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Random Variables:

Discrete and Continuous random variables, Joint distribution,

1 Probability distribution function, conditional distribution.Mathematical |
Expectations: Moments, Moment Generating Functions, variance and

correlation. coefficients, Chebyshev's Inequality, Skewness and

Kurtosis. "

Binomial distribution, Normal Distribution, Poisson Distribution

P and their relations, Uniform Distribution, Exponential Distribution. s
Correlation: Karl Pearson’s coefficient, Rank correlation. Curve fitting.

Line of Regression.

= Historical development, Engineering Applications of Optimization,

a Formulation of Design Preblems as a Mathematical Programming 2
Problems, Classification of Optimization Problems

Classical Optimization using Differential Calculus: Single Variable

k. 4 |and Multivariable Optimization with & without Constraints, 6
!‘1 Langrangian theory, Kuhn Tucker conditions
Linear Programming: Simplex method, Two Phase Method and| _
. 8§ | Duality in Linear Programming. Application of Linear Programming: 14
Transportation and Assignment Problems.
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b ien iscrete prohability gistribution for X’ and it spells out ho;';;;
constitute l-u;!:ﬁstriI:mtm:l over several values of the random variable, i

TION
| MATICALEXPECTA :
4.3 :::f:: rete random variable which takes the possible values x,, x, X

. Hiies 1y Doy P sveers (where each p; 20 and Zp = |y *
’ tive probabilities py, Py P3 - Pa o e i~ 1) they
El; :;pec ﬁcgrexl’“mio“ or simply the expectation is defined as

a ;- "
E(X)= D%+ Py%2 * Pa¥a = Elmz-

If §(X) is some functién of the variate X such that it takes valyg,
$051), (%2 §(%,) When X takes the values xy, %y, X; ... X, then-its expeciatoy

is given by ' ) )
EW(X)] = pdlx)+ padlm)+ ot pal5n) o)
| = ipﬂ(x:)-' ‘where Zp;= |
: =) , | L |
' () If $0)=X"  then (1) gives |
 EXY =P APy teain B Li

n " '
- ‘Zip;x: =ZIP;(I‘-—-0)'
- d= e n

which is defined as 1, the * moment about origin of the discrete probability
distribution,

Thus

Fr (aboutorigin}= E(X" )= p,xf o )

In particular, M = E(X)y= DX+ pyxy Tt PpX, = f'. PiXs

Faopty f?wh“‘ _gfiw. then o |

‘ . (X)=‘ N =m¢an=‘x-'=ul|’ \

” . .

Xy "sz Jf:ﬁt?;:::et:;:: ?n ;n i experiment when X takes the values
of the variate or the dislribution.| 42 Iy This moment E(X) is called the mes™ l
]
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(?/ | Theoretical Probability Distribution 43

o a0 = KERY
pen EL(X = ECOY 1= EUX -5Y )= ;E:',P:(x.& -5y

which is H» the 74 moment about mean.

_5Y 1= pn -5
. K - E[(X"‘—) ]-'.l“—'lpl i

- - - o2
-mpanicularifr=2,wcget My = EI(X',E) ]_E;p'(x" %)

h is defined as variance of X or var(X). If ¥ is not a whole number, then

| 2
by =5pi(x — %) =Epaxi — (%)
if X is a continuous variate with the probability density f(x) then its

whic

@ varite.
mathematical expectation 15 given by

b where @ < X <band ]

EX)= ‘]'xf(x.)dx P(x S X Sx+dx)= f(x)dx

In general, the mathematical expectation of ${(X), the random variable, whose
value is f(x) when the value of X is x given by
3

. q o e d b i '
Fo(x))= [ o) [ (x)dx

a

lnpanicula.r,-. : ] K .
| b
X -EX) 1=y =[G-X) flax  (forr=1, 2....)
a

and E(X')=p,= ?x’ S(x)dx (forr=1,2, 3....)

- :
Addition theorem of Expectation: If X, ¥, Z .... T are n random variates, then
EXA+Y# 2+t T)=EX)+E(N) + E(Z) T rur +E(T) if all the expectations oa
the right exist. '
Independent Variate: Two random variables X and Y on a sample space are called
independent if the probability that either of them does not dependent on the other.
Multiplication theorem of Expectation: The mathematical expectation of the
product of a number of independent random variables to equal is the product of their
expectation. Symbolicaily, if X, Y, Z ... Tare nindependent random variables, then

E(XY 2...T)=E(X)E(Y)E(Z)..E(T)

Y .



& &  mYmee—— —w -
:  are two random variables, th Janc e
Covarisnce: If X and 4 o isbles, thon covariance betweey theg

is defined 85
Cov. a" Y} = E[X-E(X}} (¥ - E(Ni)

= E[XY — XE(Y)-YE(X)+ ECOE)]
= E(XY)-E(X)E(Y)- E(Y)E(X)+ E{(X) E(Y)
= E(XY)- E(X)E(Y}
If X and Y are independent, then E(XY) = E(X)E(¥) and hence in this cgse
cov. (X, ) =E(X) EN—EXEN=0
4.4 MOMENT GENERATINGF UNCTION
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v Correlation
 and Regression
T R N S
RS B o oo 3 3 Y sk e iy 2t 20T I LIS o S acura P M S A 2y 5 PR BEAE S R L

Tae main objective of many statistical investigations is to make predictions, preferably on
e basis of mathematical equations. Problems related to predictions may be treated in
iwo ways (i) by computing the correlation coefficient and (ii) by using regression analysis.
The correlation coefficient tells us how strongly two variables are related but it does not
give us the magnitude of change of one variable due to other variable. For example the
corelation coefficient can tell us whether crime rate and unemployment rate are relaled
or iot or whether in computer system the throughput and the degree of multiprogramming
are related to each other or not. On the other hand regression model helps us to evaluate
the magnitude of change in one variable due t0 change in other variable. It also helps us
to predict the value of one variable for a given value of another variable. For example
# estimates the increase in the crime rate due 10 a particular increase in the
unemployment rate or it can predict the food expenditure of a household corresponding
0 2 given income. While the correlation coefficient measures the  closeness”, the.

regression equation is used for prediction or estimation.

This chapter deals’ .1 the correlation analysis in which one wishes to find whether
& mathematical relationship exists and to measure the strength of such relationship. Here,
we also study regression analysis in which the exact nature and form of the mathematical

eguation of the refation is obtained.
s n e o - S Ty g o TR A W O TR ST T e
_&32& Bivaria ?D"f“]m‘.t“.m e e iin ha b abMAN. @ K e s ia _.._____g
The distribution involving 00€ Wiablc -is'lmown as un:war:late distribution. On the other
hand if a distribution has twWoO varn?.bles it is known as bu{mate distribution. For example,
for a group of individuals 0n°¢ variable may measure the mcome while other variable may
.ture and the values form the bivariate distribution.

measure the expend! L
The simplest WBY to t the bivariate data is in the form of a diagram, known

as scatter diagrams in which the values (6, ¥i), i = 1,2, ..., nof the variables are plotted




L 2] Comelation s . jieiis’ ok e e, Conmcaissat ko n ‘!
In-a bivariate distribution we may be interested to find out whether there is any comelation [
between the two variables. The two variables are said to be correlated if change in one -
wvariable gives a specific change in the other variable. If the increase (or decrease) inone '
‘'variable resuits in the corresponding increase (or decrease) in the other variable, i.e., the p
two variables deviate in the same direction then the correlation is said to be direct oy
positive. For ecxample, there exists a positive correlation between income snd |
expenditure. If the increase (or decrease) in one variable results in the corresponding [
decrease (or increase) in the other variable, i.e., the two variables deviate in the opposite
directions then the correlation is said to be diverse or negative. For example the :
correlation between volume and pressure of a perfect gas is negative, In a bivariate "
distribution if the deviation in one. variable is followed by the corresponding and
proportional deviation (whether positive or negative) in the other then the correlation is
said to be perfect. For example, V= L? where V& L are perfectly correlated. ;
If the correlation between two variables is close to 1, either positive or negative we h
say variables have a strong positive or negative relationship respectively. If the correlation

between two varisbles is close to zero, whether positive or negative then weak correlation
exists.

Some examples of problems which can be referred to as problems of correlation
analysis are : the study of relationship between input and ‘output of & waste water
treatment plant or a relationship between the tensile strength and the hardness of
aluminium or the relationship between impurities in the air and the incidence of a certain
disease, where it is assumed that the data points (x;, y;) fori=1,2, « N are values of
a pair of random variables whose joint density function is f{x, y).

1. Scatter Diagram '

As we know the disgram of dots, i.c., the scatter diagram is the simplest way of
diagrammatic representation of the given bivariate data. If in this diagram -

(a) The poinis are very dense, i.e., very close to each other, then we sgy that a 3ood
amount of correlation exists. 3 : -




bm‘———

o
Some examples are :

The points are widely scattored then we say that & poor amount of correiation exists.

No correlation between _ Non linear correlation
xandy betweenxandy .

Negative correlation ;.
between x and y-

Strong negative.correlation |
berween x and y
Figure 7.2 it




7.4 I'—__—_—‘i Engmeenng Madm w \

- But this method is not suitable for a large number of observations, Moreover ; i _
give the magnitude of correlation. dmnq

2. Karl Pearson Coefficient of Correlation
Karl Pearson gave a formula to measure the intensity or degree of linear Felation..
between two variables, known as correlation coefficient n(X, Y) as Onship

(X,
AT = ryy = S5 T) et}

Ox Oy

If (x, ¥, i=1,2.. . 1 is the bivariate distribution then,
Cow(X,Y) = upy = E{{X~ ECOKY - E(V)}]

i = "Z(-‘-'s - -)(J’f “J’)

r--l

Also then
¢% = BX-EX) = ;‘; 3 (5 -5)
=l
- o = E{Y—Em}z_—)_:(,, -5y

» =]

Hence equation (1) =

where ¥ =_E(X;=-‘='?; and = E(¥) = =)



pd’ﬁwmnnegmm !

1.5 q.
Agaih WO can simplify Cow(X, Y) ag - |E|'
) a ph
C'ov(JL’ ¥)= "2(’:"‘5)(}’; J')--Z{xm—xfy = VE+X¥) 1t
. - |=-l |
b
i '_-«.?'r “i:
ST r
=T A=Y ——3 L 75
} e n no I‘il'
e 1
==X ~YX-Xy+¥y - i
" ial, :
-l
1w '|
a— '—Zx,yr-ff !
"=t '
. . |||
1 2 1 '
Also a?‘. = —Z(x;-x 3 --Z(I‘ --2x,x +Iz} |‘
A = = | m
_‘_ixz ___2—2 =2
o i X+ X
Bl
" :
- l xf ~ 52
n

Stmitarty
—2()’: "".V) =—Z.Vz

=
Hence substituting these values in equanon (2) we get -

This simplified form of ryy is easy for calculations in a bivariate distribution.

We have CowX, V)= p,, = Oyy hence, Karl Pearson’s correlation coefficient is also
called product-moment corretation coefficient.




Limitations of Correlation Coefficient rxy |

() The coefficient of correlation can be used as a measure ‘of linear Pelationg,
between two variables. In case of nonlinear or any other relatnopship the coeffiq; b
of correlation does not provide any measure at all. Hence the inspection of ity
diagram is also-_esscntial.

(i) Correlation must-be used to the data drawn from the same sources. If g Ferany
sources are used then the two variabies may show correlation but in each soyp, they
may be uncormrelated. |

(iii) If positive or negative correlation exists between two variables then it may alsq p,
due to the effect of some other variables in both of them. On the elimination of th
effect it may be Tound that the net correlation is nil.

Remark 1. The scatter diagram for various values of r can be shown as :-

Figure 7.3

Remark 2. The correlation between two variables is said to be simple correlation while
between more than two variables is said to be multipie correlation.

Properties of Correlation Coefficient ryy:
(i) Correlation coefficient is independent of change of origin and scgje,

A= and V=—.Y;b

"Letvz




Ll Calf:ulate the correlation coefTicient for the following heights (in inches) ol fathers (x) and
ir sons (y): s .- | z

x:| 65 66 67 67 68 69 70 72 -,
y-|67 68 65 68 72 72 6% Tl |

Sol. The correlation coefficient is given by = .




Hence we construct the followmg tablc -

I RS N
65 61 | - "5 | 4489 4355
" s | 4356 | 4624 | asm
67 65 4489 4225 4355 |
67 - 68 4489 4624 4556
68 7 | 4624 5184 4896
69 72 4761 5184 4968
70 69 4900 4761 4830
7 l 5184 5041 5112
Tout | a4 | ss2 | 328 | sz | 37560 ]
Hence f-%ﬁr=-s—;—4=68 )
) 1. 1
. y:;xy=§x552—69
= ‘f Bl -t J[ams —(68) | = ya5 =212
and w_ay ﬂﬁl—:’g- (69) =55 :='2;45
~and Cav(x,y) = —Ew-* y== x37560 ~68x69=3
Therefore equation (1) implies :~ -
3 »
r=212ix3345 6032 e [y
Aliter - - ‘ .
oI O
:; ;;:ntﬁf::: l!':e‘,::::;iev:;u;ma[;}a:fb?::[;h:z:nwe can simplify the calculat

for any one or both of X
X and y respectively. Heot®

™~

P o N :

As in this example let 68 and 69 be arbitrary origin fo,
construct the following table

i




v=y69 Ju? [v2 [uv 1 -
2| s 4 6
»1 4 2
) 4 ! 16 4
67 | 68 -1 1 1 1 1
68 | ™ 0 3| 0 9 0
69 72 | 3 | 9 3
70 | 69 2 0| 4 0 0
| 7| n 4 2 | 16 4 8
[“ Totat_ ] 0 o [36 |4 | 2 |
Now -,-;=l):u=o, f=—1-2v=0, C'ov(x;,v)=lzuv—ia‘:=!s-x24=3-
n n
- * 1
- . Oy =J—1-Euz-iz —Jsxsﬁ J 5=2121 -
n
s, = Jl—zvz—ir‘z =J18-x44 =455=2345
n
Cov(x,y) _ Cov(u,v) 3 - 0.6032
Hence '~ 6,0, ©,0, 2121x2345

S (VNP SIS . . U SR ERG U — . ---—:-L'nn - -n.l‘ L ‘Lﬂ 0A1Iﬂ



¢ 3 Calculate the Karl Pearson's coefficient 01 COIrelation O1 ¢ I0LOWING dats ;

x: |25 27 30 35 33 28 36
19 22 27 28 30 23 28

N7 SR  : e -



723 Rank Corselation. " ... 7 5ot lh i L i)
Although data measured in several cases is numeric (quantitative) in nature but there may
be some cases when data turns out to be qualitative or non numeric in nature,

For example, appearance : beautiful, ugly or efficiency : excellent, good, average, hag
or temperature : mild; hot, etc. are some of the cases in which data is qualitative iy
nature. kn such cases, the data is ranked according to the particular characteristic insteag
of taking numeric measurements on them. Hence here instead of the Pearsonia
correlation coefficient its non paramelric counterpart developed by Charles Edward
Spearman is calculated. \

let us suppose that for a group of n individuals grades or ranks (x;, v;) i=1,2,.. 1
are given with respect 1o two characteristics A and B respectively. Then Spearman’s rank T
correlation coefficient for non repeated rank is

6X
— where d; = x,— .t

p=1-

Remark 6. We always have Zd,=0 as Zd,= Z(x;~y;) = Ex;— Zy;= n(X—-y)=0
(as ¥ = ). This can serve as a check for the calculations.

Remark 7 If there are ties, either with respect to characteristic 4 or B, substitute for
each of the tied observations, the mean of the ranks they jointly occupy.

Remark 8. As Spearman’s rank correlation coefficient p is same as Pearsonian
correlation coefficient between the ranks, hence it can be interpreted in the same way
as Karl Pearson’s correlation coefficient. Hence -1 € p < 1.

Rank Correlation Factor for Repeated Ranks

For repeated ranks, a correction factor is required in the formula. If m is the number of

2-i—
times a rank is repeated then the factor m—(miz—n is to be added o Xd2,

This correction factor is added for each repested rank.



15 The ranks of same 10 students. in two subjects A dnd B ase given below = \
Runksind| 5 2 9 8 | |0 3 g4 5 7
RamksinB1 10 5 1t 3 8§ 6 2 "9 9 4
Calculate the correlation coefficient
H' ﬂﬂ" n= 10.
Ranksindx} S 2 9 8\ 10 3 4 4 7 Tom
RanksinB) 10 S 1+ 3 8§ 6 2 7 9 3
d=x-y {5 -3 8 5 -7 4 | -3 3 31 o
4 |25 9 64 25 49 16 1 9 9 o 218
| : . 6242 6x216
Hence rank correlation coefficient = p= |- =l = 1001..
“ _ P m "~ T0%99 0.3091.
h,:/;&;in the rank correlation coefficient for the following data
) X:]18 74 8 50 65 78 74 60 4 90 -
Lr:[78 ot 78 58 6 72 80 55 68 70

fol. As we require rank correlation coefficient, hence we have 1o rank the observations X and
Y. First we start with X; 90 being highest value for X receives rank 1. But for next two
positions (second and third) we have a tie for value X = 85.. Hence the average vank

2+3 §

Tmi =25 is given to both abservations for which value of X is 85, the next rank

ie. the fourth rank goes for the value for which X = 78 and so an.
Similarly we proceed for Y:
Hence we have the following table :-

X 18 74 8 50 65 78 74 60 74 90|Toal
- &nhxtx,) 25 6 25 10 8 4 6 9 6
o | Y 78 91 78 S8 60 72 B0 55 68 70
| 35 9 8 5 2 10 7 6
5§ -1 | 0 -1 4 -1 -1 =510

25 1t 1 0 1 16 1 1 235|7n




Also for Observation X -

2
. 2(2°-1)
Rank 2.5 is repeated twice hence its correction factor '——-—‘2 2
: s correction factor -3(32_])-?2
Rank 6 is repeated twice hence its correction 1aclor ===r>"===2 ",
For Ohservation Y : .,
2022 - 1)
Rank 3.5 is repeated twice, hence its correction factor = 2 2

1 1
Hence total correction factor (C.F.) = E—+2 +E =3

Hence Spearman’s rank correlation coefficient is given by

g 6{2d2+CF]
n(n -1}
__612+3) _, 6x75
- To16310%-1) 990
=.1-0.4545 = 0.5455
or p=0545

o -

O 0. Dunhlam ¥ Thea mnks of samel6 studente in mathonentian and ctatictis
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S5.10 STANDARD NORMAL DISTRIBUTION
A random varniable z which has a normal distribution with mean U=
o = | 1s said to have a standard normal distribution. Its probability density function

0 and a standard deviation

15 given by

-0 € 2 < 00,

J(2)= ,:u'
WV LA

It is denoted by N(0, 1). In short, standard normal variety is written as S NV

The area under any normal curve is found from the table of a standard normal probability

distribution showing the area between the mean and any value of the normally distributed
random variable. For a given value of x4 and o, and a specific value, X, of the random vanable,
the standardized variety Z 1s derived from the following formula :

X - u
o
The purpose of standardization of normal distributic n is to enable us to make use of the tables of

v
-

1T
€ °  lor various points along the x-axis.

the area of the standard curve f(: = -
var

The standard normal distribution is also known as Unit Normal Distribution or Z-Distribution

The standard normal curve helps us to find the arcas within two assigned limits under the curve.
The areas between the standard normal curve drawn at two assigned limits a and b will give the
ion of cases for which the values of z lic between a and b. Thus the area between two

assigned limits a and b under the standard normal curve will represent the probability that Z will
be between a and b. It is denoted by P(a < Z < b).







I-.: . I' St
Let X be a normal variate with mean 4 and standar

~ probabilty thata randorly slected value for X wil e between a and b ic. Pa<X<b.

X | A1) |

_ _ o
Step 2. Find the limits of Z corresponding to the limits of X.

When X =a, then Z="—5
o

b-
When X =b, then Z=-—5 (Put X =b in (D]

(Put X = ain (1))

il

‘l‘husthclimiaonareaa 0228 hen X=alto X=b.

a »
Step 3. Thus P(a<X<b)=P[£‘-'-:f-)-<Z<u).
o o
the probability that Z is between (a—u)lo and (b=u)/ 0.

strength of 1500 kgs and a
of all such beams whose

Step 4. From the normal table find

Example 5.39 : A certain type of wooden beam has a mean breaking
standard deviation of 100 Kgs. Find the relative frequency

breaking strengths are between 1450 and 1600 kgs.

Solution. Let X bethe breaking strength. Then we are 10 find P(1450< X <1600).
Let X be a normal variety with mean g = 1500 and standard deviation o = 100.
MsmndardnmmlvariclyN(O. 1)

ZSX—;:’X—ISOO
100

When, X =1450, then z=_———-‘45°1‘(;;5°°--o.s

= ,
When x.=1600. then Z=‘6(mlmsm'l
Thus P(1450 < X <1600) = P(=0.5 <Z<l)
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Example 5.44 : For the normal curve

£ .
y= fix)=—r=¢

T4 2n
Find mean and standard deviation.

Solution. Since f(x)is p.dJ., then

mean [ X.J(X ) dx

L r — | I
| Puting =24 = de= a3
- )
3 Y 4 { Y &~
|
. o
ry J
1|
0 and e di =«rx
o !
Thus mear ' g
Ans
Further, by d 1 AT 1AN(
Vananci l- . n) (x)dx
| , 3
) [l .
‘ LL N g ax | .° mean T’,-..]
(AT IFR
1 ¥
“}llni;"i" [ = > X ON 4 -'J:r I
"}'\'J.ﬂ
!

A

i ( ] \- 2 [ y
Variance = {r hﬁvb)efvfuf

o \/} ’ (4 l v

20”2 I gy =22 -. J lr kd
= € al =—p= e ¢ i
r:rJ?,fr Jrr _

On integrating by parts, we get

n
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-
g o &
! & | ] [ ’
Vanance = ——| . {——p¢™" | iy e
m i - . !
20 ]
2 e 04— ¢ A
VL <
1. i -
£ % dt = x
it R )
b S - -
Hence Vanance of normal Irve 1 y \ns.
- & - g : ¥ J Py g N s f1rté"s [ 5 i [ rr
Example 5.45 : The mean deviation from the mean of the normal gistridution i3 fimes ifs standars
deviation.
Ur
i ati | RGPV June 2009, Feb. 2010}
Fmd’ the mean deviation _f.r..un mean for normal distribution. tGPYV June SU0Y, Fel iU
Solution: By Normal distribution
We know that, mean deviation |
D '. .
; [ - ! T 4 |
‘w—: [3 I Y 2 ' v
Y
J f
— V2 |
v '
7 \‘j . " / .
Jr
If;‘
J 'y r." . "u'.'f B
Put u=i" = du=21di 2
[ ;
2042 au s
M.D ., 0 ; . [, 1
VA ‘ V&
||--.
20 j &
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= (0.8)o approx

= 20 approx Proved,
5

Example 5.46 : In a normal distribution 31% of the items are under 45 und 8% W: f’:i’f' 64. Find 1{:,
mean and standard deviation of the distribution. [RGPV June Jﬁ?a & June 2003

Solution. 31% of items are under 45=> Area to the left is 0.31. But area night from this point is
(0.50-0.31) = 0.19. (See figure)

Let X be the random variety, which i1s normally distributed with mean u and standard

s

deviation o T

Then, Z = ——— s a standard normal variable (S N V)

The S.N.V. corresponding to X =45 and X = 64 are as below :

‘1“- -

When X =45, then Z = —=-Z . (Say) AN
. . : ; 64— u =
When X =64, then Z = - —=Z,. (Say) (2)
o
From the figure it is obvious that
P0<Z<Z,)=04232Z, =1.405

[ From the normal table]

and P(-Z, <Z <0)=0.19=2P(0<Z<Z)=0.19 [by symmetry]
=5 Z, =0.496 [ From the normal table).

Substituting the values of Z, and Z, in (1) and (2), we get

45 - u = _ 23
==0.496 =245 - py = -049% ¢ A(3)
o

64 — :
£ = 1405 =64 -y =14050 (4
=
Solving (3) and (4), we get

=10, £=4996 = 50 (approx.) re. S5.D. = 10 and mean = S0

Ans.
xample 547 : The mean height of 500 students is 151 em, and the standard deviation is 15 cm.

Assuming that the heights are normally distributed, find how many students have heights
between 120 and 155 cm, ? [RGPV Dec. 2003]
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Sodunion. No. of studems

\-h an,

K)
Li 1S1em

Oy standard n mal vanable = ' Li |
4 | \\
= A i L !

cimately normai

savs P 1 w 1 1 reh . ’ .
i i 3 | [ / ' f yrk o re ho
I J / K . g i 'L 4 L \ s
[ ; .
wL
Feoe 4
P
_\IJ
} (
Tl
0.
f
I f .
A
L J 4
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P (less than Rs, 45) = P(x <45)=/
).5- P
Y
Hence No. of workers who rect l€ is. 4
| l}
Example 549 : A sample of 100 dry battery cells ed [ I
following results
_H: an X .' _’ hours, st ndard d nte
Assuming the data to be normall trih
c'.\'.,l"t'a'h‘if fe have life
(i) More than 15 hours fir) I !
(1ii) Between 10 and 14 howrs ?
Solution. Here x denotes 1l : 11
lhe SN\
(1) When 2
Ifill n T
0
() 5 i
| W i[. ¢
(i1i) When 10, ther .
|
when x=14 then £
P(Betweenl0&14)
Pl(l0<x <14 P ) .

2P0 <z <(0.67)
A DS

= (),4974 = 49.74%

Example 5.50 : Assuming that the diameters of 1000 brass plugs taken consecutively
from a normal distribution with mean 0.7515 cm. and standard deviation 0. 0020 cw.. how
32+ 0.004cm

many of the plugs are likely to be rejected, if the approved diameter is 0. 752
I I ..-h: !]{ ¢ _nl.”’: )

from a machin




l,ﬂ'

e “,..H.ml
2=-175

s AL x =0748, then z,= °'7‘z;$75*’ 5175,

0.756-0.7515
0.002

X k e . L

Alsoat x; =0.756, then 1, =

=225,

S Pl <x<xy)=P(z <z1<3,)
= P(-1.715 <z <2.25)
= P(0 <z<=1.75)+ P(0 <z <2.25)
= 04599 + 04878 From normal table]
= 0.9477.

Number of plugs likely to be rejected =1000(1 - -0.9477)
=1000x0.0523 [~ Shaded ares = (1-0.9477)]

=523 =52 Ans.

Example 5.51 : A manufacturer knows from Wuﬁd&em@lutofuﬂdmkpmﬁmk

normal with mean =100 Ohms and standard deviation o = 20hms . What percentage
ofmmmmmmm 98 Ohms and 102 Ohms ?

u=1000hms, standard deviation & =2 Ohms

By standard normal vanable is z-"—;-g.

ﬂ:—l.

Whenx-% then 2, = ks A o B
102100

When x=102, then &-——T‘“‘“‘!

H93<x<102}-?(14 =-1<z<n=))

dﬁ-‘ldl‘i’ ':H N -
L T

ﬂ?(dlﬂﬂﬂ"‘ﬁmi'%l ‘

Solution. Given that mean

2--—1
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(i) How many score above 18 7

Solution. Given that N = 1000, mean u=14, o=121.. TT"‘_
," \
The SN.V.is z = —£ ’ |
o oy ’/," | !
() When x=12, then, 2 =2=£-= I';:_ﬁ el T .
15-14 el Z=0arA
When x =15, then, z, = T 04
P(12<x<15)= P(-08 <z <04)
=P(-08<z<0)+P(0<z<04)
=(0.2881+0.1554 LRl
= (0.4435
The required number of students = 1000 x 0,443
=443 §= 444 A0s,
(1) When x=18, then. z= 1:_.——& 1.6
\
P(score above 18) = P(x > 18) = P(z > 1.6) LHUUHHU
= Left area — Area between 0 and | 6
=05-P0<z<1.6)
= 0.5-0.4452 From
= (.0548.
The required number of students = 1000 x 0.0548
= J4.8% 35 Ans.

Example 5.53 : The lifetime of a certain kind of battery has a mean of 300 k
deviation of 35 hours. Assuming

the nearest hour, is normal, find the
than 370 hours.

Let x be a random normal variate measuring the life ti

percentage of batteries,

Solution. me of batteries
Here mean u=300,0=35

x—=pu x-300

The SN V.is z= = T
70-300
When x=370,then z =3—-—“——-=2

" P (More than 370)
=P(x>370)=P(z>2)

= Jeft area — Arca betweenz =0 andz =2
z=0and z =2

that the distribution of life times, which

ours and a standard
are measured to

which have lifetime of more




by symmetry. -~
' os |os |07 [o8 |09
zx |00 |o1 |02 |03 |04 |
39 |.0279 [.0319 |.0359
00 1.0000 |.0040 |.0080 |.0120 (0160 [.0199 |.02
0.1. 10398 |.0438 | 0478 |.0517 |.0557 |.0596 |.0636 |.0675 -?',7(!); ﬂ:?
02 |.0793 |8832 [.0871 [.0910 |.0948 |0987 |.1026 |.1064|.1103 |. :
03 (1179 |.1217 [.1255 [.1293 [.1331 |.1368 |.1406 |.1443 (.1480|.1517
04  1i554 [1591 |[.1628 [.1664 |.1700 |.1736 |.1772 |.1808 |.1844 |.1879
05 11915 [.1950 |.1985 | 2019 | 2054 |.2088 | 2123 |2157|.2190 2224
06 12257 (2291 |.2324 [.2357 |.2389 |.2422 |.2454 (.2486|.2517|.2549
0.7  |.2580 |.2611 |.2642 |.2673 |.2703 |.2734 |.2764 |2794|.2823 2852
0.8 12881 12910 (.2939 |.2967 |.2995 (.3023 |.3051 |.3078|.3106(.3133
09 [.3159 |.3186 [.3212 | 3238 |.3264 |.3289 |.3315 |3340|.3365|.3389
10 . 13413 1.3438 | 3461 [.3485 |.3508 [.3531 |.3554 |.3577|.3599 | 3621
1.1 | 3643 (3665 |.3686 |.3708 |.3729 |.3749 |.3770 |.3790| 3810|3830
1.2 |3849 1.3869 |.3888 (3907 |3925 | 3944 |.3962 |.3980 (3997|4015
1.3 14032 14049 |.4066 | 4082 (4099 [4115 [4131 | 4147 4162|417
14 4192 1.4207 (4222 (4236 [4251 (4265 [.4279 [ 4292 4306 | 4319
1.5 [4332 (4345 14357 (4370 (4382 |.4394 (4406 | 4418 | 2420 4441
1.6 14452 14463 |.4474 |.4484 |.4495 | 4505 [ 4415 | 4505 4535 | 4545
1.7 [A4554 14564 |.4573 |.4582 | 4591 | 4599 | 4608 | 4616 4625 |.4633
1.8 14641 4649 1.4656 |.4664 (4671 | 4678 | 4686 | 4693 4699 |.4706
1.9 [4713 \4719 |.4726 (4732 | 4738 |4744 | 4750 | 4756 4761 |.4767
é 20 4772 |.4778 |.4783 (4788 |.4793 4798 |.4803 |.4808 48124817
= 21 14821 1.4826 14830 (4834 14838 |4842 | 4846 | 4gs0 | 4ase 4857
22 4861 |.4864 |4868 |4871 (4875 | 4878 |4gay 4884 | 4887 | 4890
23 4893 | 4896 | 4898 (4901 |4904 |.4906 | 4900 | 401 4913 | 4916
24 (4918 |.4920 (4922 |.4925 | 4927 |.4929 | 403 4932|4934 | 4036
!2.3 4938 |.4940 [494) |4943 4945 | 4946 4948 | 4949 4951 | 4952
26 |.4953 |.4955 |.4956 |.4957 4959 1.4960 | 4961 | 4962 4963 | 4964
27 | 4965 |.4966 | 4967 |4968 | 4969 | 4970 | 497, ;
4972 1.4973 |.4974
3128 (4974 (4975 |.4976 |.4977 | 4977 | 4978 | 497 4979 | 4980 | 4981
29 4981 (4982 |.4982 | 4983 (4984 | 4984 | 4085 4985 | 4986 |.498%
30 m .W_.Wl;ﬂl .4988 .m ‘u .m _m ﬂ."




Tbc_l;c;im distribution was discovered by a French ieg Sii

: : IO Mathematicg Simen Denis P _

is a dJ_scrctF Q|sw{but!m and is very widely used. Poisson distribution is alﬁm?tii:;s;nfcl»:x: z:.:_:&::
Binomial distribution In which a, the number of trials, becomes very large and p, the probability of
the success of the event, is VEry-very small such that mean m=ap i53 finite quantity.

. Probability of r-successes.

- F

Also theoretical of expected frequencies i
™™ m )
where m =mecan and Nisnu

r=0| I_-. 2’ 3' sadevsinvaiaan

mber of trials,

The following are the statistical measures of the Poisson distribution.
(i) Mean =np oM
(ii) Variance=m np.

(iii) Standard Deviation & = V™
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(iv) Moment measure of skewness (y,)= 7'.,

.MI
(v} Moment measure of kurtosis (¥, )= i

Some examples of Poisson distribution : ..
1. 'The number of deaths in  cily in one year by a rare disease.
2. The number of printing mistakes in each page of the first proof of 2 book.
3. The number of defective screws per box of 100 screws.
5.7 CONDITIONS UNDER WHICH POISSON DISTRIBUTION IS US—»ED
1. The random variable X = should be discrete e, # = 0,1:2,.....2%. here n is large,
2. The happening of the events must be of two alternatives such as success and failure.
+ 3. Tt is applicable in those cases when the number of trials # is very large and probability of

success p is very small but the mean m is finite. oL
4. p should be very small (close ta zero). If p—> 0, then the Poisson distribution is J-shaped

snd unimodal.
Exampie 5.23 : Prove that Polsson distribution as a limiting case of Binomial distribution,
whenn > o,
Solation. Binomial distribution.
PX=r)="C, q"“’p"tr!{n t -p)p" o [-g=1-p]
=n{n-l]{n—Z}.,.(n-.r+l](n w2 LIVP R _'*
Aa—n) x(1-p)"" xp A
Ala-n—=2)..(n-r+1) (__)Hx(ﬁ]’ | ...
Isd - n. " ' .' e ".P‘_.ﬂh
mY" v
=D (n-2). (n-r+1) [l'*] | |
=£’.(_’£J
A\n
=£(1__ ' .
r wdl)

Since a is very large so that
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 since | h..(l-f‘; . |
| | e i)
== =1,

e L3
n

"! | ’ r-_o"lzlu.im

; r=0,12,. .o

5.8 MEAN VARlAtI{T(ﬁ;;mmf Poisson disrbution A
DISTRIBUTION STANDARD DEVIATION OF THE POISSON

. For the Poisson distribution

P(x=r)=£i

rl * rﬁﬂ.l,z,...,m. 3 i ¥
We know that e : %L .
b , ) p .
| mean = s aell)

and variance =p; —(p,"_)'z,

where 4 and g, are first and second moment sbout arigin. _ (2}
For r=0,12,..., first moment abou! origin. -

o
B =), r P
r=l )
o e "m" - w{3)  [m=mean)

r=0 .
L3 m' i b 3
= e B s
-e-ﬂ'§ = e [m e
S ,
=me [l‘f—]—!’ —2'!-4- | §
a;“ | py =me e =m . {8)
=y = [RGPV Feb. 2006 & Jurie 2008 (N)]
From (1) mean = # =% . ‘
Now, second moment about origin, . |
[Since r! =r(r=1)+r]

w
1 2 pr)
2} “Z.' A '
ra() _
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= - g"ﬂm" e | ‘ [’”‘m]
Z r(r- l} § -
I N I g m‘ . ' by () and(4

-"ﬂzf“"[l+-l”-;+'-"§+ ]-Hna:ml‘ » o am.
1‘.' “z‘ =~3*n | ...(s]
F‘““ﬁ).m : k |

"’1 =( )1 L I

=m? -Hn-(lll) . i owm _ | —

=m.

[RGPV Feb. 2006 & June 2008 (N)]

Thus, variance =m.
Further, standard deviation, o=+/variance =+/m.
Example $.24 : Show that in a Poisson distribution with unit mean, the mean deviarion about the
mean, is 2/e times the standard deviation, N
Solution. By Poisson distrnibution
- _r

2 ¥ r =0Illzl"‘!ql'
r!

T

PX=r)=2

Given that mean m =1.

Zflx-ml

We know that mean deviation about mean, Mb-"° =

D, fir=1 | )
=i§-— [m =L N =3f and x=r] R ()
a0 &F - o
e f=Pry=¢” r! it o o [om=1]
and If=) P(r)=1 © - [+ toal frequencies = 1)
o)

Hmce(l)becmm' !
: MD= Z " !

-1 IU—II II—-II |2~ Il 13-1] '
e [ ol !‘ 2[ 3! +‘t!i’|.lm
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. ' | B
1 =g

Boad
+
p—
%)
—ad
-
™
i
—
L
+
]
>
|
—p
+
s
|
—_—

—2 1.4
P z 1y 2[ 2! 3! 3!+4| 'IT -

R (= T IS ] B
- 2 ' T
- N P | o ;
[(L+1] =29 =% SR SR -

Since standard deviation of Poisson deviation 5.0, sym={i=l. . [r@m=1)
Hence (2) becomes: M .D.:%, i z}_(s_a}. L | Proved.
e
Example 5.25 : For the Poisson distribution, prove that

Pr+1=—"
"5.‘ : o ( ) (r+l)f'(r).
Which is known as recirrence relation for Poisson distribution.
Solution. By Poisson distribution . e e

Aeﬁ- ..'

P(r)= ,r=0,12,.......

r!

- replacing r—r+l.

_ e™ mnl'
P(r *l)—'—(r-l-'—l)!.
P(r+l)_e™ m™ ELL I r_._m
o P(r) B (r+1)! ™ m" (r+1)r! r+l |
—— _ ) | Proved.
g, Hence P(r+l) %) P(r). |
“xample 5.26 : Find the probability that at must § defective fuses w::!! be found in a box of 200 fuses,
if .q:mimce shows that 2 percent of such fuses are defeciive. |
2 . . . .
H - —¥ = me—_ T . =200
olution. Given: p=1%w=—rr=02 & ) o

. mean mM=Ap=> M= 200x.02 = m=4. |
large so that using Poisson distribution

L}
-r

Since n is
-

€ M 02200,
r! .
-, P(atmost3 defective) = P(rs 5)

h = P(0)+ P(1)+ P(2)+ P(3)+ P(4)+ 25)

{1

P(r)=
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-r"‘[l*i .4 £+£] . J [ by (1]
12t 3 4 8 .
=0.0183(1 + 4 + 8+ 10.6667 + 10.6667 + 8.5333]

=0.0183x 42.8667 =0,7845. ‘ | A

s In ; - afl chance of 0.002 for any
Example 5.27 : In & certain factory turning razor blades, there is a sm B s slastih

Made to be defective. The blades are in packets of 10. Use Pois

caiculate the approximate number of packets containing no defective, one f‘f“‘“’; ;&;

two defective blades respectively in @ consignment of 50,000 packets. . [RGFP V June
Solwtion. Given, p=0002, =10, N =50,000

S mwnp =10x0002=002, A
By Poisson distribution W R w A

] | 4

PlX=r)= = r!'"_.--u R I W, || [P,

i Ty ¢y b o

. B e w
() P(nodefictive)=P(r=0) = g™ 3’%’-%9&02.'

Hence number of packets containing no defective blades - o gy ma g el
: = N. P (r=0)=50,000x0.9802=45010. Ans.

[
(h) P (one defective) =P(r=1)=e *m.v(&%)- =0.015604
* { (R A A
. Number of packets containing one defective blade |
=N. P{r=1)=50,000 x0.019604 = 9R0. ' Ans.

e an (00 . .
(iii) P (two defective) =2 P(r=2)=¢ -—i-‘-—=0.000|9604. ~ & s
< Number of packets containing two defective blades:
, =N.P(r=2)=50,000x0.00019604=9.8%10." . Anms.
xample 5.28 : If the probability that an individual suffers a bad reaction from a certain injection is
0.601, derermine the probabilisy that out of 2000 individuals - |

R
4 L.

(1) exactly 3 (i) more than 2 individuals
(iii) mone {iv) more thas 1 individuals o, ke
will suffer @ bad reaction. L IRGPV June 2003}

sution. Given  p=0.001 (which is very small)
n=2000 (which is large), then m=mp => m=2000x0.001 =2
Using Poisson distribution : , A e

r

P(xﬂf)=¢-" -”;_l'p rnoqll 2}»«--’-..”“.-2000.. - *

(i) £ {exactly 3 suffer a bad reaction) =P (r = 3)
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) T=§=D 180 Ve, 3 S - Al =5 Ani

! oy T ﬂ‘l T
(i) P (more : ' *
)Pt t]"“’zs'“ff'“""""‘“’"Micrn') =P{r>2)=| -[P{r=0)+Plr=1)+P(r=2)] ~

s nan . PR
.- e_,+m e"" m o™ 1 2 1
; [ TR T bl R a1

i

€ e . €
=l-e-=-=o 323, - Ans.
R T
('“)P(nmesuﬂ'ersabadmctmn) = P(r=0)=c™ =i/e? -o 135, ~ Ans.
(iv) £ (more than 1 suffers a bad reaction)
=P(r>))=1-[P(r=0)+ P(r=1)] .
£ L —m y * |
: Eja]|e* JBE | 1 2
. . = sogl "
’.'l-'—z-=0.594 . ) ; » Ans.
€ - o

Example 5.29 : A car-hire firm two cars, which it hires out day by day. The number of demands for a
car on each day Is distributed as a Poisson distribution with mean 1.5. Calculate the
proportion of days on which neither car is used and the propartion of days on which some

demand is refused, _ {RGPV Feb. 2006}
Solution. Given mean m=1.5, . wH by ¥ : -
, - - - . A u : s ga ’
- _.r
Poisson distribution P(r)== !"‘ % F0,1,2,3; cereciin
(i) The proportion of days when ueither car is used
P{r=0) = e ma'_ -
ie, r= = ot N ; —_—
13202231, = : s wmom . b
(ii) Since total cars=2
~ demand is refused when r23, w B s ey ® Ol

Hence, the proportion of days an which some demand is refused
=P(r23)=l-[P(r=0)+P(r=1)+P(r=2)]

| 0 1 2
n - g M .
m]- B +Cﬂ e”— B Y < = '
e ET [ N T zs] o
=t-e"¥[ 140 5)+" 2 "
t  wi 2 "h R ¥ I

. =1-08087 =0.1913, [




416 Engineering Mathematics-2 ring a rash hour. The doary
f",. f,-,m',aaﬁn 0 estimate the

' 00 calls 0® the averag®
: ‘:.::u‘:tre ] mm;lu! 28 connections per wintd. minyic.

Mumcmmu‘mﬂd“ﬂ'gu"ﬁm_.
Solutiosr. Given that mean m= numheroﬁ:!”ﬂ.’“m”w

600
—.‘_='0-
o m= 50

o 01,2, enirsnen 800
+. Poisson distribution P(r)=e" .7!-. |_-=0.I.2. v

2 P (using 0o 20 callas per minute) =P(r<29)
" =P(rm0)+Pr=1)+:-

) r
20 — m'- -10 .’_"L—o‘ ' .'Hl(l,
= E g — = & rl
' r! ek
ra0

4 P(r=20)

r=0

Thus P (the board will be over-taxed during any given minute):
= P (when the calls are more than 20)

= P(r>20) =}=—P(r<20)
” _— , |
T ' =1-#Yy I | Ans,
) ' " ! -; r! ' .

Example 5.31 : If 3% of the electric butbs manufactured by a compaiy are defective, find the

prodability that in a sample of 100 bulbs exactly five buibs are defective.

Solution. Given that 'p=%ﬂ-u0.03.. =100

~mean  m=np=100x003
s m=3.
‘ r
By Paisson distribution P(r)=¢™ "':T F=0,12,....0r0. 100,

2 P (exactly five bulbs are defective) =P(r=5)

a9 004979x243

51 120 =0.1008 . ADE.

cample 5.32 : A manufacture knows that the condensers ke makes contain on an average 1% of
defective He packs them in boxes of 100. Whai is the probability thai a bax picked at
. pandom will contain 4 or more faulty condensers ?
fution. Given that p-=-i-,-:;6=.01. 7 =100. Mean =m=np=100x0.01=1,

By Poisson distribution ;. |




P(r 25‘—._{_”.'_).:
= rn ., r™=0L2....100. - . bis o
s -=P(rz4)=f’(4)+p(s)+ +P(100) '
| =1-[PO)+ P+ PRY+PE)} - + ' v 0T
' R I I
=] LA DR 1 .'_]
( [Ol N +.11 + 3!] 1-e ,[1+‘+2+6 |
"-‘ ‘. L. . ; 8 » -y ' : E 'ol_. -:l‘
=] ——=]-0981=0.019. . Azs.
xample $.33 : ASb}!edeh routine > Yol 300
on wdtqlarmrdo umdesamp!rdly“m&l
W’hﬂgdgyg o AL Nl . w f
Mistake per day : 0 .,; 2 . 3 ._4;_' 5 6. . ..
Number of days : M3 %0, 2 12 9 3 1
Fit a Poisson distribution to the above date and calculate npeaed {or theoretical )
Jrequencies
slndion. Meari =m _143x0+90xl+42x2;:;x3+9x4+3x5+1x6 , [ N=300]
o m=0+90+84+36+15+6=267 =089 m=0.89. -
300 - 300
-ByPoissmdim’blsﬁm'
p(r)=% " m’ ’ T Y b R
r! i_ . it s owe M T
""" - The expected (or theoretical) frequency for #-success - - T4 -
-

f(")’=NP[t)=N‘¢ r;" , 7=0,1,2,..0..6 .

300e~°% (0.89)° . o1l f
for r=0, f(0)=NP(0)= 5 =300x0411=123.3»123

. | a0y . e L‘.

. ; C o 3006727 (0.89) " ce

‘ for '..'-'"l».‘ f([):NP(])-: 1!( =300x0.365=1095=110

iy : I —
300e'°"° (0.89)? _ :

for r=2, f@)=NP(2)= 3 =300x0.163 = 43.9 ~ 49 ,l

| 300622089 100 0048 <144 14
SB)=NPO=—7 300%0.048 =14.4 =14

for r=3,

3006~ (0.89)" - |
f(®=NP@)= ny =300xoou 33~3 o

- for ’=49_

|
1
'
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-89 s
for r=5, fF(5)=NP()= 300e”__ (0.89) =300x0.002 =061

| §!
for re,  f(6)=NP(6)= 51(0-89) =300%0.0003 = 0.09 = 0.
Thus expected (or theoretical) frequencies are : - )
r: ] J 2 3 4 5 é
Je 2 123 110 ©® M 3 1 a
Example $.34 : The frequency of accidents per shift in a factory is given in the table below
Accident per shift (x) 0 12 3 4 . Towl
Frequemey() 192 - 100 24 3 1 ~ 320

Find the corresponding Poisson distribution and compare with actual obsermﬂon.
Solstion. Mean =m 2% _0X192+1x100+2x24+3x3+4x1 10 4 |
R*4 » 1924100424+ 3+1 |
161

=% =0.503.

- r
”’.r..olzu

A is

. The cm:spondmg probabilities for r success - 1

‘By Poisson disribution, Plx=r)=E

Piy=e s QI g2

Le., Probabilities are : 0.605, 0304, 0.076, 0.0128, 0.0016,
Now the corresponding expected frequency for 7 success -
Jr)=N.P(r)=320xe m”-(—q%?}—- r=0,12,3,4.

e., Corresponding frequencies ars @ - ' . s
1936, 973, 245 41 0.5,

Evample 5.35 : Fit & Poisson’s distribution 10 the following calculate theoretical frequencies.
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A regreSsion model is a mathematical equation that describes the relationship between
two. or more variables. It is also known as regression equation.

Let us consider the example of relationship between food expenditure and income.
But food expenditure can be affected by many other variables like tastes and preferences
of household members or the size of the household etc. These variables are called
independent or explanatory variables as they vary independently and explain the changes
in food expenditure among different households, while the food expenditure is called the
dependent variable because it depends on the above given independent variables.

Hence in regression analysis the dependent variable is one whose value
influenced or to be predicted. It is also known as regressed or explained variahle while




[ L L \1 7.17
{

s and is used for
pendent variable

the variable which influences the valy
gependent variable is called as inde
explanatory variable.

simple Regression:

if we study the effect of a single independent vari
simple regression and such a model is known
Multiple Regression

predicting the values of
or regressor .or predictor or

ab1.e on a dependent variable, it is-called
as simple regression model.

studying the effect of tw‘g or more independent variables on a dependent variable is
known as multiple regression and such a model is known as multiple regression modal

Hﬂf ._,1_7-3111.‘::,——---;-‘@7‘?:?1:—..—’“@" .-. RreTy g - ———
mE731 Linear Regresgion 0 et s et ot

A regression eqlfatian, -wi.nen plotted, may assume one of many possible shapes Im as
curve of regression. If this curve of regression is a straight line then it is said to be lime
of Regression and such a regression is said to be linear regression. If the curve of

regression is not a straight line then the regression is known as curvilinear regression or
non linear regression.

Definition.

A simple regression model that gives a straight line relationship between two variables is
said to be linear regression model.
We always have two lines of regression in a simple linear regression model. Let the
equation of the linear relationship between the two variables x and y be ?f the form
‘y=a+bx, where y is treated as dependent variable and x is treated as independent
varisble. On treating these other way round i.e., oonsidering x as dependent variable and
'y a2 independent variable we can have the linear equa'flon of the form x = ¢ + dy; thus
we have two lines of regression. The lines of regression give the best estimate to the
values of one variable for any specific value of the other variable. |
Remark 9, As the line of regression is the line of best fit, it is-obtained by principles of

least squares.

Y e e
1. Equation of line of regression of ¥ on X

Iif we choose the straight line in 8 linear regression gquel such tlmtl .thg s;:i ;: ss:ilou:l:;
of deviations parallel to the axis of y is minimized, 1t i called the line @

Y on X. It gives the best estimatcs of Y for any given vaiue of X. .

Derivation o
‘ - i=1,2,.. M

Lety = g + bx be the line of regression of Y on X for the given data (¥ Y

Then as discussed in section 3.6.1 of chaptet 3, for 4
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*

Jation and Kegression [ ——
- |

Uy FO,0, r0 : f - .
= " b = l; & {i s - 4 ‘-.-r"'—-‘—"'ElL_' ¥ |
6.1' G;c o_-r ax Gy___.

that the required line passes i

From équation (1) and equation {4} it is quite clear
aving slope

through (x, 7). Hence the equation of line passing through point (%.7) and h
_bﬁ=f“y/d,: is = ‘ .
(=7 = bylz=%) . '

= dJ' !
y-y= r-&—(x -X) een(8)

- '\
. 4

which is the required line of regression of ¥ on X.
2. Equation of line of regression of X on Y
In the linear reression mode! if the straight line is so chosen that the sum of squares of
deviations parallel to axis of x are minimized, then it is called as line of regression of Y
on X. Here x is treated as dependent variable and y is treated as independent variable.
It gives the best estimates of x for any given value of ¥.

It can be derived in the same manner as done in part (1) above, by i
role of x and y. Its equation will be -

4 P T ) i nei(25)

i
gy

nterchanging the

In case of perfect correlation (i.e. r==1) the equation of line of regression of y on X is

o _ .
y=§ =5 =% (using 8)
X
and equation of line of regression of x 00 ¥ is
o ol
=g - (using (9))

Ty

both of which are similar.
Hence in general, we always
correlation (r==1).

R_elillrk 10. The line of regression
(%.5). Hence (%,7) is the point of i
Remark 11. The equations for both
interchangesble as basis and assumptions’

have two lines of regression except in the case of perfect
of y on x as well asthatofxonybothpmthmugh
ntersection of two lines of regression.

the lines of regression are not rgverr:ible or
for deriving these squations are quite different.




Remark 12. If we have t0 predict the vatues of y for & given value of x then line of
egression of y on x must be used, 85 in this case the predicted values will have minimyp,

possible error (as obtained by principie of least squares).
* Properties of Regression CoefTicient

(i) We know that by -r?— is regression coefficient of y on x and b_.,,..r.‘.’_. .
regression coefficient of % on y, hence By by =1, | Oy
= r=+Jb, b, and the sign of r is same as that of the two: regression
coefficients.

(i) We know that #S1 = By by S1

1
~ by

Now if b, > 1 =5 b, <1, Hence if one of the regression ooeff'cmnt is greater than
unity, the other must be fess than unity..

(i) Arithmetic mean of regression coefficient is greater than the correlation coefficient

(r), provided r> 0.
1 Oy 0O,
Arithmetic mean of regression coefficients ——{b +. b,,,) =—|r—L4r-L
2 Gy 0,)
_ | - o, .
Now (oy—o-xlz =0 =¢a§+a§-2a’xayzo ﬁ,%::_,_.___&_x_zz
. ¥, O
" 5 _
1%, Ox |
1 {0y, a.) ,
= N6, 90,)% Hence Proved

(iv) Regression coefTicients are independent of change of origin but not of scale.
7 4.3.3 Angle Betweenr two Lines of Regrossion ™

e —

Equation of line of regression of y on x is

o
= Y v o
=2 o’{ )whns:slopegbﬁ_,n
x

e o




. ‘—l EX-T S
stion of line of regression of x on yis -

g
; {(x-¥) whose slope is -l.,-_.,.a_L
s -bl? ra,

o . "
—E'(_}' = ﬂ =9y-y =
d}' r

g is the angle between the two lines. of regression then

O'y .—'I'O'_y . ;

1+ X2 gz +0; r

Oy ro,

a: & . LS
r \oi+o,

n! 2 .
= g =tan . [Gz_mz]}
| L ° 210y ))

As P <1 =1-r220 =050<x/2 |
Hence the acute angle (8;) between the two lines i3

1-r2) 0:0,
and ={ ", Jol+oy

' ' berween the
Conversely <l =t -150 =x/2<0sx, hence the obtuse angle (82) een

tan® =

two lines is
(r2-1 ' Cx0y
tanfl; = [ v }oi +_0‘§,_ )
Hence we have the following possible cases: |
- (Raj. IV Sem CP-2003)

G If r=0 =>tan@ =0 =20=
2 1i jon become
Hence if the two variables are uncorrelated, the lines ;;ifonfes:’s"'“
~ perpendicular to each other. Here as =0 the lines of regre

y-y=0 ﬂy:j and x-—i=0 =Hx=X ‘ ‘ ‘




Figure 7.5 .
(i) If r==%l, tan@=0 = 8=0 or = (Raj. TV Sem CP-20qy
This means. that either the two fines- are parallel to each other or the two |ing
coincide. But we know that both the lines intersect at the point (X, 7}, heace they

cannot be parallel and must be coincident. Therefore in case of perfect correlation
the two lines of regression are coincident. |

Figure 7.6
Remark 13, #=0 =0=x/2 andr=+%1 =26=0.

Hence we can conclude that for higher degree of correlation bétween the variables the
angle between the lines is smaller, i.e., the two lines of regression are closer to each other
and similarly by same reasoning we can say that larger angle between them indicates &
poor degree of correlation between the variables. Thus by plotting the lines of regression
on graph paper we can have a rough idea about the degree of correlation between the

two variables.

(Two lines apart) - (Two lines apart)
Low degree of correlation High degree of correlation

Figure 7.7

-
I ——r gra— e m——— . v ol /



coefficient of correlation and obtain the line of regmss%on for the following

1 2 3 B 5 6 7 8 0 _ |
9 8 10 12 11 i3 14 16 15 X

[Raj. IV Sem CP-2004] I

As done in Ex. 4 of this chapter, we solve to get - l'
foy =Tuv = 0.93 |

As y=3—5 and v=y-12 _

Sake

- #=X=95 and v=y-12 .

o7 = E{u-2} = He-- 55| -] 03
P T A

Line of Regression of y on x is :- |

-

o "
y—? =r;yo—'v-(x "-x) :|

Oy
|
= = @)
. 1’60!9 - '- g )
0+12 —(0+5 refer Ex. 4 of this chapter
= p—(0+12) = 0.95% m[x (0+5)] (
= y=-12=095(x-5) = y=095x+7.25 |
Line of Regression of x om y I8 -
| > Y
o or La(y-7)
= x-(T+5) = fw.[)"(f""‘u]] (05=0y 2 Cu ) |
N x—5=095@-12)
x =095 y-64 ¢ correlation dats, the

4 fysis ©
h\‘:/‘f“)—ﬁ'lully destroyed laboratory on record of an analy
Ollowing results only are legibie, o5=0, 40x=1 gy =214

Var x = 9, Regression oquaticns Bx—10y*
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Firnd
(i) The mean values of x and Y. - ‘
(i) The standard deviation of y. h A%
(iil) The coefficient of correlation between x and ¥. [Raj. TV Sem CP-2008)
Sol. (i) We know that the mean value is the common point of intersection of the two lines.
of regression. Given regression equations are
8x~10y+66=0 .
40x -~ 18y =214

Solving the above two eguations we get x = 13 and y = 17.

_Hence the mean values are ¥ =13,y=17. i

. . & 66
(ii) & (iii)First regression equation = y=_—X+—

- 107 10
which can be treated as line of regression of y on x and second regression equation
- xz.‘i .+21'i
'y{ a0’ %0
| which can be treated as line of regression of x on y
3 18
. ' g8 18 9 |
rPr=b Xb =—X—=—==036 =r=106
~ P =By Xy = {5 % 0 =25~ 06 =r=1

As both regression coefficients byx and b,y are positive hence the correlation
coefficient should also be positive and r = 0.6.

rc, 8
Moreover b i ANl
» o, 10
Here r=06, 0, =9 =3 (given)
. a1
= - 06X 2L = — .2 WL
8% =10 23X 4
i.ﬂ-, u¥=4’

Remnrk]:;l. lfﬁ'zc take the first regrassion equation as line of regression of x 08 y
ie, X= -E-y---é» and the second regrossion equation as line of regression of y on X




LY Calculate the coefficient of correlation between » and y using the following data.-

x |-10 5 0 5 10
5 9 7 11 13

_ Cov(x,y),
Bl * a,6,

_0 | 5 | 100 | 25 |-50

Jl

B _wP= 3-55-0- =450 =7.0711
n -2




1,5’1 ’445—81=J§-28284

o = 'umxxz 8284
Ex.10 Calculate Cov({x,y) when Ex=50, Zy=-30, Ixy =-115, n =10,
Sol. We know that

Conny) = X~%7
ﬁﬂ_[ﬂxﬂ) _[-,.,—,=§,;.-._.E)
10 \10 10, n’ a
o W
10
Ex.11 For a bivariate distribution n = 18, Tx* = 60, 5y = 96, Lx = 12, Ly = 18, Lxy = 48, Find
the equations of the lines of regression and r. [Raj. IV Sem CP-2006]
, C_ B 12 _ Xy 18
Sol. ¥ =—=—=0667,j="=—=
i, % n 18 y.r_;]Sit
ol = --{*")’ =2 _(0.667)2 = 2.8884
'-'-i-(yf_—-x = 43333
Contrnzy= L5y ﬂ—-cow}m
=2.6667 - 0.667 =1.9997.
Hence line of regression of y on x is 2
i _  Cov(x,
Cr-y) m'( y}(x ~%) #U-l)-lgg‘n(x-ﬂﬁ'])
= s y-1=0.69232(x—0.667) P
= 0.69232% -y +0.538=0 e

= - y=069%+0538.




Lo

ol.

;

similarly lin€ of regression of x on y is :- -
- Cov(xoy) = .
(I—X) = -——2—(y.—y) =% (x-0.667)= LI (y-1)

Ty 14,3333
= x—0.667 =04615(y=1)
e x =0.4615y +0.2055
sa coefficient of correlation 7 =0.4615 x 0.692 =0.3194
= r=10.565 = 0.57.
random variables have the least square regression lines with equations-
Ix+2y-26 =0 and Gx+y-31=0.

Find the mean values and coefficient of correlation between x and y. ‘
- .'j v oS an es &) Y -t .1

The given regression equations are :- ,
Ix+2y—26=0 | Jprd o ) '# T

and 6x+y-31=0 ' eel2)
Let equation (1) be line of regression of y on X

y-—'- -%AH' 13

Al

Two

=

Let equation (2) be line of regression of x on y
o1 3

. | - ——y+
= . ) X 6}’ 6

Hence regression cosfficients aré by == and by, =

1

3 1 1
s A K -t
= by Xby=3% =3 DTN

p sign hence

=

But as by, and by, are negatwe i

Again solving (1) and (2) as simultanecus

fequation (2)] X 2 — equation (N
o 2 9): =0 =X~ =4

equations as =



Substituting it in (1) we get :-
2y=26-3%x4=26-12=14 = y=T7
Now as the mean values are points of intersection of regression equations (1) and (2),
hence we get the mean values as ;
x=4,5=17.
Remark 18. If we consider equation (1) to be line of regression of x on y ie,

x='——§-y-+—2-; and equation (2) be line of regression of y on x ie, y = —6x+31 then

r? =(-6){—2/3)=4>1, hence not possible.
The ranking of students in two subjects A and B are as follows :-

A3 5 8 4 710 2 1 6 9
Blé6 4.9 8 1 2 3 10 5 7

What is the coefficient of rank correlation ?
We form the following table :-



