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Linear Differential Equation :
A differential equation of the form

d

—~+Py=20Q (1)

where P and Q are functions of x alone, is called a liner differential equation of first
order and first degree. To solve such type of differential equation, we multiply both

side with e/ Pdx , known as integrating factor, then equation (1) becomes

dede_I_Pyedex _ Qedex

a [Pdx)| _ [ Pdx
Or — {ye }— Qe

On integrating both side , we get

yedex: Qefpdx‘l‘c, (2)

where c is constant of integration. The equation (2) is required solution of linear
differential equation (1).



* Remark: Sometimes the equation becomes linear if
we take x as dependent variable andy as

independent variable . It is of the form + Py =

()1, where P; and ()4 are functionisy alone The
integration factor in this case will be el P13 and

solution is given by yefpldy = Qefpdx + ¢4,
where ¢ is constant of integration.



Example 1: Solve Z—z — %y =2x>+3x+4

Solution: Here,dthe given equation is Iinearldifferential equation. Now comparing with
standard form d—z + Py =Q,wehave P ==, Q = 2x3 + 3x + 4.

X
Now integrating factor is

1
— |=dx — — —1 —
e fx — e logx e logx — 5 1 _

1
X
Therefore solution is

y%=f(2x3+3x+4)idx+c

X=f(2x2+3+%)dx+c

X

3
=%+3x+4logx+c

4
Or y = 2% + 3x% + 4xlogx + cx, which is required solution



Example 2: Solve (1 + y?)?dx = (tan"1y — x)dy.

Solution : the Given equation can be written as

dx x _ tan™?!

dy = 1+y2  1+y?2
Which is linear in x

y

Now, integratingfactor = e
Therefore solution is

-1
tan~tly _ tan~lytan "y
xe = |e dy + ¢
f 1+7y2 Y

Put etan™'y — ¢ o W _
1+y2

~xet = [tetdt + ¢
On integration, we get
xet =tet —et +¢
Or x=({t—1)+cet
Or x = (tan "ty —1) 4+ ce™tan

-1 . . . .
Y, which is required solution.



Equation reducible to Linear form( Bernoulli’s Equation)
The equation of the type

dy

— +Py=Qy"

Where P and Q are functions of x alone (or constant) and n is a constant other than zero or unity, belongs to equation reducible form.
This is also called Bernoulli’s Equation .

To solve such type of differential equation, dividing by y™, we get

y 4Pyl = Q

dx

Put  y1 ™™ = v, on differentiating with respect to x, we get

)y Y

(1 n)y dx  dx
_ndy 1 dv
Or 1yd dx 1-ndx
v

Therefore ) PR + Pv =20
Or d—z+(1—n)Pv=(1—n)Q

This is a linear equation whose integrating factor is e~ | Pdx Therefore solution is

ve(I™M I Pax — (1 —p) [ Qe Pdx gy 4 ¢, where cis constant of integration.
Note: Do not forget to replace v by y~"*1 while writing the final solution.



dy _ 1
dx  xy(x2y?+1)
Solution: The given equation can be written as
dx

Example : Solve

ax _ 3.,3
& X°y° + Xy
ax — 3.,3
Or % Xy =Xy
On dividing by x3, we get
1 dx y 92
x3dy x? =Y
1 2 d d
Put —— = v therefore == =22
X2 x3dy dy
1d
Then, -ty =y°3

2dy



d L .
= é + 2vy = 2y3, which is linear in v, therefore
Integrating factor = el P4 = o) 2ydy — p¥°

Therefore, solution is given by
veY = [2y3e¥'dy + ¢
To solve, put y? =t = 2ydy = dt
> ve¥ = (t—1et +c

= pe¥’ = (y? — 1)(33’2 + c

Therefore, = (y?—1)+ce™

x 2

2



Exact Differential Equation:

An exact differential equation can always be derived directly from its general solution by
differentiating without any subsequent multiplication, elimination, etc.

Thus ordinary differential equation of the form

Mdx + Ndy = 0 (1)

where M and N are functions of x and y, will be exact, if
oM _ oN )

dy dx (

Where total differential of f can be expressed as
df (x,y)=Mdx + Ndy

i.e. af dx + 3y = Mdx + Ndy

The equation (2) is called the condltlon of exactness of the differential equation (1)



Method of solving:

Method1:
Compare the given equation with Mdx + Ndy = 0 and find M and N.
Compute Z—I; and g—: and check the condition of exactness.

Integrate M (x, y) with respect to x keeping y as constant and integrate those term of N(x, y) with respecttoy
which do not contain x.

Write solution as Mdx + [(only those tern of N,which not contain x)dy = c

f y=constant

Method 2:
Compare the given equation with Mdx + Ndy = 0 and find M and N.
Compute 2_15 and Z—: and check the condition of exactness.
Let u = [ Mdx, then find % and N — 2
dy ady
Write solution as u + | (N — Z_;L) dy =c

i.e. fde+f(N—%)dy=c



Example: Solve (1+e/¥)dx + e /(1 —*/,)dy.
Solution: Comparing the given equation with Mdx + Ndy = 0, we have

M = 1+ex/y :G_M: —iex/y
dy y*
and N =er(1-%/) =2 = ex/Y{—%} relh 1=/} = —Ze b
oM aN
Here, we have =
dy dx
so the given equation is exact.
Now u=[Mdx=[(1+e7/7)dx=x+ye/
ou X X x x
2o oy —v ey = v (1 -
So > y y-3ae y=e/v(1—-x/y)
And N-2=0
dy
Hence , required solution is [ Mdx + [ (N — —) dy =c
Or x+yev+0=c

.e. X + yex/y = ¢ where cis arbitrary constant.



Example: Solve (1+e/¥)dx + e /(1 —*/,)dy.
Solution: Comparing the given equation with Mdx + Ndy = 0, we have

M = 1+ex/y :G_M: —iex/y
dy y*
and N =er(1-%/) =2 = ex/Y{—%} relh 1=/} = —Ze b
oM aN
Here, we have =
dy dx
so the given equation is exact.
Now u=[Mdx=[(1+e7/7)dx=x+ye/
ou X X x x
2o oy —v ey = v (1 -
So > y y-3ae y=e/v(1—-x/y)
And N-2=0
dy
Hence , required solution is [ Mdx + [ (N — —) dy =c
Or x+yev+0=c

.e. X + yex/y = ¢ where cis arbitrary constant.



Example: Solve {y(1+ 1/x) + cos y}dx + (x + logx — xsin y)dy.
Solution: Comparing the given equation with Mdx + Ndy = 0, we have

M=y(1+1/x)+cosy:>(;—1\;= 1+i—siny
and N =x+logx—xsiny=»g—1:= 1+£—siny
oM _ 9N

Here, we have =
dy dx

so the given equation is exact.
Now u=[(y+y/x)+cosydx =xy+ylogx+ xcosy (treatingy as constant)

u :
So 3 x +logx —xsiny
And N—g—;zx+logx—xsiny—x+logx—xsiny=0
Hence , required solution is [ Mdx + [ (N —%) dy =c
Or xy+ylogx +xcosy +0=¢c

i.e. xy + ylogx + xcosy = c where cis arbitrary constant



Equation reducible to Exact form: the differential equation which is not exact can be made exact by
multiplying it a suitable function of x and y, known as integrating factor (I.F). we now explain the rule for
finding the integrating factor.

By inspection method: By rearranging the term of given differential equation or by dividing by a suitable
function of x and y, the equation thus obtained will contain several parts integrable easily. Regarding this some
list of exact differential should be useful:

d(xy) =xdy + ydx (ii) d (i) _ ydxy—zxdy
dy—xd .
d (%) —— yxzx X (iv)

If the differential equation Mdx + Ndy = 0 be homogeneous equation in x an y then

[.F= —— where Mx + Ny = 0.
Mx+Ny




If the differential equation Mdx + Ndy = 0 is of the form

fi(xy)ydx + f,(xy)x dy = 0 then
1

I.F = , Where Mx — Ny # 0.
Mx—Ny
1(0M ON
If N(E_a) = f(x) only then
|.F= el F()dx
1 (N oM
If H(ﬂ —E) = f(y) only then
| F= eff()’)dy

If the differential equation Mdx + Ndy = 0 is of the form
x%y? (mydx + nxdy) + x¢y%(pydx + gxdy) = 0
Wherea ,b ,c,d, m ,n,p,q are constants,

Then |.F. =x"yk ,

. . . oM ON
Where h , k are obtained by the condition of exactness. i.e. =

ay ~ ox



Example: Solve (xysinxy + cosxy)ydx + (xysinxy —cosxy)xdy =0
Solution: The given differential equation is
(xy sinxy + cosxy)ydx + (xysinxy —cosxy)xdy =0 (1)

oM 0N

Here, we have — i —
ox

But (1) is a differential equatlon is of the form f;(xy)y dx + f,(xy)x dy = 0 then
1

I.F = , Where Mx — Ny # 0.
Mx—Ny
I.F = - , Where Mx — Ny # 0.
2Xy COS Xy
On multiplying (1) by I.F = ____we have

2Xy COS Xy

tanxy(ydx + xdy) + E - 7 =0

which must now be exact differential equation.
therefore tanxy d(xy) + d(logx) —d(logy) =0
integrating we have , logsecxy + logx — logy = logc

or —sec xy = cis required solution where c is a constant

Example Solve (1+xy)ydx+ (1 —xy)xdy =0



Example: Solve (x?y — 2xy?)dx — (x> —3x%y)dy =0

Solution: The given differential equation is

(x%y — 2xy?)dx — (x> = 3x%y)dy =0 (1)

Clearly (1) is a homogeneous differential equation. Now Comparing (1) with Mdx + Ndy = 0, we have
oM )

M = x%y — 2xy* = 2y = % 4xy
and N = —(x3 - 3x%y) = Z—IZ = —(3x?% — 6xY)
Here, we have oM % ON
dy dx

so the given equation is not exact.
Clearly (1) is a homogeneous differential equation.

Therefore Mx + Ny = x(x?y — 2xy?) — y(x3 — 3x%y) = x%y? # 0

1 1

So LFof(l) = 0= =




1

(¢ -2)as=(-2)ar -0

which must now be exact differential equation.

On multiplying (1) by we have

Now u=fde=f(§—z)dx=§—210gx (treating y as constant)
S ou _ _ X
2 oy ¥
ou X 3 X 3
And N-Z=—(5-3)-5=2
" Oy ye oy y: oy

Hence, required solution is [ Mdx + [ (N — g—;) dy = ¢

.e. % — 2logx + 3logy = ¢ where cis arbitrary constant.



Example: Solve (y? + 2x%y)dx + (2x3 — xy)dy.= 0
Solution: The given equation can be written in the form
(y2dx + 2x3dy) + y(2x*ydx — xdy) = 0 which is of the form

x%y? (mydx + nxdy) + x°y%(pydx + gxdy) = 0
Wherea ,b ,c ,d, m ,n ,p,q areconstants,

so |.F.=x"y* , now them multiplying the given equation by I.F., we
have

(xhyk+2 n 2xh+2yk+1)dx n (th+3yk _ xh+1yk+1)dy_ -0

Which can exact only when the condition of exactness aa_z\; = 3_1;1 IS

satisifed



0 0
— 5 ((thk+2 + th+2yk+1) — a (th+3yk _ Xh+1yk+1)

= (k + 2)x"y**t + 2(k + Dx"2yk = 2(h + 3)x"2yk — (h + 1)xNyk+?

Now equating the coefficient of x*y**1 and x"*2y* , we have

(k+2)=—(h+1) and 2(k+1)=2(h+3)

k+1

2 2
> 1
|F:x Zy 2

5 1
Now multiplying the given equation by this integrating Factor [.F=x 2y 2 and

applying the method we have the solution

3 3 1 1

—%x 2y 2+ 4x2y2 =



Example: Solve (xy3 + y)dx + 2(x*y? + x + y*)dy = 0
Solution: The given differential equation is

(xy3 +y)dx + 2(x*y?* + x +yHdy = (1)
Here, we have oM % ON
ady dx

so the given equation is not exact.

1 (0N OM 1
But here If ﬁ(ax — ay) =3 = f(y) only then

| F= eff(y)dy =y

On multiplying (1) by integrating factor vy, we have
(xy* +y?)dx + 2(x?y3 + xy + y>)dy = 0
which must now be exact differential equation.

solution is fyzconstant

JGey* +y®)dx + [2y° = ¢
On integration , we have %xzy4 + xy? + %y6 =
which is required solution.

Mdx + [ (only those tern of N,which not contain x)dy = ¢
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