

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem – I Year & II Sem Subject – Engineering Mathematics-II Unit – I Presented by – (Dr.Vishal Saxena, Associate Professor)

VISION AND MISSION OF INSTITUTE

VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional, cultural and social enrichment of the lives of individuals and communities.

MISSION OF INSTITUTE

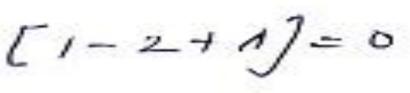
- Focus on evaluation of learning, outcomes and motivate students to research aptitude by project based learning.
- Identify based on informed perception of Indian, regional and global needs, the area of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academic and industry .
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

CONTENTS (TO BE COVERED)

Eigen values and Eigen vectors(examples)

Dr. Vishal Saxena (Associate Professor, Deptt. of Mathematics), JECRC, JAIPUR

RED) gen

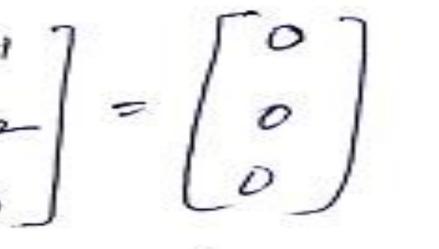

egen values and eigen nection of matrix B.3 Find the $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ 1A-1I/=0 -1 =0

(2-1) [(2-1) -1] + 1[-2+1+1]+1[1-2+1]=0 13-61+91-4=0 1= 1,1,4 For A=1

 $\begin{bmatrix} +1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 2, -2, +23=0 Let x2 = 0 , x2 = 1 x1 = 1

FZ let x3=1, 22=0 ⇒ x1=-1


So eigen vectors conversponding


For 1= 4

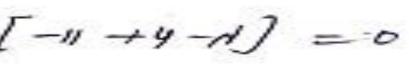
 $\begin{array}{c} -1 & 1 \\ -2 & -1 \\ -1 & -2 \end{array} \begin{bmatrix} x_1 \\ x_2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

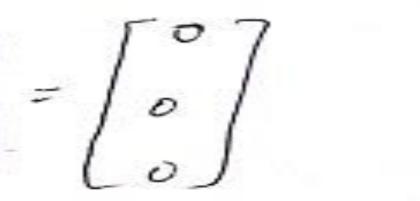
te

Eigen nector coursponding to $X_{2Z} \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$

1=4 6

Q 5 Find the eigen values and eigen nectors of the following matrices $\begin{bmatrix} -2 & 1 & 1 \\ -1 & 4 & 5 \\ -1 & 1 & 0 \end{bmatrix}$ The characteristic eq? of A is Sol 1A-1=1=0 $\begin{vmatrix} -2-1 & 1 & 1 \\ -1' & 4-1 & 5 \\ -1 & 1 & 0-1 \end{vmatrix} = 0$ Dr. Vishal Saxena (Associate Professor, Deptt. of


Mathematics), JECRC, JAIPUR


(-2-1) [-1(9-1)-5] - 1[111+5] +1[-11+4-1] =0 13-212-1+2=0 A = 1, -1, 2

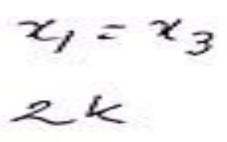
For d=1 in 1A-171=0

 $\begin{bmatrix} -3 & i & j \\ -1 & 3 & 5 \\ -1 & j & -1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Applying R2 > R2 - 3R1

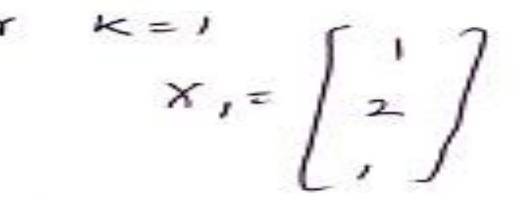
9

 $K_2 \rightarrow K_3$


 $\begin{bmatrix} -3 & 1 & 1 \\ -2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $R_3 \rightarrow R_3 \neq R_2$

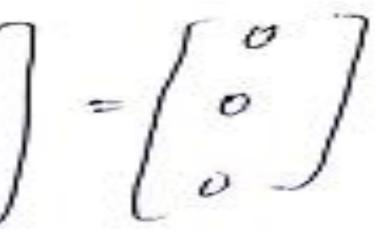
- 3x1 + x2 + 23 = 0 + 223 = 0 Let x3 = K = X1 = 72 = 2K


X, = | 2 E |

(ii) For A = -1 1A -1 I = 0

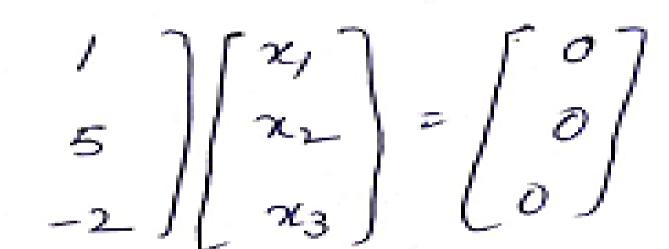
Γ-1	/	1	[z,
-11	5	5	12
L -1	,	/ /	L~
		,	

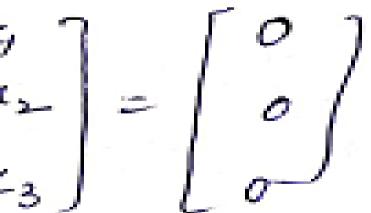
-5 RJ - K,


 $\begin{bmatrix} -i & i & j \\ -6 & 0 & o \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ z_3 \end{bmatrix} \begin{bmatrix} 0 \\ z_4 \end{bmatrix}$

R3 AK3 -0 0 0 // x2 2+23=0 XI = = k, -~3 M KIII X2E 1 k, 1

D

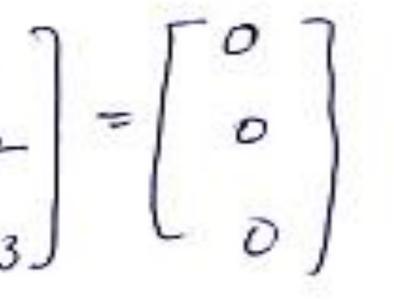


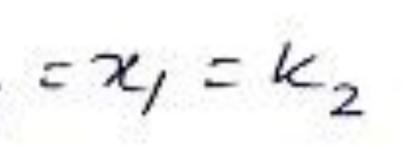

(iii) For 1=2

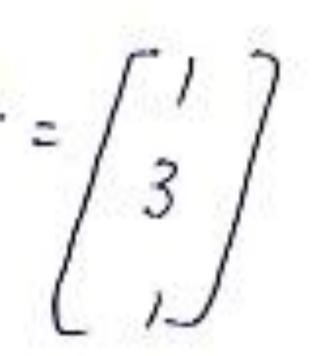
1A-1 I = 0

2 Rg JA2 $\begin{vmatrix} & & \\ 0 & & \\ & & & \\ & & & \\ &$

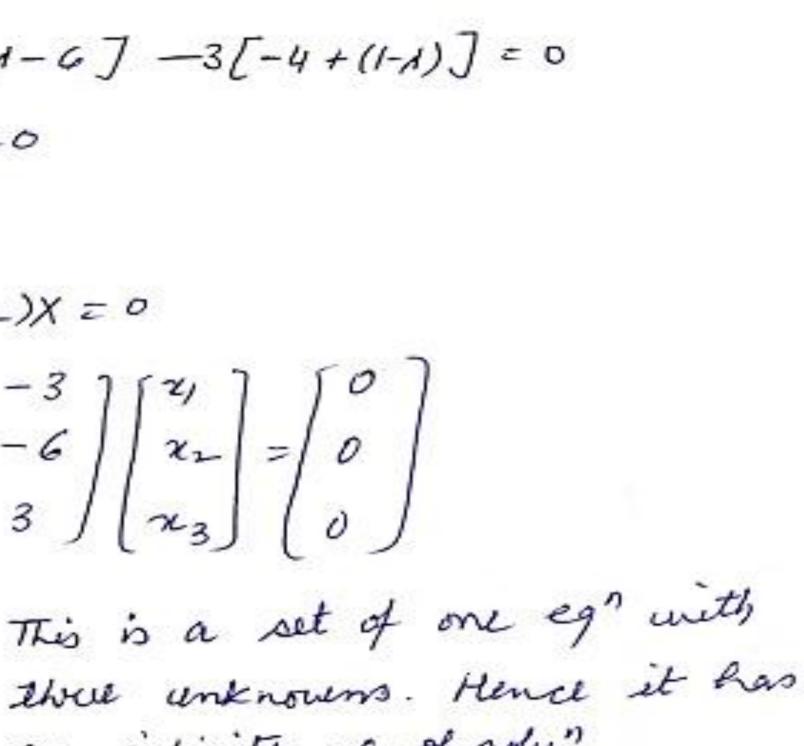
> Dr. Vishal Saxena (Associate Professor, Deptt. of Mathematics), JECRC, JAIPUR



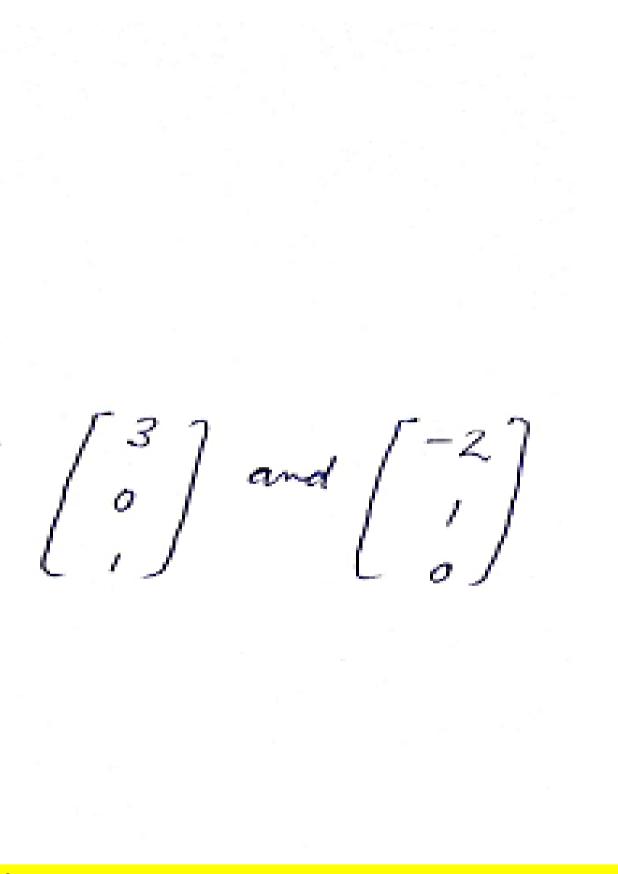

13


O On

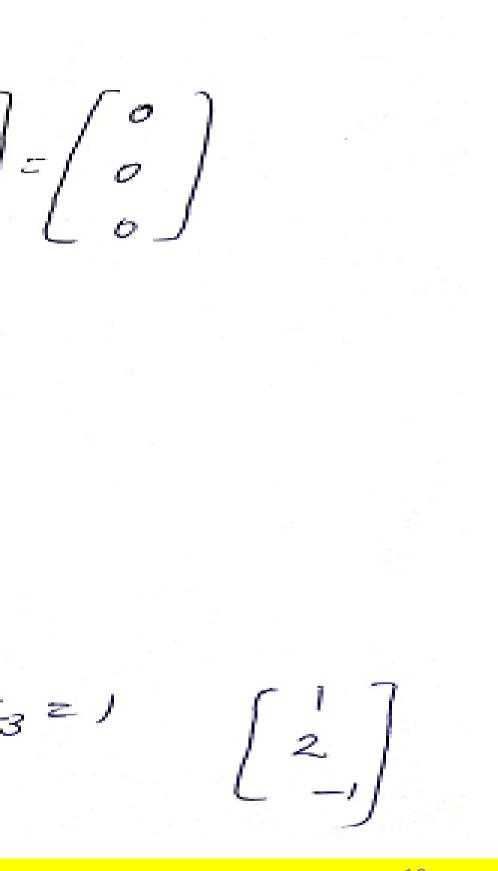
= 0 -42, + 2, + 3 x3 = 0 -) 3Kn ĩ 21



8.6 Find the eigen values and eigen vectors of 2 -3 A= / 2 1A-11/20 -3 = 0


(-2-1)[-1(1-1)] - 12] - 2[-21 - 6] - 3[-4 + (1-1)] = 0 $1^3 + 1^2 - 211 - 45 = 0$ H+ 1=-3,-3,5

(y For 1=-3 (A-AI)X = O 24+22,-323=0 2x++4x2-6x3=0 an infinite no of solu" -x1 - 2x2 + 3x3=0



x+2x2-3x3=0 Choosing 22=0, 21,=3, 23=1 and x3=0 x1=-2, x2=1 vectors corresponding to 1= -3 is

 $\begin{bmatrix} 2k_2 \\ k_2 \\ k_1 \end{bmatrix}$

1ii) For 1=5 2 $-7x_{1}+2x_{2}-3x_{3}=0$ 24 - 42 - 62 = 0 Teking first two eg? $\frac{\chi_1}{-24} = \frac{\chi_2}{-48}$ $\frac{\chi_1}{-1} = \frac{\chi_2}{-2} = \frac{\chi_3}{1} = \frac{\chi_3}{1} = \frac{\chi_3}{1}$ For A = 5 $X_3 = \begin{bmatrix} -k_3 \\ -2k_3 \\ k_3 \end{bmatrix}$ For $k_3 = \begin{bmatrix} -k_3 \\ -2k_3 \\ k_3 \end{bmatrix}$

Refrences

- 1.Advanced Engineering Mathematics by Prof.ERWIN KREYSZIG (Ch.10, page no. 557-580)
- 2. Advanced Engineering Mathematics by Prof.H.K Dass (Ch.14, page no.851-875)
- 3.Advanced Engineering Mathematics by B.V RAMANA (Ch.20, pageno. 20.1. 20.5)
- **4.NPTEL Lectures available on**

http://www.infocobuild.com/education/audio-video-courses/m athematics/TransformTechniquesForEngineers-IIT-Madras/lecture-47.html

JECRC Foundation

