

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

```
Year & Sem – I Year & I Sem
Subject –Engineering Mathematics-I
Unit – 3
Presented by – (Dr. Sunil Kumar Srivastava, Associate
Professor)
```

VISION AND MISSION OF INSTITUTE

VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional, cultural and social enrichment of the lives of individuals and communities .

MISSION OF INSTITUTE

• Focus on evaluation of learning, outcomes and motivate students to research aptitude

by project based learning.

- Identify based on informed perception of Indian, regional and global needs, the area of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academic and industry .
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Fourier Series for odd and even function:

- Even Function: A function f(x) is said to be even function , if
- f(-x) = f(x) for all values of x
- For example , x^2 , $\cos x$, $\sec x$, are even function.
- Properties of even function:
- The product of two even function is even function is even.
- The sum of two even function is even function is even
- The graph of even function is symmetric about the y-axis.
- For even function f(x), $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.

•

- Odd Function: A function f(x) is said to be even function , if
- f(-x) = -f(x) for all values of x
- For example , x, x^3 , sin x, cosec x , tan x are odd function.
- Properties of odd function:
- The product of two odd function is even function is even.
- The sum(or difference) of two odd function is odd function is even.
- The product of one even function and one odd function is odd function.
- The graph of even function is symmetric about origin.
- For odd function f(x), $\int_{-a}^{a} f(x) dx = 0$.

Fourier Series of Even and odd Function:

• The Fourier series expansion of the function f(x) in $(-\pi, \pi)$ is given by

•
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n coxnx + \sum_{n=1}^{\infty} b_n \sin nx$$
 (1)

- where $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$
- $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot cosnx \cdot dx$

•
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) . \sin nx . dx$$

• Now if f(x) is even function in $(-\pi, \pi)$ then all $b_n's$ will be zero. therefore the Fourier series of an even function contains only cosines terms and is given by

•
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n coxnx$$
(2)
• where
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$
$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot cosnx \cdot dx$$

 And if Now if f(x) is odd function in (-π, π) then a₀ and all a_n's will be zero. Therefore the Fourier series of an odd function contains only sine terms and is given by

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx \quad (3)$$

here
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot \sin nx \cdot dx$$

Example: Find the Fourier series expansion of the function $f(x) = x \sin x$, in the interval $(-\pi, \pi)$. Hence show that π^{-1} 1 1 1 1 1

$$\frac{\pi - 1}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots \dots$$

• **Solution:** Since the given function satisfies

•
$$f(-x) = (-x)sin(-x) = xsin x = f(x),$$

- therefore $f(x) = x \sin x$ is even function so $b_n = 0$.
- Let Fourier series expansion be

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n coxnx$$
 (1)

• where $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$ • $= \frac{2}{\pi} \int_0^{\pi} x \sin x dx$ • $= \frac{2}{\pi} [x(-\cos x) - (\sin x)]_0^{\pi} = 1$

•
$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot cosnx \cdot dx = \frac{2}{\pi} \int_0^{\pi} x \sin x \cdot \cos nx \cdot dx$$

• $= \frac{1}{\pi} \int_0^{\pi} 2 \cdot x \sin x \cdot \cos nx \cdot dx$
• $= \frac{1}{\pi} \int_0^{\pi} x \cdot \{\sin(n+1)x - \sin(n-1)x \cdot dx\}$

• Integrating by parts taking $\{\sin(n+1)x - \sin(n-1)x \text{ as first function}\}$

•

$$= \frac{1}{\pi} \left[x \left(\frac{\cos(n+1)x}{n+1} - \frac{\cos(n-1)x}{n-1} \right) - (1) \left(\frac{\sin(n+1)x}{(n+1)^2} + \frac{\sin(n-1)x}{(n-1)^2} \right) \right]_0^{\pi}$$

$$= \frac{1}{\pi} \left[-\pi \frac{\cos(n+1\pi)}{n+1} + \pi \frac{\cos(n-1)\pi}{n-1} \right], \qquad n \neq 1$$

$$= \frac{2(-1)^{n+1}}{n^2 - 1}, \quad n \neq 1.$$

For $n = 1$, $a_1 = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot \cos x \cdot dx = \frac{2}{\pi} \int_0^{\pi} x \sin x \cdot \cos x \cdot dx$

$$= \frac{1}{\pi} \int_0^{\pi} x \cdot \sin 2x \cdot dx$$

$$\frac{1}{\pi} \left[x \left(-\frac{\cos 2x}{2} \right) - (1) \left(-\frac{\sin 2x}{4} \right) \right]_0^{\pi} = \frac{1}{2}$$

• Therefore putting the value of a_0, a_1 and a_n in Equation (1), we have

•
$$f(x) = x \sin x = 1 - \frac{1}{2} + 2 \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^2 - 1} \cdot \cos nx$$
 (2)

• Equation (2) is required Fourier Series expansion.

• Now, putting
$$x = \frac{\pi}{2}$$
 in equation (2), we have
• $\frac{\pi - 1}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \cdots$... Proved.

Example: Find the Fourier series expansion of the function

$$f(x) = x^3, -\pi < x < \pi.$$

Solution: Since the given function satisfies $f(-x) = (-x)^3 = -x^3 = -f(x)$, therefore $f(x) = x^3$ is odd function so $a_0 = 0$, $a_n = 0$.

•
$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$
(1)
• where
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot \sin nx \cdot dx$$
$$\frac{2}{\pi} \int_0^{\pi} x^3 \cdot \sin nx \cdot dx$$

• Integrating by parts taking x^3 as first function

$$= \frac{2}{\pi} \left[x^3 \left(-\frac{\cos nx}{n} \right) - 3x^2 \left(-\frac{\sin nx}{n^2} \right) + 6x \left(-\frac{\cos nx}{n^3} \right) - 6 \left(-\frac{\sin nx}{n^4} \right) \right]_0^{\pi}$$
$$= \frac{2}{\pi} \left[-\pi^3 \left(\frac{\cos n\pi}{n} \right) + 6\pi \left(\frac{\cos n\pi}{n^3} \right) \right]$$

• =
$$2(-1)^n \left[\frac{\pi^3}{n} + \frac{6}{n^3} \right]$$

• Therefore putting the value of b_n in Equation (1), we have

$$f(x) = x^3 = 2\sum_{i=1}^{\infty} (-1)^n \left[\frac{\pi^3}{n} + \frac{6}{n^3}\right] \sin nx$$
(2)

• Equation (2) is required Fourier Series expansion.

<u>Refrences</u>

1.Advanced Engineering Mathematics by Prof.ERWIN KREYSZIG (Ch.10,page no.557-580)

2. Advanced Engineering Mathematics by Prof.H.K Dass (Ch.14, page no.851-875)

3. Advanced Engineering Mathematics by B.V RAMANA

(Ch.20, pageno. 20. 1. 20. 5)

4.NPTEL Lectures available on

http://www.infocobuild.com/education/audio-video-courses/m athematics/TransformTechniquesForEngineers-IIT-Madras/lecture-47.html

JECRC Foundation

Dr. Vishal Saxena (Associate Professor, Deptt, of