JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year \& Sem - I Year \& I Sem
Subject -Engineering Mathematics-I
Unit - 3
Presented by - (Dr. Sunil Kumar Srivastava, Associate
Professor)

VISION AND MISSION OF INSTITUTE

VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional, cultural and social enrichment of the lives of individuals and communities .

MISSION OF INSTITUTE

- Focus on evaluation of learning, outcomes and motivate students to research aptitude
by project based learning.
- Identify based on informed perception of Indian, regional and global needs, the area of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academic and industry .
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Fourier Series for odd and even function:

- Even Function: A function $f(x)$ is said to be even function, if
- $\quad f(-x)=f(x)$ for all values of x
- For example , $x^{2}, \cos x, \sec x$, are even function.
- Properties of even function:
- The product of two even function is even function is even.
- The sum of two even function is even function is even
- The graph of even function is symmetric about the y-axis.
- For even function $f(x), \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
- Odd Function: A function $f(x)$ is said to be even function, if
- $\quad f(-x)=-f(x)$ for all values of x
- For example, $x, x^{3}, \sin x, \operatorname{cosec} x, \tan x$ are odd function.
- Properties of odd function:
- The product of two odd function is even function is even.
- The sum(or difference) of two odd function is odd function is even.
- The product of one even function and one odd function is odd function.
- The graph of even function is symmetric about origin.
- For odd function $f(x), \int_{-a}^{a} f(x) d x=0$.

Fourier Series of Even and odd Function:

- The Fourier series expansion of the function $f(x)$ in $(-\pi, \pi)$ is given by
- $\quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \operatorname{cox} n x+\sum_{n=1}^{\infty} b_{n} \sin n x$
- where

$$
\begin{align*}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \tag{1}\\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos n x \cdot d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin n x \cdot d x
\end{align*}
$$

- Now if $f(x)$ is even function in $(-\pi, \pi)$ then all $b_{n}{ }^{\prime} s$ will be zero. therefore the Fourier series of an even function contains only cosines terms and is given by
-
- where

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \operatorname{cox} n x \tag{2}
\end{equation*}
$$

- And if Now if $f(x)$ is odd function in $(-\pi, \pi)$ then a_{0} and all $a_{n}{ }^{\prime} s$ will be zero. Therefore the Fourier series of an odd function contains only sine terms and is given by

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x \tag{3}
\end{equation*}
$$

- where

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cdot \sin n x \cdot d x
$$

Example: Find the Fourier series expansion of the function $f(x)=x \sin x$, in the interval $(-\pi, \pi)$. Hence show that

$$
\frac{\pi-1}{4}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9}+\cdots \ldots \ldots
$$

- Solution: Since the given function satisfies
- $\quad f(-x)=(-x) \sin (-x)=x \sin x=f(x)$,
- therefore $f(x)=x \sin x$ is even function so $b_{n}=0$.
- Let Fourier series expansion be
- $\quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \operatorname{coxnx}$
- where

$$
\begin{align*}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \tag{1}\\
& =\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cdot d x \\
& =\frac{2}{\pi}[x(-\cos x)-(\sin x)]_{0}^{\pi}=1
\end{align*}
$$

- $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cdot \cos n x \cdot d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cdot \cos n x \cdot d x$

$$
=\frac{1}{\pi} \int_{0}^{\pi} 2 \cdot x \sin x \cdot \cos n x \cdot d x
$$

$$
=\frac{1}{\pi} \int_{0}^{\pi} x \cdot\{\sin (n+1) x-\sin (n-1) x . d x
$$

- Integrating by parts taking $\{\sin (n+1) x-\sin (n-1) x$ as first function

$$
=\frac{1}{\pi}\left[x\left(\frac{\cos (n+1) x}{n+1}-\frac{\cos (n-1) x}{n-1}\right)-(1)\left(\frac{\sin (n+1) x}{(n+1)^{2}}+\frac{\sin (n-1) x}{(n-1)^{2}}\right)\right]_{0}^{\pi}
$$

- $\quad=\frac{1}{\pi}\left[-\pi \frac{\cos (n+1 \pi)}{n+1}+\pi \frac{\cos (n-1) \pi}{n-1}\right]$, $n \neq 1$

$$
=\frac{2(-1)^{n+1}}{n^{2}-1} \quad, n \neq 1
$$

- For $n=1, \quad a_{1}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cdot \cos x \cdot d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cdot \cos x \cdot d x$
- $=\frac{1}{\pi} \int_{0}^{\pi} x \cdot \sin 2 x \cdot d x$
$\frac{1}{\pi}\left[x\left(-\frac{\cos 2 x}{2}\right)-(1)\left(-\frac{\sin 2 x}{4}\right)\right]_{0}^{\pi}=\frac{1}{2}$
- Therefore putting the value of a_{0}, a_{1} and a_{n} in Equation (1), we have
- $\quad f(x)=x \sin x=1-\frac{1}{2}+2 \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^{2}-1} \cdot \cos n x$
- Equation (2) is required Fourier Series expansion.
- Now, putting $x=\frac{\pi}{2}$ in equation (2), we have
-

$$
\frac{\pi-1}{4}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9}+\cdots \ldots \ldots . \quad \text { Proved. }
$$

Example: Find the Fourier series expansion of the function

$$
f(x)=x^{3},-\pi<x<\pi
$$

Solution: Since the given function satisfies $f(-x)=(-x)^{3}=-x^{3}=-f(x)$, therefore $f(x)=x^{3}$ is odd function so $a_{0}=0, a_{n}=0$.

- $\quad f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$
- where

$$
\begin{gather*}
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cdot \sin n x \cdot d x \tag{1}\\
\frac{2}{\pi} \int_{0}^{\pi} x^{3} \cdot \sin n x \cdot d x
\end{gather*}
$$

- Integrating by parts taking x^{3} as first function

$$
\begin{aligned}
& =\frac{2}{\pi}\left[x^{3}\left(-\frac{\cos n x}{n}\right)-3 x^{2}\left(-\frac{\sin n x}{n^{2}}\right)+6 x\left(-\frac{\cos n x}{n^{3}}\right)-6\left(-\frac{\sin n x}{n^{4}}\right)\right]_{0}^{\pi} \\
& \quad=\frac{2}{\pi}\left[-\pi^{3}\left(\frac{\cos n \pi}{n}\right)+6 \pi\left(\frac{\cos n \pi}{n^{3}}\right)\right]
\end{aligned}
$$

- $=2(-1)^{n}\left[\frac{\pi^{3}}{n}+\frac{6}{n^{3}}\right]$
- Therefore putting the value of b_{n} in Equation (1), we have
$f(x)=x^{3}=2 \sum_{i=1}^{\infty}(-1)^{n}\left[\frac{\pi^{3}}{n}+\frac{6}{n^{3}}\right] \sin n x$
(2)
- Equation (2) is required Fourier Series expansion.

Refrences

1.Advanced Engineering Mathematics by Prof.ERWIN KREYSZIG (Ch.10,page no.557-580)
2. Advanced Engineering Mathematics by Prof.H.K Dass (Ch.14,page no.851875)
3.Advanced Engineering Mathematics by B.V RAMANA
(Ch.20,pageno.20.1.20.5)
4.NPTEL Lectures available on
http://www.infocobuild.com/education/audio-video-courses/m athematics/TransformTechniquesForEngineers-IIT-Madras/lecture-47.html

JECRC Foundation

JAPUR ENGINEERANG COLLEGE AND RESEARCH CESTRE

Thank
you!

Dr. Vishal Saxena (Associate

