributed load per 

unit length, the bending moment M at a distance x from the end is given by M = 1

2
lx – 1

2
 wx2.

Solution: Given the bending moment is

 M = 1

2
 lx – 1

2
 wx2 …(1)

Differentiate both sides of (1) with respect to x, we get

 dM

dx
 = 1

2
 l – wx 

For maxima, we have

 dM

dx
 = 0

fi 1

2
 l – wx = 0

fi x = l

w2
Differentiate both sides of (2) with respect to x, we get

 d M

dx

2

2
 = –  w (negative)

So the bending moment M is maximum at x = l

w2
 from the end.

At x = l

w2
, M = 1

2 2

1

2 2

2

l
l

w
w

l

w
Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

 = l

w

2

8
.

Example 5: Find the maximum and minimum value of y = 3x5 – 5x3.

Solution: Given that y = 3x5 – 5x3  …(1)
Differentiate both sides of (1) with respect to x, we get

 dy

dx
 = 15x4 – 15x2 …(2)

For maxima and minima, we have

 dy

dx
 = 0

fi 15x4 – 15x2 = 0
fi 15x2(x – 1) (x  + 1) = 0

x = 0, 1, – 1.
Differentiate both sides of (2) again with respect to x, we get

 d y

dx

2

2
 = 60x3 – 30x
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At x = 0, d y

dx

2

2
 = 0 i.e., x is a point of inflexion.

At x = 1, d y

dx

2

2
 = 30 > 0, i.e., y is minimum at x = 1.

At x = – 1 d y

dx

2

2
 = – 30 < 0, i.e., y is maximum at x = –1.

Example 6: In a submarine telegraph cable, the speed of signaling varies as x2 log 1

x
Ê
ËÁ

ˆ
¯̃

 where 

x is the ratio of the radius of the cube to that of the covering. Show that the greatest speed is 
attained when this ratio is 1: e.

Solution: Let u be the speed of signaling, then

 u = x2 log 1

x
Ê
ËÁ

ˆ
¯̃
, l > 0, x  π  0

 u = – lx2 log x …(1)
Differentiate both sides of (1) with respect to x, we get

 du

dx
 = –  2lx log x – lx2(1/x) 

  = – l [2x log x  + x] …(2)
For maxima and minima, we have

 du

dx
 = 0

fi – l[2x log x + x] = 0

fi log x = – 1

2
fi x = e–1/2 = 1/ e.

Differentiate both sides of (2) again with respect to x, we get

 d u

dx

2

2
 = – l[2x.(1/x)  +  2 log x]

  = –  l [2 log x + 3]

A x = 1/ e,  d u

dx

2

2
 = – 2l (negative), i.e., u is maximum.

Hence, u is maximum, ratio for x = 1: e.

Example 7: A rectangular sheet of metal has four equal square portions removed at the corners 
and the sides are then turned up so as to form an open rectangular box. Show that when the 
volume contained in the box is maximum, the depth will be

1

6
[(a + b) – (a2 – ab + b2)1/2]

Where a and b are sides of the original dimensions of the rectangular.
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Solution: Let x be the length of each side of the squares removed at the corners. Then the 
dimensions of the box will be (a – 2x), (b  – 2x) and x. Let V be the volume of the box, then 
we have
 V = (a – 2x) (b  – 2x) x
  = 4x3 – 2x2 (a + b) + abx …(1)
Differentiate both sides of (1) with respect to x, we get

 dv

dx
 = 12x2 –  4x (a  + b) + ab …(2)

For maxima and minima, we have

 dv

dx
 = 0

fi 12x2 – 4x (a + b) +  ab =  0

fi x = 
4 16 48

24

2( ) ( )a b a b ab+ ± + -

fi x = 1

6
 [(a + b) ± (a2 – ab + b2)1/2]

Differentiate both sides of (2) again with respect to x, we get

 d V

dx

2

2
 = 24x – 4 (a + b)

At x = 1

6
[(a + b) ± (a2 – ab + b2)1/2], d V

dx

2

2
 = ± ( )a b ab- +2

If x = 1

6
[(a + b) – (a2 – ab + b2)1 / 2] then d V

dx

2

2
 is negative, i.e., V is maximum.

Example 8: The efficiency of a screw jack is given by h = tan a cot (a + f) where f is constant. 

Prove that the efficiency is maximum at a = p f
4 2

-  and h = 1

1

-
+

sin

sin
.

f
f

Solution: The efficiency of a screw jack is
 h = tan a cot (a +  f) …(1)

Differentiate both sides of (1) with respect to a, we get

 d

d

h
a

 = –  tan a cosec2 (a + f) + sec2a cot (a + f)

  = sec2a cot (a + f) – tana cosec2 (a + f)

  = 1
2 2cos sin ( )a a f+

[sin (a + f) cos (a + f) – sin a cos a] …(2)
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For maxima and minima, we have
d

d

h
a

 = 0

fi 1
2 2cos sin ( )a a f+

[sin(a + f) cos (a + f) – sina cosa] = 0

fi sin 2(a + f) –  sin 2a = 0
fi 2(a + f) = p – 2a

fi a = p f
4 2

-

By (2), we have

 cos2a sin2(a + f) d

d

h
a

 = [sin(a + f) cos(a + f) – sina cosa]

  = 1

2
 [sin 2(a + f) – sin 2a]

  = cos (2a + f) cosf. …(3)

Differentiate both sides of (3) again with respect to a, we get

 cos2a sin2(a + f) d

d

d

d

2h
a a2

+  {cos2a sin2 (a + f)}. d

d

h
a

 = d

da
[cos(2a + f) cos f]  

 cos2a sin2(a + f) 
d

d

d

d

2

2

h
a a

+ {cos2a sin2 (a + f)}. d

d

h
a

 = – [sin(2a + f) cos f]  

At a = p f
4 2

- , d

d

h
a

 = 0 then d

d

2

2

h
a

 is negative, i.e., h is maximum.

At a = p f
4 2

-  the value of h by (1), we have

 h = 
sin( sin )

sin( sin )

2

2

a f f
a f f

+ -
+ -

 h = 
sin( sin )

sin( sin )

2

2

a f f
a f f

+ -
+ -

 h = 1

1

-
+

sin

sin
.

f
f

Example 9: Show that the right circular cylinder of given surface (including its ends) and 
maximum volume is such that its height is equal to twice its radius.

Solution: We know that
  V = pr2h  …(1)
and S = 2prh+ 2pr2 (let constant according to given)
fi  2prh = 2k 2p – 2pr2

  h = k r

r

2 2-  …(2)
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From (1) and (2), we have 
  V = pr (k2 –  r2) …(3)

Differentiate both sides of (3) with respect to r, we get

  dV

dr
 = p (k2 – 3r2) …(4)

For maxima and minima, we have

  dV

dr
 = 0

fi  p (k2 – 3r2) = 0

fi  r = k

3
  …(5)

Differentiate both sides of (4) with respect to r, we get

 d V

dx

2

2
 = – 6pr (negative) i.e., V is maximum.

Using (2) and (5), we have
  hr = k2 – r2

fi  h = 2r.

Example 10: A person being in a boat ‘a’ miles from the nearest point of the beach, wishes to 
reach as quickly as possible, a point ‘b’ miles from that point along the sea shore. The ratio of 
his rate of walking to his rate of rowing is sec a. Prove that he should land at a distance b – a 
cot a from the place to be reached.

Solution: Let the person stand at A and reach on point B. Let C be the point where AC and 
BC meet.

Let BC = b and let him row the distance AP in the boat and land at P where PB = x.
If t is the time of the journey, then

  t = AP

v

BP

vr w

+

where AP = a b x2 2+ -( )  and BP = x

Given that v

v
r

w

 = sec a.
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so  t = 1 2 2

v
a b x

x

r

+ - +È
ÎÍ

˘
˚̇

( )
seca

 …(1)

Differentiate both sides of (1) with respect to x, we get

  dt

dx
 = 1 1

2 2v

b x

a b xr

- -

+ -
+

È

Î
Í
Í

˘

˚
˙
˙

( )

( ) seca
 …(2)

For maxima or minima, we have

  dt

dx
 = 0

fi  1 1
2 2v

b x

a b xr

- -

+ -
+

È

Î
Í
Í

˘

˚
˙
˙

( )

( ) seca
 = 0

fi –  (b – x) seca + a b x2 2+ -( )  = 0 

fi  (b – x) seca = a b x2 2+ -( )   

fi  (b – x)2 sec2a = a2 + (b – x)2

fi  (b – x)2 tan2 a = a2

fi  b – x = a cot a
fi  x = b – a cot a

By (2), we have

  vr seca a b x
dt

dx
2 2+ -( )  = – (b – x) sec a + a b x2 2+ -( )   …(3)

Differentiate both sides of (3) again with respect to x, we get

 vr seca a b x
d t

dx

d

dt
v a b xr

2 2
2

2
2 2+ - + + -{ }( ) sec ( )a  = seca – ( )

( )

b x

a b x

-

+ -2 2

At x = b – a cot a, dt

dx
 = 0 and d t

dx

2

2
 is positive.

i.e., t is minimum at x = b – a cot a.

Example 11: Prove that the minimum radius vector of the curve a

x

b

y

2

2

2

2
+  = 1 is of length

(a + b).

Solution: It is given that

  a

x

b

y

2

2

2

2
+  = 1  …(1)

Changing the variable co-ordinate Cartesian to polars by taking x = r cosq, y = r sinq in (1), 
we get

  a

r

b

r

2

2 2

2

2 2cos sinq q
+  = 1  …(2)
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or  r2 = a2 sec2q + b2 cosec2 q
Let  R = a2 sec2q + b2 cosec2q  …(3)

Differentiate both sides of (3) with respect to q, we get

  dR

dq
 = 2a2 secq. secq tanq + 2b2 cosec q (– cosecq cotq)

or  dR

dq
 = 2a2 sec2q tanq – 2b2 cosec2q cotq    …(4)

For maxima and minima, we have

  dR

dq
 = 0

fi  2a2 sec2q tanq – 2b2 cosec2q cotq = 0

fi  tan4q = b

a

2

2

fi  tanq = b

a
.

Differentiate both sides of (4) with respect to q, we get
d R

d

2

2q
 = 2a2 [sec2q sec2q + 2sec2q tanq. tanq] – 2b2 [cosec2q (– cosec2q) – 2 cosec2q cot2q]

= 2a2 [sec4q + 2sec2q tan2q] + 2b2 [cosec4q + 2cosec2q cot2q] > 0

i.e., R or r2 is minimum at tan q = b

a

fi  sinq = b

a b+
 and cosq = a

a b+
By equation (2), we have

  a

r
a

a b

b

r
a

a b

2

2

2

2

+
Ê
ËÁ

ˆ
¯̃

+

+
Ê
ËÁ

ˆ
¯̃

 = 1 

fi  r2 = a (a + b) + b (a + b)
   = (a + b)2

At tanq = b

a
,  the value of r is (a + b).

Example 12: ADC generator has integral resistance R ohms and has an open circuit voltage of 
V volts. Find the lead resistance r for which the power delivered by the generator is maximum.

Solution: We know that the ohm’s law
  V = i (R + r)

fi  i = V

R r+
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The power generated P = i2 r = V r

R r

2

2( )+
  …(1)

Here V, R being constant.
Differentiate both sides of (1) with respect to r, we get

  dP

dr
 = V 2 ( ) . . ( )

( )

R r r R r

R r

+ - +
+

È

Î
Í
Í

˘

˚
˙
˙

2

4

1 2

  = V 2 ( )

( )

R r r

R r

+ -
+

È

Î
Í

˘

˚
˙

2
3

  = V 2 R r

R r

-
+

È

Î
Í

˘

˚
˙

( )3
 …(2)

For maxima and minima, we have

  dP

dr
 = 0

fi  V 2 R r

R r

-
+

È

Î
Í

˘

˚
˙

( )3
 = 0              

fi  R = r    
 Differentiate both sides of (2) again with respect to r, we get

  d P

dr

2

2
 = V2 ( ) .( ) ( ). ( )

( )

R r R r R r

R r

+ - - - +
+

È

Î
Í
Í

˘

˚
˙
˙

3 2

6

1 3

  = V2 - +
+

È

Î
Í

˘

˚
˙

4 2
4

R r

R r( )

At R = r, d P

dr

2

2
 = -V

R

2

38
 (negative) i.e., P is maximum for r = R.

Hence, Pmax = V

R

2

4

Example 13: A given quantity of metal is to be cast into a half cylinder, i.e., with rectangular 
base and semicircular ends. Show that in order to have minimum surface area, the ratio of the 
height of the cylinder to the diameter of semicircular ends is p:p + 2.

Solution: Suppose the volume of the half cylinder is

  V = 1

2
 pr2h  …(1)

where r and h are the radius and height of the half cylinder respectively
Surface area of rectangular base = 2rh
 Curved surface = prh
 Two semicircular ends = pr2
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The total surface area
  S = 2rh + prh + pr2

   = rh (2 + p) + pr2 …(2)
From equation (1), we have

  h = 2
2

V

rp

Then S = r V

r

.2
2p

(2 + p) + pr2

   = 2V

rp
(2 + p) + pr2   …(3)

Differentiate both sides of (3) with respect to r, we get

  dS

dr
 = 2pr – 2

2

V

rp
(p + 2) …(4)

For maxima and minima we have

  dS

dr
 = 0 

fi  2pr – 2
2

V

rp
 (p + 2) = 0

Using equation (1), we have
  2pr – h (p + 2) = 0

fi  h

r2
 = p

p + 2
  …(5)

Differentiate both sides of (4) again with respect to r, we get

  d S

dr

2

2
 = 2p – 4

3

V

rp
 (p + 2)

   = 6 p (positive) i.e., S is maximum.

 Hence, surface area S is minimum at h

r2
 = p

p + 2
 

Example 14: Find the extreme points of the function u = x2 + 4y2 + 4z2 + 4xy + 4xz + 16yz.

Solution: Given that 
  u  = x2 + 4y2 + 4z2 + 4xy + 4xz + 16yz …(1)

Differentiate partially both sides of (1) with respect to x, y and z respectively, we get

  ∂
∂
u

x
 = 2x + 2y + 2z

  ∂
∂
u

y
 = 8y + 4x + 16z

and  ∂
∂
u

z
 = 8z + 4x + 16y
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For extreme points, we have

  ∂
∂
u

x
 = 0, ∂

∂
u

y
 = 0 and ∂

∂
u

z
 = 0

fi  2x + 2y + 2z = 0 or 2(x + y + z) = 0
  8y + 4x + 16z = 0 or 4(x + 2y + 4z) = 0
and  8z + 4x + 16y = 0 or 4(x + 4y + 2z) = 0

Solving above these expression, we get x = 0, y = 0, z = 0.
Let the point P be (0, 0, 0)
Differentiate partially (2) and we get 

∂
∂

2

2

u

x
 = 2, ∂

∂

2

2

u

y
 = 8, ∂

∂

2

2

u

z
 = 8, 

∂
∂ ∂

2u

x y
 = 4, 

∂
∂ ∂

2u

y x
 = 4, 

∂
∂ ∂

2u

y z
 = 16, 

∂
∂ ∂

2u

z y
 = 16, ∂

∂ ∂

2u

x z
 = 4,

∂
∂ ∂

2u

z x
 = 4.

The Hessian matrix of u (x, y, z) is

  H = 
2 4 4

4 8 16

4 16 8

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 

The leading minors of H are      

H1 = |2| = 2, H2 = 2 4

4 8
 = 0 and H3 = 

2 4 4

4 8 16

4 16 8

 < 0.

Here H1 and H3 are not of same sign and H2 = (i.e., semi-definite). Hence u has a saddle 
point at (0, 0, 0).

Example 15: Find the maximum and minimum value of u, where u = sin x sin y sin (x + y).

Solution: Given that
  u = sin x sin y sin (x + y) …(1)
Differentiate partially (1) with respect to x and y both sides respectively, we get,

           ∂
∂
u

x
 = sin y [sin x cos (x + y) + cos x sin (x + y)] …(2)

and   ∂
∂
u

y
 = sin x [sin y cos (x + y) + cos y sin (x + y)] …(3)

For maxima and minima, we have

  ∂
∂
u

x
 = 0, and ∂

∂
u

y
 = 0 

 sin y [sin x cos (x + y) + cos x. sin (x + y)] = 0
and sin x [sin y cos (x + y) + cos y, sin (x + y)] = 0
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Solving above these expressions, we get
  tan (x + y) = –  tan x   …(4)
and                                           tan (x + y) = – tan y …(5)
Now, we have
  tan 2x = – tan  x = tan (p – x)
  2x = p – x
  x = p /3 = y
Also
  sin y = 0 fi y = 0
and  sin x  = 0 fi x = 0

Thus, the stationary points are (0, 0), (p/3, p/3).
Differentiate partially (2) and (3) again, we get

  r = ∂
∂

2

2

u

x
 = 2 sin y cos (2x + y)

  s = 
∂
∂ ∂

2u

x y
 = sin 2 (x + y) 

and  t = ∂
∂

2

2

u

y
 = 2 sin x cos (2y + x)

At (0, 0), we get r = 0, s = 0, t = 0.
  rt – s2 = 0, i.e., u has a saddle point at (0, 0).
Now at (p /3. p /3), we get r = 2 sin (p /3) cos p = – 3 .

  s = sin (4p /3) = – sin (p /3) = – 3

2
 

and  t = 2 sin (p /3) sin p = – 3  

fi  rt – s2 = 9

4
 is positive and r < 0.

Hence, u is maximum at (p /3, p /3).

Example 16: Find the extreme points f (x1, x2) = 20x1 + 26x2 + 4x1x2 – 4x 2
1 – 3x2

2.

Solution: Given that 
  f (x1, x2) = 20x1 + 26x2 + 4x1x2 – 4x 2

1 – 3x2
2 …(1)

Differentiate partially (1) with respect to x1 and x2 both sides respectively, we get

  ∂
∂

f

x1

 = 20 + 4x2 – 8x1   …(2)

and  ∂
∂

f

x2

 = 26 + 4x1 – 6x2  …(3)

For extreme points, we have

  ∂
∂

f

x1

 = 0 and ∂
∂

f

x2

 = 0
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fi  20 + 4x2 – 8x1 = 0
And 26 + 4x1 – 6x2 = 0

Solving these, we get x1 = 7, x2 = 9.
Differentiating again partially (2) and we get

  r = ∂
∂

2

1
2

f

x
 = – 8

  s = 
∂

∂ ∂

2

1 2

f

x x
 = 4

and  t = ∂
∂

2

2
2

f

x
 = – 6

We have rt – s2 = (– 8) (– 6) – (4)2 = 32.
At (7, 9), rt – s2 > 0 and r < 0, i.e., f is maximum at (7,9).

Example 17: Find the point (x1, x2, x3) at which is functions
f (x1, x2, x3) = – x2

1 – x2
2  – x2

3  + x1x2 + x1 + 2x3 has optimum values.

Solution: Given that
  f (x1, x2, x3) = –x2

1 – x2
2  – x2

3  + x1x2 + x1 + 2x3 …(1)
Differentiate partially (1) with respect to x1, x2 and x3 both sides respectively, we get

  ∂
∂

f

x1

 = – 2x1 + 1

  ∂
∂

f

x2

 = – 2x2 + x3

and  ∂
∂

f

x3

 = – 2x3 + x2 + 2  …(2)

For extreme points, we have

  ∂
∂

f

x1

 = 0, ∂
∂

f

x2

 = 0 and ∂
∂

f

x3

 = 0

fi  – 2x1 + 1 = 0
  – 2x2 + x3 = 0
and  – 2x3 + x2 + 2 = 0     

Solving these we get x1 = ½, x2 = 2/3, x3 = 4/3.

Let the point P be  = 1

2

2

2

4

3
, , .

Ê
ËÁ

ˆ
¯̃

Differentiate partially (2) again and we get

 ∂
∂

2

1
2

f

x
 = –2, ∂

∂

2

2
2

f

x
 = –2, ∂

∂

2

3
2

f

x
 = –2,  

∂
∂ ∂

2

1 2

f

x x
 = 0, 

∂
∂ ∂

2

2 1

f

x x
 = 0, 

∂
∂ ∂

2

1 3

f

x x
 = 0, 

∂
∂ ∂

2

3 1

f

x x
 = 0,

∂
∂ ∂

2

2 3

f

x x
 = 1, 

∂
∂ ∂

2

3 2

f

x x
 = 1
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At   (a, a), we get r = 2, s = 1, t = 2.
Then   rt – s2 = 3 > 0

Since at (a, a), rt – s2 > 0 and r > 0, then u is minimum at (a, a).

The minimum value of u = a. a + a

a

a

a

3 3

+  = 3a2.

Example 19: Find the extreme points of the function f (x1, x2) = – x3
1 + 2x3

2 + 3x2
1 + 12x2

2 + 24. 
And determine their nature also.

Solution: Given that 
  f (x1, x2) = x3

1 + 2x3
2 + 3x2

1 + 12x2
2 + 24  …(1)

Differentiate partially (1) with respect to x1 and x2 both sides respectively, we get

  ∂
∂

f

x1

 = 3x2
1 + 6x1 …(2)

and  ∂
∂

f

x2

 = 6x2
2 + 24x2   …(3)

For extreme points, we have

  ∂
∂

f

x1

 = and ∂
∂

f

x2

 = 0

fi  3x2
1 + 6x1 = 0                         

And 6x2
2 + 24x2 = 0

Solving these, we get x1 = 0, – 2, x2 = 0, – 4.
Differentiating again partially (2) and we get

  r = ∂
∂

2

1
2

f

x
 = 6(x1 + 1)

  s = 
∂

∂ ∂

2

1 2

f

x x
 = 0

and  t = ∂
∂

2

2
2

f

x
 = 12(x2 + 2)

At (0, 0) rt – s2 = 72(x1 + 1) (x2 + 2) = 72 > 0 and r > 0 i.e., f is minimum at (0, 0).
At (0, – 4)  rt – s2 = 72(x1 + 1) (x2 + 2) = –144 < 0 fi no extreme point, i.e., f has a saddle point 
at (0, – 4).
At (– 2, 0)  rt – s2 = 72(x1 + 1) (x2 + 2) = –144 < 0 fi no extreme point, i.e., f has a saddle point 
at (–2, 0).
At (– 2, – 4)  rt – s2 = 72(x1 + 1) (x2 + 2) = 144 > 0 and r < 0 i.e., f is maximum at (– 2, – 4).

Example 20: Find the dimension of a box of the largest volume that can be inscribed in a 
sphere of radius 3 meters.

Solution: Let the volume of the box be 
  V = 2x. 2y. 2z fi V = 8xyz  …(1)
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Changing the variables Cartesian to spherical polar co-ordinates as x = r sinq cosf, y = r sinq   
  sinf, z  = r cosq and using r = 3 (given).
  V = 216 sin2q cosq cosf sinf
   = 108 sin2q cosq sin 2f …(2)
Differentiate partially (2) with respect to q and f both sides respectively, we get

  ∂
∂
V

q
 = 108 sin 2 f [sin2q (–sinq) + 2 sinq cos2q] 

   = 108 sin 2 f sinq {–sin2q + 2 cos2q} …(3)

and  ∂
∂
V

f
 = 216 cos 2 f sin2 q cosq …(4)

For maxima and minima, we have

  ∂
∂
V

q
 = 0 and ∂

∂
V

f
 = 0

fi   108 sin 2 f sinq{–sin2 q + 2 cos2q} = 0

i.e.,  sinq = 0 or tanq = 2  or sin f = 0

i.e.,  q = 0, tan-1 2 , f = 0.
and  216 cos 2 f sin2q cosq = 0 
i.e.,  q = 0, p /4.

Because q = 0 or f = 0 gives V = 0, so we take only q = tan-1 2  and f = p /4.
Differentiate partially (3) again and we get

 ∂
∂

2

2

V

q
 = 108 sin 2 f [sinq (– 4 cosq sinq – 2 sinq cosq) + cosq(2 cos2q – sin 2q)]

At (tan-1 2 , p/4), ∂
∂

2

2

V

q
 = 108 2

3
6

1

3

2

3

1

3
1

1

3

2

3

2 2

- ¥ ¥
Ê

ËÁ
ˆ

¯̃
+

Ê
ËÁ

ˆ
¯̃

-
Ê

ËÁ
ˆ

¯̃

Ê

Ë
Á
Á

ˆ

¯
˜
˜

È

Î

Í
Í

˘

˚

˙
˙

   = - 432

3

  ∂
∂ ∂

2V

q f
 = 216 cos 2 f[sin2q(– sinq) + cos2q (2 sinq)]

   = 216 cos 2 f sinq [2 cos2q – sin2q]

At  (tan– 1 2 , p /4), ∂
∂ ∂

2V

q f
 = 0

                                      ∂
∂

2

2

V

f
 = – 432 sin 2 f[sin2q cosq]

At  (tan– 1 2 , p/4), ∂
∂

2

2

V

f
 = – 432 ¥ 2

3

1

3

2Ê

ËÁ
ˆ

¯̃
¥

Ê
ËÁ

ˆ
¯̃

 = – 864

3 3
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 4. At x = 400.
 6. At x = 0 give point of inflection; at x = 1 give maxima and value is 12; at x = 2 give 

minima and value is – 11.
 7. At x = 6/5 f (x) give maxima.
 8. Diameter = 3.93 meters, length = 4.12 meters.
 10. At x = 1 give point of inflexion, at x = 2 give local maxima and x = 3 give local minima.
 12. y = x = C/4, i.e., square.

 13. At h = C/ 3  volume = 
2

9 3

3pc
.

 15. Speed 40 km/hour.
 17. The intensity is maximum for tan q = 2  height = 25 2  meters.
 20. Height = 40.423 mm, length = 216.154 mm, width = 129.154 mm and maximum volume 

= 1128.5 cm3.

 21. At (0, 0), (0, a) and (a, 0) u is neither maxima nor minima. At a a

3 3
,

Ê
ËÁ

ˆ
¯̃

= u is minimum if 

a < 0 and u is maximum if a > 0.
 22. At (1, 2) u is minimum and at (– 1, – 2) u is maximum.

 23. At (0, 0) f is minimum and - -Ê
ËÁ

ˆ
¯̃

4

3

8

3
,  f is maximum.

 24. At 2 2, -( )  u is maximum.

 25. At p p p
3 3 3

, ,
Ê
ËÁ

ˆ
¯̃

 f is maximum.

 26. At x = y = z = (2 v0)1/3 give minima.

 27. At - -Ê
ËÁ

ˆ
¯̃

2

3

1

3
1, ,  u is minimum.

 28. At (0, 0) u give saddle point.

2.4 constraIned multIvarIable optImIzatIon problems wIth  
equalIty constraInts

The optimization problem of a continuous and differentiable function subject to equality 
constraints:

 Optimize (Max or Min) Z = f (X)
 Subject to constraints (s.t.)  gj(X) = 0 ; j = 1, 2, 3, …, mg

where X = 

x

x

xn

1

2

º
º

Ê

Ë

Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜̃
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 Here m is less than or equal to n. There are several methods for solving this type of problem. 
Here we discuss only two methods:
 1. Direct substitution method
 2. Lagrange multipliers method

2.4.1  Direct Substitution Method

In this method, the value of any variable from the constraint set is put into the objective function. 
The problem reduces to unconstrained optimization problem and can be solved by unconstrained 
optimization method.

2.4.2  Lagrange Multiplier Method

Consider a general problem with n variables and m equality constraints:
 Optimize Z = f (X)
 s.t. gj(X) = 0 ; j = 1, 2, 3,…, m (m < n)
                                              X ≥ 0

where X = 

x

x

xn

1

2

º
º

Ê

Ë

Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜̃

Now we define a function

  L(x1, x2,…, xn, l1, l2,…, lm) = f (X) + 
j

m

=1
Â ljgj (X) …(1)

Here, l1, l2, …, lm are known as Lagrange’s undetermined multipliers.
The necessary conditions for extreme of L are

  ∂
∂

L

xi

 = ∂
∂

+
∂
∂Âf

x

g

xi
j

j

m
j

i

l
=1

 = 0 …(2)

and  ∂
∂

L

jl
 = 0; 

i n

j m

=

=

1 2

1 2

, ,

, ,

º
º

Ê
ËÁ

ˆ
¯̃

 …(3)

 Solving equation (4) and (5), we get

  X = 

x

x

xm

1

2

*

*

*

º
º

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

 and l* = 

x

x

xm

1

2

*

*

*

º
º

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
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 The sufficient condition for the function to have extreme at point X *, is that the values of k 
obtained from equation

L k L L g g g

L L k L g g g
n m

n m

11 12 1 11 21 1

21 22 2 12 22 2

- º º
- º º

º º º º º º º º
º º º º º º ºº º

º - º
º º

º º º º º º º º
º º º º º º º º

L L L k g g g

g g g

g

n n nn n n mn

n

m

1 2 1 2

11 12 1

1

0 0 0

gg gm mn2 0 0 0º º

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 = 0

must be of the same sign. If all the eigen values of k are negative then it is a maxima and if all the 
eigen values k are positive then it is a minima. But if some eigen values are zero or of different 

sign then that is a saddle point. In above Lij and gij denoted by ∂
∂ ∂

2L

x xi j

 and 
∂
∂
g

x
j

i

 respectively.

2.5. constraIned multIvarIable optImIzatIon problems wIth  
InequalIty constraInts

Let us consider a problem
 Optimization (Max or Min) Z = f (X)    …(1)
s.t. gj(X) £ 0 ; j = 1, 2, 3,…, m    …(2)

where X = 

x

x

xn

1

2

º
º

Ê

Ë

Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜̃

The inequality constraints in equation (2) can be converted into equality constraints by adding 
slack variables as 
  gj(X) + yj

2 = 0; j = 1, 2, 3,…, m
Now the problem becomes
Optimize (Max or Min) Z = f (X)

s.t.  Gj (X, Y) = gj (X) + yj
2 = 0; j = 1, 2, 3,…, m

where X = 

x

x

xn

1

2

º
º

Ê

Ë

Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
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 and Y = 

y

y

ym

1

2

º
º

Ê

Ë

Á
Á
Á
Á
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ˆ

¯

˜
˜
˜
˜
˜̃

Now it can be solved by Lagrange’s multipliers method.
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  ∂
∂

L

jl
 = 0

fi  gj (X) + yj
2 = 0; j = 1, 2, 3,…, m …(6)

and  ∂
∂

L

y j

 = 0

fi  2lj yj = 0; j = 1, 2, 3,…, m …(7)
From (6) and (7), we have

  lj gj (X) = 0
fi  l j = 0
or  gj(X) = 0.

Case I: If g j (X) = 0 at the optimum point then it is called the active constraint and we can 
find optimum solution.

Case II: If l j = 0 at the optimum point then it is called inactive constraints.
Note: If the given optimization problem is a minimization problem with constraints of the form 
g j (X) ≥ 0 then l j £ 0 but if the problem is a maximization problem with constraints of the form 
gj (X) £ 0 then l j £ 0. Let us consider some maximization or minimization problems given in 
the following terms.
 (i) Maximize Z = f (X)
  s.t. gj (X) £ 0 ; j = 1, 2, 3,…, m 
  For the function f (X) to have maxima, we have 

   ∂
∂

+
∂
∂Âf

x

g

xi
j

j

m
j

i

l
=1

 = 0; i = 1, 2, 3,…, m 

   lj g j (X) = 0; j = 1, 2, 3,…, m
  and lj £ 0.
 (ii) Maximize Z = f (X)
  s.t. gj (X) ≥ 0; j = 1, 2, 3,…, m 
  For the function f (X) to have maxima, we have

   ∂
∂

+
∂
∂Âf

x

g

xi
j

j

m
j

i

l
=1

 = 0; i = 1, 2, 3,…, m 

   lj gj (X) = 0; j = 1, 2, 3,…, m
  and lj ≥ 0.
 (iii) Minimize Z = f (X)
  s.t. g j (X) £ 0; j = 1, 2, 3,…, m 
  For the function f (X) to have maxima, we have 

   ∂
∂

+
∂
∂Âf

x

g

xi
j

j

m
j

i

l
=1

 = 0; i = 1, 2, 3, …, m 

   lj gj (X) = 0; j = 1, 2, 3, …, m
  and lj £ 0.
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 (iv) Minimize Z = f (X)
  s.t. gj (X) ≥ 0; j = 1, 2, 3, …, m 
  For the function f(X) to have maxima, we have

   ∂
∂

+
∂
∂Âf

x

g

xi
j

j

m
j

i

l
=1

 ; i = 1, 2, 3, …, m 

   ljgj(X) = 0; j = 1, 2, 3, …, m
  and lj £ 0.

solved examples

Example 21: Find the optimum solution of the following constrained multivariable problem 
minimize Z = x1

2 + (x2 + 1)2 + (x3 – 1)2 s.t. x1 + 5x2 – 3x3 = 6.

Solution: Given that
  Z = x1

2 + (x2 + 1)2 + (x3 – 1)2 …(1)
and  x1 + 5x2 – 3x3 = 6

fi  x3 = x x1 25 6

3

+ +  …(2)

Using (1) and (2), we get 

  Z = x1
2 + (x2 + 1)2 + 1

9
 (x1 + 5x2 – 9)2 …(3)

Differentiate partially both sides of (3) with respect to x1 and x2 respectively, we get

  ∂
∂

Z

x1

 = 2x1 + 2

9
 (x1 + 5x2 – 9)

and  ∂
∂

Z

x2

 = 2(x2 + 1) + 10

9
 (x1 + 5x2 – 9)

For maxima and minima, we have

  ∂
∂

Z

x1

 = 0 and ∂
∂

Z

x2

 = 0

fi  2x1 + 2

9
 (x1 + 5x2 – 9) = 0

and  2(x2 + 1) + 10

9
 (x1 + 5x2 – 9) = 0      

Solving these, we get

  x1 = 2

5
 and x2 = 1

Differentiate again partially (4) and we get

  r = ∂
∂

2

1
2

Z

x
 = 2 + 2

9
 = 20

9
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  t = ∂
∂

2

2
2

Z

x
 = 2 + 50

9
 = 68

9

and  
∂

∂

2

1 2

Z

x x
 = 10

9

At 2

5
1,

Ê
ËÁ

ˆ
¯̃

, rt – s2 = 20

9

68

9

10

9

2Ê
ËÁ

ˆ
¯̃
Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

 = 1260 > 0 and r > 0

i.e., Z is minimum at 2

5
1,

Ê
ËÁ

ˆ
¯̃

 the minimum value of  is 28

5
.

Example 22: Find the dimensions of a box of large volume that can be inscribed in a sphere 
of radius a.

Solution: Suppose x, y and z are the dimensions of the box with respect to origin O and 
OX,OY,OZ are reference axes. The volume of box is 
  V = 8xyz …(1)

Given that the box is to be inscribed in a sphere of radius ‘a’ i.e.,
  x2 + y2 + z2 = a2 …(2)

Eliminating z from (1) and (2), we get
  V = 8xy  (a2 – x2 – y2 )1/2 …(3)

Differentiate partially (3) with respect to x and y both sides respectively, we get

  ∂
∂

V

x1

 = 8y x a x y x a x y◊ - - - + - -È
ÎÍ

˘
˚̇

-1

2
22 2 2 1 2 2 2 2 1 2( ) ( ) ( )/ /

   = 8y -
- -

+ - -
È

Î
Í

˘

˚
˙

x

a x y
a x y

2

2 2 2 1 2
2 2 2 1 2

( )
( )

/
/

   = 8y ( )

( ) /

a x y

a x y

2 2 2

2 2 2 1 2

2- -
- -

È

Î
Í

˘

˚
˙   …(4)

and  ∂
∂
V

y
 = 8x ( )

( ) /

a x y

a x y

2 2 2

2 2 2 1 2

2- -
- -

È

Î
Í

˘

˚
˙  …(5)

For maxima and minima, we have

  ∂
∂
V

x1

 = 0 and ∂
∂
V

y
 = 0

fi  8y ( )

( ) /

a x y

a x y

2 2 2

2 2 2 1 2

2- -
- -

È

Î
Í

˘

˚
˙  = 0

and  8x ( )

( ) /

a x y

a x y

2 2 2

2 2 2 1 2

2- -
- -

È

Î
Í

˘

˚
˙  = 0
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The necessary conditions for extreme L are

   

∂
∂

+

∂
∂

+

∂
∂

+

∂
∂

+ + -

¸

˝

Ô
L

x
x

L

y
y y

L

z
z

L
x y z

= =

= =

= =

= =

2 4 0

2 2 0

2 2 0

4 2 14 02

l

l

l

l

ÔÔ
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô
Ô

 …(4)

Solving these we get x = –2l, z = –l and l = –1
fi x = 2, z = 1 and y = ± 2, putting x = –2l, z = –l, y = 0 in (2), we get l = –1.4.

Here (2, 2, 1, –1), (2, – 2, 1, –1) and (– 2l, 0, – l, l) or (2.8, 0, 1.4, –1.4) are extreme points.
Differentiate again partially (4) and we get

∂
∂

2

2

L

x
 = 2,  

∂
∂ ∂

2L

x y
 = 0, ∂

∂ ∂

2L

x z
 = 0, 

∂
∂ ∂

2L

y x
 = 0, ∂

∂

2

2

L

y
 = 2 + 2l, 

∂
∂ ∂

2L

y z
 = 2, ∂

∂ ∂

2L

z x
 = 0, 

∂
∂ ∂

2L

z y

 = 0, ∂
∂

2

2

L

z
 = 2, ∂

∂
g

x
 =  4, ∂

∂
g

y
 = 2y, ∂

∂
g

z
 = 2.

The sufficient condition for the extreme point is

  H = 

∂
∂

- ∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

∂
∂

- ∂
∂ ∂

∂
∂

∂
∂

2

2

2 2

2 2

2

2

2

L

x
k

L

x y

L

x z

g

x

L

yx x

L

y
k

L

y z

g

y

L

z∂∂
∂
∂ ∂

∂
∂

- ∂
∂

∂
∂

∂
∂

∂
∂

x

L

z y

L

z
k

g

z

g

x

g

y

g

z

2 2

2

0

 = 0

i.e.,  H = 

2 0 0 4

0 2 2 0 2

0 0 2 2

4 2 2 0

-
+ -

-

k

k y

k

y

l
 = 0 

or 4 (2 – k) [–10 + 5k – 10l – 2y2 + y 2k]  = 0
At (2, 2, 1, –1), equation (2) we have
  (2 – k) (–10 + 5k + 10 – 8 + 4k) = 0
fi  k = 2, 8/9
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i.e., values of k are positive then there is a minima.
At (2, – 2, 1, –1), equation (2) we have
  (2 – k) (–10 + 5k + 10 – 8 + 4k) = 0
fi  k = 2, 8/9

Also values of k are positive then there is a minima.
At (2.8, 0, 1.4, –1.4), from (2) we have
  (2 – k ) (–10 + 5k + 14 – 0 + 0) = 0
fi  k = 2, – 4/5.

i.e., value of k are positive and negative (neither maxima and nor minima) i.e., saddle point.

Example 24: Minimize f (x) = 1

2
(x1

2 + x2
2 + x3

2) 

s.t.  g1(x) = x1 – x2 = 0 
and  g2(x) = x1 + x2 + x3 – 1 = 0 by Lagrange multiplier method.

Solution: It is given that

Minimize f (x) = 1

2
 (x1

2 + x2
2 + x3

2) …(1)

s.t.  g1(x) = x1 – x2 = 0 …(2)
and  g2(x) = x1 + x2 + x3 – 1 = 0  …(3) 

The Lagrangian function L is

 L(x1, x2, x3; l1, l2) = 1

2
 (x1

2 + x2
2 + x3

2) + l1(x1 – x2) + l2(x1 + x2 + x3 – 1) …(4)

The necessary conditions for extreme of L are

   

∂
∂

+ +

∂
∂

- +

∂
∂

+

∂
∂

-

L

x
x

L

x
x

L

x
x

L
x x

1
1 1 2

2
2 1 2

3
3 2

1
1 2

0

0

0

0

= =

= =

= =

= =

l l

l l

l

l
∂∂
∂

+ + -

¸

˝

Ô
Ô
Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô
Ô
Ô

L
x x x

l
= =1 2 3 1 0

 …(5)

Solving these, we get

x1 = x2 = x3 = 1

3
; l1 = 0, l2 = – 1

3
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  x + y ≥ 80,
  x + y + z ≥ 120.
  g1 = x – 40, g2 = x + y – 80, g3 = x + y + z – 120 …(6)

Using equations (4), (5) and (6), we have
  L = x2 + y2 + z2 + 20x + 10y + l1(x – 40 – y1

2) + l2(x + y – 80 – y2
2) 

    + l3(x + y + z – 120 – y3
2) …(7)

The Kuhn-Tucker necessary conditions for minimization of L (with g j(X) ≥ 0) are

  ∂
∂
L

x
 = 0, ∂

∂
L

y
 = 0, ∂

∂
L

z
 = 0         

  l j g j = 0; j = 1, 2, 3
  l ≥ 0; j = 1, 2, 3

Differentiate partially (7) and we get

   

∂
∂

+ + + +

∂
∂

+ + +

∂
∂

+

¸

˝

Ô
Ô
Ô

˛

Ô

L

x
x

L

y
y

L

z
z

= =

= =

= =

2 20 0

2 10 0

2 0

1 2 3

2 3

3

l l l

l l

l
ÔÔ
Ô

 …(8)

   
l l
l l
l l

1 1 1

2 2 2

3 3 3

40 0

80 0

120 0

g x

g x y

g x y z

= =

= =

= =

( )

( )

( )

-
+ -
+ + -

¸
˝
Ô

Ǫ̂
 …(9)

   l1, l2, l3, ≥ 0 …(10)
If l1 π 0, l2 π 0, l3 π  0 from (9) we have

   
( )

( )

( )

x

x y

x y z

-
+ -

+ + -

¸
˝
Ô

Ǫ̂

40 0

80 0

120 0

=

=

=

Solving these we get
  x = 40, y = 40, z = 40.

Using values of x, y and z. From equation (6), we get
  l1 = –10, l2 = –10, l3 = – 80 

Hence, the condition lj £ 0 from equation (10) is satisfied.
Hence, the optimum solution is

  x = y = z = 40.
and minimize f = (40)2 + (40)2 + (40)2 + 20(40) + 10(4)
   = 6000.
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