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11.1 INTRODUCTION 

Energy methods ate extensively used for the determination of force or any internal stress 
resultant (for example, bending moment etc.) and displacements (linear and angular, both) 
of suuctures. It is particularly useful in the analysis of indeterminate structures. The energy 
theorems are applicable in elementary analysis as well as in advanced analysis and also in 
finite element methods. 'Ihey are very convenient and general in their applications. 

Objectives 
After studying this unit, you should be able to 

calculate the strain energy stored by determinate as well asindeterminate 
structures, 

a describe the concept of virtual work - due to virtual displacements and virtual 
forces, 

a discuss the applications of Castigliano's Theorems I and II and Minimiwn 
Energy Principles, 

o explain the applications of Maxwell's Reciprocal md Betti's Theorems, 

analyse redundant beams, frames and trusses, and 

calculate displacements at different coordinates of indeterminate structures. 

11.2 STRAIN ENERGY IN LINEAR ELASTIC SYSTEMS 

This section is a brief summary of the topic which you have already studied in Unit 10 on 
Strain Energy under "Strength of Materials" course and which may also be referred. 



A structural member obeying Hook's law of elasticity w y  be subjected to axial forces, 
shear forces, bending moments and twisting moments. The strain energy is calculated in the 
following way : 

Strain energy stored by a member = Amount of the work done by the external forces 
to produce the deformation 

11.2.1 Strain Energy Due to Axial Forces 
Let strain energy stored by an elemental member ds be dU subject to the axial.force F. 

:. dU = Average load x axial displacement of element ds due to the force F. 

Pds F x F d s  -- d u = r  [ m )  
where, A = -Area of cross-section of the member, and 

E = Modulus of elasticity. 

:. Strain energy for the entire length of the member 

11.2.2 Strain Energy Due to Shear Forces 
Let stram energy stored by an elemental member ds is dU subject to the sheat fbrce Q. 

;. dU = Average shear force x Shear displacement (deformation) of element ds due to the 
shearfirce Q 

1bere, A, = Reduced area of cross section 

G = Shear modulus of elasticity. 

;. Tbtd strain emrgy for tbe entire length of the member 

Now, if we consider strain energy in the xz plane is U, and corresponding reduced area of 
cross secticm A, and those in thk yz plane ;are Uyc and A, respectively, 

where, Q, and Qy = Biaxial shear forces (in the x and y directions respectively) 

11.2.3 Strain Energy Due to Bending Moment 
LeA strain energy stored by an elemental member dv be dU, subject to the be-g moment 
M. 

:. dU = Average bending moment x bending displacement (Angular rotation) of element 
ds due to the bending moment M. 

M M d s  'U2a3 d U = - x -  -- 
2 [ EZ ) - 2EZ 

where, I= Moment of inertia of the cross-section of the member with resped to the neutral 
axis. 

=. Total strain energy for the entire length of the member 



Similarly, strain energy in the rz and yz planes are as follows : 

It is due to bending moments Mx and My in the xz and yz planes respectively. 

11.2.4 Strain Energy Due to Twisting Moment (Torsion) 
Let strain energy stored by an elemental member ds be dU, subject to the twisting moment 
or torsion T. 

:. dU = Average torsion x Torsional displacement (angle of twist) of element a3 due to 
the torsional moment T. 

where. K = a constant of the twisted member based on shape of the section. (For a circular 
section it is equal to the polar moment of inertia J )  

:. Total strain energy for the entire length of the member 

11.2.5 General Equation of Strain Energy 
The general equation of strain energy is the sum of energy due to six internal force 
components comprising the axial force S, the biaxial shear forces Qx and Qy,  the biaxial 
bending moments M, and My and torsion T. 

Therefore, 

In the case of pin-jointed frames or trusses, axial forces of the members are dominant. 

In the case of plane rigid-jointed frames where twisting moments are absent, the otber three 
components, namely axial forces, shear forces and bending moments are dominant 

Thus, 

But generally axial forces and shear forces are very small in comparison to betlding moment 
then energy die to the small components may be neglected and we can use the equation as 
follows : 

Now, we give a fey values of A, and K due to shear and torsian for different cross-sectional 
areas in the Table 11.1. 

The calculation of strain energy is very important for the determination of deformation of 
determinate and indeterminate structures. We shall discuss more elaborately the strain 
energy method in Block 4. 



Table 11.1 

Example 11.1 

Determine the total strain energy of the Lshaped member which is subjected to 1000 
N load as shown me cross-sectional area of the member is 6 cm x 12 cm. 

Assume E = 2 x lo7 N/cm2 and G = 0.8 x lo7 N/cm2; 

Solution 

Member XY: 

Member YZ : 

Axial force in the member XY = 1000 N (tensile) 

SF, BM and twisting moment in the member XY are zero. 
Axial force and twisting moment of the member YZ are zero. 
SF at Y = 1000 N, SF at Z= 1000 N, constant throughout YZ. 

 a at ~ = ~ a n d ~ ~ a t ~ =  1000x200 ~ c m =  2x lo5 Ncm, 
linearly varying fiom zero at Y to 2 x 1 6  N cm at Z. 

BM at x from Y inthe YZ portion = 1000 x. 



i 6 ~ 1 2 ~ 2  Area, (A) = 6 x 12 cm2; Reduced Area. (A,) = - 1.2 

6 x 1 2  m4 
Moment of inertia, I = - 12 

Now, strain energy in the member XY 

and strain energy in the member YZ 

:. Total strain energy = Uxy + Up = (0.0347 + 77.3688) N cm = 77.4035 N cm 

11.3 VIRTUAL WORK 

Work is done when the point of application of a force is moved and is given by the pmhtct 
of force x displacement. The word virtual indicates imaginary, so the virtual work is the 
hypothetical work consisting of real forces with virtual displacements or virtual forces witb 
real displacements. The principle of virtual work was postulated by Aristotle in the 4th 
century BC. In fa&, all the energy methods can be developed from the principle of v&ud 
work. The principle of virtual work is based on the physical principle of conservation of 
energy and is applicable to both linear and non-linear elastic systems of ckteminate and 
indeterminate structares. 

1 11.3.1 Principle of Virtual Displacements (Rfgid Bodies) 
- 1 The total work done by a rigid body held in equilibrium by a system offorces and reactions 

during a small virtual displacement is zero. 

i This principle is useful in determining forces and influence lines. Unit df@,acement method 
is developed based on this concept. 

1 Interested students may see the proof of this principle in any standard book of 'Iheory of 
Structures suggested in the section, "Furrher Reading". 

11.3.2 Principle of Virtual Forces 
The total work done by a rigid body subjected to a deformation compatible with the suFtpon 

1 conditions, held in equilibrium, by virtual forces bnd reactions8n the body is equal to zero. 

This principle is useful in computing displacements in a structure. Unit load (for mses) 
unit moment (for beams) and unit torsion (for shafts) have been developed based on this 
concept for determination of deformation of various struchues. 

I 11.4 CASTIGLIANO'S THEOREMS 

Real energy calculation being very tedious, Castigliano in 1876 developed two theorems to 
calculate the forces and deformation in a structure based on the concept of strain energy. 



11.4.1 Theorem I 
The partial derivative of the strain energy of a linearly elastic structure (represented in 
terms of displacements) with respect to any displacement A, at coordinate j is equal to the 
force P, at coordinate j. 

Mathematically, 

Proof 

We assume a set of forces P I ,  P,, . . ., Pi, . . ., P, acting on a suucture at coordinates 
1,2, . . ., j,  ...., n creating displacements A,, 4, ..., Ai, ..., A,. Now, we impose a 
small increment &A, to the displacement at coordinate j. Keeping the displacements at 
all other coordinates unchanged. As a result, the increments in the forces are 
6P1,  SP2, . . ., &Pi, . . ., 6P,. The increment in displacement at coordinate j and the 
consequent increment in loads series is considered as the second set. We are showing 
the two sets of forces and corresponding disp1acemen.t.s in Table 11.2. 

Table 11.2 

:. The work done at the coordinate j during these displacements will be 

Using limit SA, -+ 0, 

This theorem is also applicable to the system of moments and the resulting angular 
av deformations, thus - = 9. - aM, 

This principle is widely used in analysis of structures. 

11.4.2 Theorem X I  
ThPe derivative of the strain energy of a linearly elastic structure (represented in 
terms of forces) with respect to any force Pj at coordinate j is equal to the dispTidcement A, 
at coordinate j. 

Mathematically, 

We assume a set of forces P,, P,, . . .. Pi, . . .9, acting on a suucture at coordinates 
1,2, . .., j,  .. ., n, creating displacements A,, A,, . . ., Ap .. .. A,. Now, we impose a 
small increment 6Pj to the load at coordinate j keeping the forces at all other 
coordinates unchanged. As a result, the increment in the displacements are 
&A,, &A,, . . ., &Ai, . . ., &A,. The increment in load at coordinate j and the consequent 
increments in displacements at all the coordinates is considered as the second set. We 
are showing the two sets of forces and corresponding displacements ih Table 11.3. 



Table 113 

' :. The work done at the coordinatg j during these displacements will be 

6P#j = PISA, + P26A2 + ... + P$Aj + ... + P,,SA, 

Using limit 6Aj -+ 0, 

This theorem is extensively used for determination of displacement in a structure of both the 
determinate and indeterminate t w s .  

In fact, it is a powerful tool for the analysis of the structure. 

11.4.3 Statically Determinate Structures 
In the case of determinate structures, Castigliano's theorems may be applied in the 
following ways : 

(a) In case of trusses where axial forces (S)are predominant, 

(b) In case of beams and plane jointedframes where bending moments (M) are 
predominant, 

(c) In case of shafts where torsion (T) is predominant, 

If there i s  no load at the coordinate j, we assume an imagipary or dummy load acting at that 
particular coordinate for finding out the displacement equation and ultimately we put.the 
value of the dummy load as zero which is known as dummy load method. An elegant way 
to andyse the displacement of structures considering the dummy load as unit force is 
popularly known as unit load method. 

'men, the above expressions become as follows : 

For hisses 

For beams and frames 

For shafts 



Ladetcmhtate 
s t ~ d ~ u e s  - 11 where u = ($1 = force in the members due to unit force at coordinate j 

m = (E) = bending momint in the members due to unit force at coordinate j 

t = = tonion " the members due to unit force at coordinate j 

Interested students may see the problems on determinate structures applying these theorem 
from any standard book of Theory of Structures suggested in section, "Further Reading". 

Before wncentrating the application of the above theorem in the statically indeterminate 
structures, we just explain the Minimum Energy Theorem which is closely linked to 
Castigllano's second theorem. 

11.5 MJNIMUM ENERGY THEOREM 

In any and every case of statically indeterminate structure, where an indefinite number of 
different values of the redundant forces and displacements satisfy the condition of statical 
equilibrium, their actual values are those that render the total strain energy stored to a 
minimum 

Tberefae, au - = 0 and %is positive ax ax2 (11.12) 

where X = redundant force. 

In general, the strain energy stored by a structure subjected to bending and/or axial loading 
is given by 

M2 ds s2 ds u = I,I + j- 2AE 

We wnsider a continuous beam with reaction X at A which is treated as redundant as shown 
below : 

Here, V, and V, = reactions at B and C. 

W,, W2, W3 = External loading 

According to Castigliano's second theorem, displacement at A i 
au A* = - where U= strain energy stored by the beam. ax 

Due to no displacement of the support A, we have, A, = 0. 

au Thus. - = 0, which satisfies the fust condition of the Minimum Energy Theorem. It ax 
is also applicable to all types of forces such as axial force, twisting moment, bending 
moment or a combination thereof. 

Wl 
B 
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Now to test the condition for maximum or minimum value of U 

au M ~ S  aiu S ~ S  as - = I-. -1 +I- - ax 1 ax AE (ax) = o 
Diierentiating again we get, 

2 2 

a2 u = 
[M$ + (g) 11 + I$ [Sg + ($).I 



The bending moment M at any section or the force S in any member is a linear function of X, 

aM as - and - = Constants, and + +  ax ax (%I and [$J = positive value 

a 2 ~  a2s and - - ax2 ax2 - 0  

. - a2U = positive value which indicates that the stored strain energy is minimum. , 
" ax2 

Example 11.2 

Find the reaction at the prop of a propped cantilever beam loaded as shown in 
Figure 11.3. 

r w - p w  unit length 

Flgorc 11.3 

Solution 

Let X be the reaction at the prop (considered as the redundant reaction) 

w 2  :. B .M. at any section distant Z from B, M = Xz - - 
2 

.: Strain energy stored by the beam = U = = XI - - - i( W;J;I 

au By the Minimum ~nergy  Principle - = 0  ax 

1 1 
X W 

or, - - j ~ ? d z - ~ j 2 d z = 0  El 
0 

1 wt -, 
or. --- - 

3EI A8EI 

or, 

3 Knowing RE = X =  - wl, we can find out all the reactions at the support A. 
8 

Example 1 13 ' 

Determine the reactions at the supports of the continuous beam loaded as shown in 
Figure 11.4 by the principle of least work. 

Flgnrc 11.4 

Solution 
Let the reaction at B, RE = R (considered as redundant reaction). 

From symmetry, we get reaction at each end. 

Energy Methods 
and Appkatiom 



We get the reaction, 

wl-R RA Rc = - 2 

B.M. at any section in AB at a distance x from A 

au By the principle of least work - = 0 
aR 

Of, 
5 R = ~ l =  reaction at B 

5 wl - -wl 
and reaction at A or C = 3 = -..lead 

16 
Exan@ 11.4 

D e k m k e  the farces in the members of the truss loaded as shown in Figure 11.5 (a). 
The sectional area of vertical member = 3000 mm2; horizontal member = 4000 mm2 
and diagonal members = 5000 mm2 each. The members are of same material. 



.= Degree of internal redundancy = Di = D - D, = 1 - 0 = 1 

Let, DH member be redundant. Axial force in the member DH = X (say). So, we can 
malyse the given structure by the following two equivalent structures. 

*re 11.5 (c) 

Here, S1 = P1 + P,', S2 = P2 + P,' and so on [Figure 11.5 (b)]. 

Here, S1 = P1 + XK,, S2 = P2 + XK, and so on [Figure 11.5 (c)].~ 

5121, :. Total strain energy stored by the frame = U = x - 
U l E  

au 
, According to least work principle - - 0 ax - 

or, X = -  
& A I E  

K 21 v x  

Now, we solve the problem stepwise. 

Step 1 : Evaluation of P, e tc  

We remove the member DH 

WA = 0 * Vfx12 - 3 0 x 4 - 6 0 x 8  

or V f = 5 0 N a n d V a = ( 3 0 + 6 0 ) - 5 0 = 4 0 N  

From tbe joints A and F, Prrlr = PA = 0 

3 3 4 We get, tan if = -, sin 0 = - and cos 0 = - 4 5 5 

A r  JuintA 

Pa, = 40 N (compressive) 

At Joint B 

200 Pbh sin 0 = 40 => Pbh = - N (tensile) 
3 

E m ~ y  Mehods 
and Applicdion~ 

200 160 Pb, = - cos 0 = - N (compressive) 3 - 3 



Lodeterminate 
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At Joint H 

200 
Ph,. = - sin 0 = 40 N (compressive) 3 

200 160 Phg = 3 cos 0 = - N (tensile) 
3 

At Joint C 

50 P C ,  sin 0 = 40 - 30 = 10 => P[,  = - N (tensile) 
3 

160 50 200 P = - + - cos 0 = - N (compressive) 
'd 3 3 3 

At Joint D 

200 Pdr = - i?4 (compressive) 
3 .  

Pdg = 60 N (compressive) 

At Joint E 

200 250 P cos 0 = - => P = - (tensile) 
eg 3 eg 3 

250 . Pef = - SIII 8 = 50 N (compressive) 3 

Figure 115 (d) : P-forces in Truss Members 

Step 2 : Evaluation of K, etc. 

We remove the external loading and impose a pair of unit loads (tensile force in 
member DH) at D and H in place of the member DH. 

Here, V, = H, = V - 0 and f - 
Kuh = Khc = Kbh = Kuh = Krd = Kc, = Kfg = Keg = 0 

At Joint H 

4 
K,, = 1 x cos 0 = - N (tensile) 

5 

3 K,,. = 1 x sin 0 = - N (tensile) 
5 

At Joint D 

3 K4 = 1 x sin 0 = - N (tensile) 
5 

4 K,. = 1 x cos0 = - N (tensile) 
5 

Figure 11 5 (e) : K-foms in Truss Members 



At Joint C 
3 K,, sin 8 = - => Kc, = 1 N (compressive) 
5 

Step 3 : Table 

We assume the compressive force as negative and the tensile force as positive. Now 
we fill up the above results in Table 11.4. 

Table 11.4 

Step 4 : Correcting Factor X 

a 

DH 

Step 5 : Force in the members 

Force in the member S = P + X K  

S, = - 40 + 0 = - 40 N (compressive) 

160 s,, = - - 
3 

+ 0 = - 53.33 N (compressive) 

250 
+- 

3 

0 

262 

0 

I 

4 

5000 

5000 

5000 

5000 

0 

0 

0 

I 

83.33 (T) 

- 21.83 (C) 



S - - -  200 + 0 = - 66.67 N (compressive) dr - 3 

St, = - 50 + 0 = - 50 N (compressive) 

- I" + [- i) [- s) = 70.8 N (tensile, SBh - 3 

200 + 0 = 6667 N (tensile) Shh = -- 
3 

\ .  
&. = - 40 + (- :)[- y) = - 26.9 N (compressive) 

50 S, = +- + 1 x (- F) = - 5.17 N (tensile) 
3 

s,, = - @ +  [ -- 9 ( -- I$)= - 46.9 N (compressive) 
. . .  

250 . 
S,, = - + 0 = 83.33 N (tensile) 3 

S, = 0 + [- y) = - 21 8 3  N (compressive) 

Figure 11.5 (f) shows the final forces in the members. 

FSgure 115 (I) : Find Meder  Forces In the T m s  

Example 11.5 
Determine the forces in all the members of the pin jointed frame Figure 11.6 (a)] if 
the member AC is 1 mm short of the required length and the last member to be fitted. 
Assume area of each diagonal members = 1000 mm2, area of each remaining 
members = 2000 mm2 and E = 200 kN/mm2. 

Solution 
Total degree of redundancy of the frame = m + r - 2j = 6 + 3 - 2 x 4 = 1 

Degree of external redundancy = D, = r - 3 = 3 - 3 = 0 

:. Degree of internal redundancy = Di = 1 - 0 = 1 

Let the member AC be redundant and &own force (tension) in it when it is fitted 
into position = X 

We assume L CAD = L BDA = 0 



4 3 :. sin 0 = -; and cos 0 = - 
5 5 

At Joint C 
4 

Sc.d = X sin f) = - X (compressive) 
5 

3 S,, = X cos 8 = - X (compressive) 
5 

4 
S, sin 0 = - X => S,, = X (tensile) 

5 

3 S, = X cos 0 = - X (compressive) 
5 

4 S,, = X sin f) = - X (compressive). 
5 

The forces are shown in Figure 11.6 (h). 

:. Total strain energy 

Eaergy Methods 
sod Applicatiom 

5x2 16x2 27x2 341x2 - - +- +--- 
- 2E 25E lOOE - lOOE 

According to Castigliano's second theorem, 

au Displacement of C with respect to A = A = - ax 

But we know that A = 1 mm (positive, since short) 

Therefore, 

:. Tension in the diagonal member = 29.32 kN each. 

4 Compression in the vertical member = - x 29.32 = -23.456 kN each 
5 

3 Compression in the horizontal member - x 29.32 = 17.592 kN each. 
5 

Note : 

If the member AC is little longe;than the required length, compression will 
develop in this member, therefore, A will be negative and we can analyse the 
frame due to lack of fit in the same manner. 

Example 11.6 

Find the tensions in the wires AD, ED and CD having the same cross-sectionnl area 
and of the same material supporting a load W at D as shown in the Figure 11.7 (a). 

1 Prove that the horizontal displacement of D is equal to -th of extension of BD. 
7 



Elgars 11.7 (a) FIwrs 11.7@) 

First Part 
To&& &gee of r oftheftam?, = m+r-2) 

= 3+(3x2) - (4x2)  = 1 

Degteeofexbmrlredeu#tPncy= 6 - 3 - 2 = 1  

'Iberefore, degree of internal redundancy = 1 - 1 = 0 

Let the tension in DA, DC and DB are P, Q and R respectively. 

We assume R, the reaction at B which is vertical as redundant, since the tension 
in the member DB = R. 

:. L EDA = 8, since A ADC is a right angled triangle. 

3 3 4 Hero, W e = -  sine=- Pnd cm8=-  4' 5 5 

At Joint D 

P a x 0  = Qsin0 P = Q - 8  

and R+Psin@+Qcos8=W 

Ptrttiog the values from Eq. (i), 

3 
From Eq. (i) and Eq. (ii), we get, P = 7 f W - R) 

ToW strain epergy stored by the frame 

u = [SF + 3.75p + 3Rf] 
2AE 

au 
A m -  to Miaimurn Energy principle, i.e. - = 0 

aR 

(ii) 



Putting the values, we get 

Thus, we get, 
7 

R=-W 
12 

Now, putting the value of R to get valucs of P and &, 

Second Purl 

Horizontal component of the pxtension of DA, 

P W 4 W -x5ccxC) = - x 5 x -  = - (right) 
AE 4AE 5 AE 

Hrxizcmtal component of the extension of DC 

Horizontal displacement of I) = Algehrical summtion of the horizontal 
component of the extension of DA and DC. 

R x 3  7 W x 3  7W - Extension of BD = - - - - - 
AE 12AE - 4AE 

1 
Thus, horizontal displacement of D = - of the extension of BD. 

7 

'Example 11.7 

Analyse the portal frame, having the members of same moment of inertia and loaded 
as shown in Figure 11.8 (a). Draw the bending moment diagram. 

Flgure 11.8 (a) . FTprell%(b) 

Solution 

Total degree of redundancy = (3 x No. of loops) - No. of releases at the supports 

= ( 3 x 1 ) - 2  = 1 

We assume the horizontal thrust a at support A as redundant and vertical reactions at 
A and D are Va and Vd respectively. 

:. XH k 0 =, H, = - Hd = H (say) 



lad- 
S t r r r b n r  - Il Taking moments about A, we get, (Vd x 4) + (H x 3) = 30 x 4 x 2 

3 
Vd = 60 - q H and V, 

3 -mu, = a + q H  
hi2ds Here, U = 

According to Ibwmum 
au 

Energy Principle, - aH = 0, thus, 

For this frame of uniform flexural rigidity, kI = constant 

Now, we ppete the following Table 11.5. 
Table 12.5 

Assuming the bending moment producing concavity outside the frame as positive 
bending moment and thrt producing convexity outside tbe frame as negative bending 
imnm.u. 

On further simplifying, we get 

495 or, 7 H  = 720 giving H = 4.3636 N 

.Now, we put the values of H, V, and Vd in Figure 11.8 (b) and can calculate the BM 
at different points as given below : 

BM at mid of BC dwe. to exte&ll loading = = + 60 N m 
' , 

Net BM at mid of BC = + 60 - [ 26.18; 13.p 27.09 I = 40.365 N m 

The bending moment diagram is shown in Figw 11.8 (b). 



Exampk 11.8 

Analyse the frame shown in Figure 11.9 (a) made of the members of similar flexural 
rigidity. 

Flprc 11.9 (a) Fp*lre 11.P(b) 

Solution 

Total degree of redundancy of the frame = 3m + r - 3j = (3 x 2) + 4 - (3 x 3) = 1 

Degree of external redundancy = r - 3 = 4 - 3 = 1 

Degree of internal redundancy = 1 - 1 = 0 

Let the reaction at C = R as redundant. 

iU2 ds Total strain energy of the frame. U = xj - 
2EI 

Assuming the bending moment producing concavity outside the frame as positive 
bending moment and that producing convexity outside the frame as negative bending 
moment. 

* 

au 
According to the FMwiple of Minimum Energy, - = 0 

aR 

Thus, we get, 

R 60 90 
or, R(1.5)3+-[(x+l.5)3] 3 3 - T ( 1 . 5 ) 3 - T ( 1 . 5 ) 2 + 9 ( R - 3 0 ) 4 = 0  

0 

or, R = 27.75N = VcI,: 

Now we can calculate the BM at different points as given below : 

B M a t C = O  

Now, we put the reaction and moment values in Figure 1x9  (b). Let the pn;nt of 
contraflexure be at a distance x from D, 
Then, 27.75(x+1.5)-601;= Ogiving x=1.29m 

The bending moment diagram (BMD) is shown in Figure 11.9 (b). 
Example 11.9 

A semi circular arch of uniform flexural rigidity, having one end hinged and other 
end placed on roller subjected to a horizontal force P as shown in Figure 1 1.10 (a). 
Find the horizontal displacement of the roller end. 



Mutton 
Due to equilibrium, H, = P 

t 

BM at a section X making an angle 0 with the horizontal, M = P r sin 0 

Here, the elemental length of the arch, ds = r d0 
w2 

M~ ds :. Total strain energy U = I- = 2I 
P? sin20 rd0 P? x - 

0 
2EI EI '4 

Let the horizontal movement of the roller end be A. 

1 
Thus, the external work done by P = j PA 

By equating total strain energy to external work done, we get, 

7tP? 
It gives the displacement of the roller end, A = - 2EI 

Example 11.10 

Determine the various reactions of a thin semicircular ring lying in a horizontal plane 
having bbth ends clamped subjected to a central vertical force P perpendicular to its 
plane as shown in Figure 1 1.1 1 (a). 

As the plane of loading is not in the plane of the smcture, there will be twisting 
moments in addition to bending moment and verticaYhorizontal reactions at supports. 

P 
From symmetry, we get, V, = V, = - 2 

Let the other reaction that is twisting moment acting at each of the support be To. 

Now, we consider an arbitrary point o of the segment of tilt! ring making an angle 0 

at the centre (where 0 c 0 c 
2 



P 
Twisting nxment at o about ab axis, T = - ( R  - R cus 0) - PR sin 9 + To cos 9 

2 2 

Total strain energy of the ring 

Since angular rotation both at A and C = 0 

au 
According to Castigliano's second theorem, - = 0, 

aT0 

For this frame, being symmetriud, we have of AB and AC portion and ds = R de 

Substituting the values of M and T, we get 
r 1 

PR 
PR sin 0 - - c ~ e  - To sin t) 

2 
El 

0 

Finally, we get, 

Example 11.1 1 

A two-hinged symmetrical parabolic arch has a span of 30 m and rise of 7.5 m The 
moment of inertia of arch section is proportional to sec 0, where 8 is the slope of the 
arch axis at any point with the horizcmtal. Determine the hrxizontal thrust caused in 
the arch due to rise of temperature by 25OC. 

Given E = 2 x lo6 kg/cm2: Coefficient cf thermal expansion, a = 6 x lo4 per "C; and 
Moment of inertia at the crown. 1, = 125 x 1 o4 cm4. 

Figure 11.12 
\ 

Solution 

Total degree of redundancy of the arch = 7m + r - 3j = (3 x 1) + 4 - (3 x 2) = 1 

Degree of external redundancy = 4 - 3 = I 

:. Degree of internal redulldancy = 1 - I = 0 



Let the horizontal thrust H developed in the parabolic arch due to rise of temperature 
be treated as redundant. 

In the problem, span, 1 = 30 m = 3000 cm 

Central rise, y, = 7.5 m = 750 cm 

Rise of temperature, t = 25"C 

Modulus of elasticity, E = 2.0 x lo6 kg/cm2 

Coefficient of linear expansion, a = 6 x per OC 

Moment of inertia at the crown, lo = 125 x 104 cm4 

The horizontal expansion prevented by the hinges = alt 

BM on any element of the arch at a height y above the support, M = Hy 

~ ~ d s  Total strain energy of the arch, V = J- 
2EI 

av According to Castigliano's second theorem, - = lac 
aH 

toral lmgth of arch 

or, I, = alt 

1 
sec 8 iix f = ah [ s i n ~ , I = I o s ~ ~ , m d ~ = ~ ~ ~ 8 ]  

E I o s ~ 8  

or, 

0 

1 
8 4YC For parabolic arch, dr = - y: 1 ; equation of the arch beiag y = - x (1 - x) 

0 
15 P 

Thus, we get, 

On substituting the values, we get 

Example 11.12 

4ind $he forces in the members FD and DH of the frame shown in Figure 1 1.13 (a) 
having the ratio of length to the cross sectional area of all the members as same. 



Solution 
Toul dcgrcc ol' rcdu~da~lcy 

Enray Methods 
and Applications 

Dcgrct: ol' illkrllnl redulldulcy = 2 - O = 2 

Here, we assunlc: the axial force in the members FD and DH = X and Y respectively 
11s reduodull nwmhcrs 

Nt.w, we remove the redundant nkmhers FD and DH and analyse the truss by 
graphical methtxl [Refer Figure 1 1 :13 (b)]. 

Fro111 the vector diagram, we calculate the forces in the different members Wefer 
Fipurc 11.13 (c)]. 

Fipm 11.13 @) Figrare 11.13 (c) 

Now, we impose a unit tensile load in the member FD [Figure 1 1.14 (a)]. 
1 1 

Fibre1 1.14 (a) Figure 11.14 (b) 

At Joint D 

1 
Ka = 3 N (compression) 1 

KDG = 3 N (compression) 

At Joint F 

1 
KE = N (compression) 

1 
KFC = E N (compression) 

At Joint C 

K,, . = 1 .N (tension) 

Similarly, we impose unit tensile load in the member DH [Figure 11 .I$ (b)]. 

At Joint D 
I 1 

K,' = 3 A (compression) K,' = -& N (compression) 

At Joint H 

1 
K,' = EN (compression) K & = h  N (compression) 

At Joint E 

K,,' = 1 N (tension) 



Now, we put the value of the forces in the different members asdeterminate truss, 
imposing unit load in FD and imposing unit load in DH in the tabular form as shown 
in Table 11.6, assuming tensile force as positive and compressive force as negative. 

Table 11.6 

, 

Since we assume the force in each member = P + KX + K'Y 

P + KX + K'Y)~c 
Total strain energy of the truss, U = x I 2AE 

By minimum energy principle the redundant force X and Y should be such that 
au - -  av 
ax - 0  h d  - = o .  a u  
Thus, we get, 

PKl ~~1 KK'l x- + xC- + YC- = 0 
AE AE AE 

and 
PK'l KP21 KK'l x, + YEAE.+ xZ- AE = 0 

For this problem, since VA and E are constant for all the members 

Therefore, 

CPK + X C K ~  + Y C K ~  = o 
1 + 4X + 2Y = O(substituting the ~valuesfromTable  11.6) or, +E 

1 
or, 4X + -Y = 

9 (0 
2 -7T 



Again, - CPK'+YCK' ' \+XZKK'=O 
1 1 

or, - - + 4Y + -X = O (substituting tllc C values from Table 11.6) fi 2 

1 1 
or. - X + 4 Y = -  

2 fi 

or, 4X + 32Y = 
8 
3 

On solving Eqs. (i) and (ii), we get, 

(ii) 

7 3 17 X = (-) 4 N (compression), and Y = (+) - fi N (tension) 
63 63 

Figure 1 1.15 shows the final illember forces. 

Figure 11.15 : Find Mrmbrr Forces 

Example 11.13 

Analyse the portal frame shown in Figure 1 1.16 (a) using unit load method. Moment 
of  inertia and length of the members are ilie~~tioned near the member in the figure. 

Solution 

Total degree of redundancy of the frame = 3 x Number of loops 

Released component at the support = (3 x 1) - 0 = 3 

Degree of external redundancy = r - 3 = 6 - 3 = 3 

Therefore, the degree of internal redundancy = 3 - 3 = 0 

Let the horizontal reaction at D = P, +(right) and the vertical reaction at D = P2 '? 
he Wen as the redundant reactions. 

And also let the moment at D = M, (clockwise) (upward). 

Since the end D is fixed, linear or angular displacement at D due to each redundant 
reaction is zero. ' 

Energy Methods 
aml Applications i 
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Using unit load methad, this equation may be written as follows : . 

and 

We fill up the table (Table 1 1.7) as shown below : 

or, 75P, + 400P2 - 45M3 - 1668 = 0 ( ii) 

or, 25P, + 37.5P2 - 10M3 - 139 = 0 (iii) 
Table 11.7 

s o l v i ~  the Eqs. (i), (ii) and (iii), we get, 
P1 = - 7.63 N, 
P2 = 3.27 N; md 

M 3  = - 20.71 N m 



I 

Now, we can determine the BM ordinates as follows : 
BM at D = MD = - 20.71 N m / 

/ 

BMatC = Mc = - 20.71 +(7.63 x5) = + 17.44 N m  
BM at B = MB = 17.44'- (3.27 x 10) = - 15.26 N m 
BMatA = MA = - 15.26+(11.12x 10) = +95.94Nm 

Assuming the bending moment producing tension at the outer face as positive and 
drawn on the ampression side of the fnune, the bending moment dia@am is shown 
in Figure 11.16 (b). 



lndeterniinat~ 
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Flpure 11.20 

SAQ 5 
' 

(a) Analyse the two hinged portal frame loaded as shown in Figure 11.21. 

(b) Find the maximum positive and negative moments in a ring of radius R having 
same cross sectional area and of same material throughout. The ring is 
subjected to the action of two equal and opposite vertical forces at the 
extremities of the vertical diameter showr, in Figure 11.22. 

Find also the contraction in the length of the vertical diameter and expansion in 
the length of the horizontal diameter. Assume strain energy stored in the ring is 
due to bending only. 

(D- 

Figure 11.21 Figure 11.22 

SAQ 6 
Analyse the two hinged frame having the members of uniform flexural rigidity a- 
shown in Figure 11.23. The joint C is rigid. Draw the bending moment diagram. 



11.6 MAXWELL'S RECIPROCAL THEOREM 

Clerk Maxwell developed a fundamental theorem based directly on the principle of 
conservation of energy and the principle of superposition which is applicable to both 
determinate and indeterminate structures. 
Statement 

In a linearly elastic structure in static equilibrium, the displacement at coordinate i 
due to a unit force acting at coordinate j is equal to the displacement at coordinate j 
due to unit force at coordinate i. 

Mathematically, 

P m f  

We impose a displaement Ai at coordinate i without any displacement at coordinate j 
in the structure shown in Figure 11.24. 

Here, the force at i = Kii A, and force at j = Kji A, 

1 1 
Work done due to displacement, A, = - x Kii A, x A, = - x Kii 42 

2 2 

Next, we provide a displacement Aj at coordinate j without any displacement at 
coordinate i. 

Thus, additiopal force at i = Kg A, and that at j = K,. 4. 
Since the displacement given only at coordinate j here, we get 

Work done due to displacement Aj at coordinate i = (Kj& A, and (11.14) 

Additional work done due to displactment Aj a coordinate j 

:. Total work done due to displacements A, and Aj 

= sum of Eqs. (11.13), (1 1.14) and (11.15) 

1 1 
= -xK,~A; + -XK,A; + $,A,+ ... 

2 2 

= Total strain energy stored by the structure = U (11.16) 

Now, we provide the displacernect in this structure in the reverse order, i.e. at fust we 
provide A, and then Ai. 

1 Work done due to fust displacement Aj at coordinate j = - x Kii A; 
(11.17) 

2 

Work done due to seconddisplacement A, at coordinate i = (Kg Aj) Ai (11.18) 

Additional work done due to second displacement Ai at coordinate j 

Energy Methods 
and Applicatiom 
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:. Total strain energy due to displacement A, and Ai 

Since the swain energy stored U does not depend on the order of displacement 
provided, so the value of Eq. (11.16) and Eq. (1 1.20) should be equal. 

Comparing the two values, we get 

Kg = Kji 

In this theorem, Ole word "displacement" means linear deflection as well as angular 
rotation. Similarly, the word "force" means both load or couple. 

Example 11.14 

Find the di~placement at coordinate @ of the two-hinged arch as shown Figure 11.25 
due to a 15 N load acting at coordinate O. Given, a couple of 50 N m at coordinate @ 
creates a displacement of 0.005 m at coordinate O. 

Figure 11.25 

Solution 
Here, in this problem, we have 

Displacement at coordinate O due to a couple of 50 N m at coordinate @ A = 0.005 m 

0.005 Displacement at coordiiate O due to a unit couple at coordite @ = - 
50 

Therefore, K12 = 0.0001 m 

According to Murwell's Reciprocal Theorem, we have 
\ 

K12 = K21 

, Thus, K2, = 0.0001 radian which is a rotation. 

Here, the rotation at coordinate @ due to a load of 15 N acting at coordinate O 

= 4 = K2, x Force at coordinate O. 

= 0.0001 x 15 = 0.0015 radian 

11.7 GENERALISED RECIPROCAL THEOREM OR 
BETTI'S THEOREM 

This theorem is also based on tde principle of energy conservation and the principle of 
superposition applied to both the determinate and indetedate  structures subjected to the 
action of several forces and displacements. 
Statement 

In a linearly elastic structure in static equilibrium subjected to two system of forces, 
the virtual work done by the first system of forces during the displacement caused by 
the second system of forces is equal to the virtual work done by the second system of 
forces during the displacements caused by the first system of forces. 
Mathematically, 



Proof 

Let the first system of forces be P,,  P2 and P3 and the corresponding displacements at 
coordinates 1.2 and 3 are A,, 4 and A, respectively. 

Let the second system of forces be P,', P2' and P3' and the corresponding 
displacements at coordinates 1.2 and 3 are A',, At2 and A'3 respectively. 

The virtual work done by the first system of forces in undergoing the displacements 
caused by the second system of forces, 

Thus, we get 

u = pi (61 ,pi' + + 613p3? + p2 (&p1' + h 2 p i  + &3p3? + 

p3 (63iP1' + &3zPi + h P 3 ?  

In the same manner, we get the virtual work done by the second system of forces in 
undergoing the displacements caused by the first system of forces, 

Similarly, we get, 

u = PI' (6,1P, + 612P2 + 613P3) + p i  (%lPl+ b P 2  + h P 3 )  + 
> 

i -p,' (631P1 + 632p2 + 633p3) 

ri From reciprocal theorem we get, 6ii = 6ii 
7 

Thus, we get the virtual Work done by the two conditions are same, i.e. 

Example 11.15 
A continuous beam is subjected to two systems of forces and displacements as shown 
in Figure 11.26. F i  the upward deflection at the coordinate where 9 N is acting in 
the system II. 

Solution 
We give the numbers (1). (2). (3). (4) and (5) to the coordinate where forces are 
acting and displacements are shown or to be f&d out (Figure 11.27). 

Now, we tabulate the values of forces and corresponding displacements in the two 
systems as shown in Table 11.8. 

Taking downward forces and displacements as positive and upward forces and 
displacements as negative, we get 

m- 
ud- 



PA = - 10 (0.003) - 5 (0.003) + 8.(- 0.002) + 12 (- 0.001) - 9 (0.004) 
= -0.109 

/ Table 11.8 

According to Betti's law, we have 

On putting the values, we get 

- 0.065 + 20At5 = - 0.109 
or A': r- - 0.0022 m 

7 
Table 11.9 shows the forces and comespondmg displacements at nine coordinates dl: 
to two systems of force of a portal frame (Figure 1 1.25). 

Find the displalacement A'9 due 10 the second system of forces. 

Table 11.9 (a) : System 1 

I 

Coordinates. f 2 3 4 1 5 1 6  7 1 8 1 9 '  

1 A / - / 0;Zl / 0.FE 
0.;1 - 0.002 - 

I - rad 
- i 



PaMe 11 -9 (b) : System XI 

11.7.1 Miiller-Breslau's Principle 
This principle is used for obtaining "Influence Line Diagrams (ILD)" for any external 
reaction or internal stress resultant, e.g. BM, SF, axial force etc. in a structure. 
Statement 

The influence line diagram for anyfunction (i.e. reaction/internal stress resultant) of 
a structure is given by the deflected shape of the line along which the unit load is 
moving; the deflected shape being obtained by removing the externaLIinterna1 
constraint of the function and then applying a unit displacement in the direction of 
the removed constraint. 

The proof of this theorem is obtained directly by using Betti's Theorem This can be seen in 
any standard text book of Theory of Structures. 

This principle is useful in finding out the "Influence Line Diagrams" for statically 
indeterminate structures as by removing the constraint of the function, we are reducing the 
indeterminacy by "one". Thus, a statically indeterminate structure of first order becomes 
statically determinate. In general, a statically indeterminate structure of order n is reduced to 
n - 1 for finding the deflected shape. 

This is made clear by the following illustrations : 
Case 1 

The influence line diagram for reaction at C(Rc) for the two span continuous beam 
shown in ~ i ~ & e  11.29 is obtained by removing the support C which is the constraint 
for the reaction R ,  After removal of the support the structure becomes a statically 
determinate one Figure 11.29 (b)] which is an overhanging beam. 

Now, if a unit deformation tic = 1 is applied at C the deflected shape gives influence 
line diagram for Rc. 

Case 2 

The influence line diagram for the bending moment at point C in the propped 
cantilever shown in Figure 1 1.30 (a) is similarly obtained. 

The bending moment restraint at C can be removed by introducing a hinge at C. The 
statically indeterminate structure in Figure 11.30 (a) is now reduced to a determinate 
one in Figure 11.30 (b). Next, introduce unit "rotation" at the hinge at C. Since the 
required force is a "moment" (i.e. couple at C), the corresponding deformation will 

Em* Method, 
and~pplieailorrr 



be a "rotation". The deflected shape is given by the dotted line in Figure 11.30 (c). 
1 

This will give the "influence line diagram" to the scale where 8 is the total change 

1 
in slope of the two parts of the beam atAhe hinge C '. Hence, ; will be called the 

"scale fact ."  of the diagram. 

(C) 

Rpre 11.30 

' h e  influence line diagram for the force in member HB is to h obtained for the 
pin-jointed truss shown in Figure 11.3 1 (a). Obviously, the pin-jointed truss is 
statically indeterminate (degree of redundancy = 1). By removing the member KB 
the truss becomes a statically determinate structure. Now, introduce unit forces in 
place of member HB at joints H and B as shown in Figure 11.31 (b). If the unit load 
rdls along the bottom chord ABCDE, the deflection of this chord due to this unit load 
system shown as AE'CDTE gives the ILD for force in HB to a certain scale. The scale 
of the diagram is obtained by dividing all the ordinates of the deflection curve by the 
amount A where A is the deformation between the points H and B (A = HB - KB'). 

1 
Thus, - is called the scale factor of the influence' line diagram 

A 

Example 11.15 
Draw the influence line diagram for the bending moment at section C of the propped 
&tilever shown in Figure 11.32 (a). 

Here the Figure 11.32 (b) shows the structure with the moment restraint at C 
removed by introducing a hinge there. A unit bending moment is introduced at the 
hinge C with the subsequent support reactions shown in Figure 11.32 (b) and the 
bending moment diagram in Figure 11.32 (c) which can be verified. For finding the 
deflection diagram of this beam, we use the conjugate beam method. 

M The conjugate beam with the - loading and the corresponding reactions are shown 
El. 



in Figure 11.32 (d). The bending moment diagram (BMD) of this loading is shown in 
Figure 1 1.32 (t') which is the detlection ((6) diagram, and the ordinates are calculated 
at every 1 m interval (which can be verified). According to Miiller-Breslau's 
thecl~ern, this deflected diagram gives the influence line diagram for bending moment 
at C, to a certain scale. The scale of UIE diagram is obtained by dividing the ordinates 
by 0, t 0, where 6, and O2 are slopes on either side of the hinge C. The value of 6, 

M and ti2 are the values of shear force of the -loading 011 conjugate beam and is equal 
El 

9 7 1 
to -4 and -? respectively [Figure 1 1.32 (e)]. Total value of 0, t O2 is - 

8 48 125 SO all 
48 EI' 

the ordinates of the deflection diagram are b be divided by this constant - 125 to get 
48 El 

the actual values of the IED ordinates which are shown in Figure 11.32 (g). 

11.8 LIMITATIONS OF THE ENERGY METHODS 

Energy methods are applicable to the structures of materi;lls which follow Hooke's law and 
the entire system obeys the law of superposition. These methods are not applicable in the 
event when the stresses and displacements are not linear functions of the applied loads and 
the principle of superposition does not apply. Also the displacements must be very small as 
not to substantially cause a change in the geometry of the structure. 

11.9 SUMMARY 

Energy principles and various energy methods in structural analysis giving emphasis on 
indeterminate types are discussed in this unit. The basic concepts of conservation of energy 
is applicable to elastic bodies as well. Since deformation are imposed on the system, the 
internal work done by a structural system is a negative quantity and are restrained by its 
internal forces (or stress system). The external work done by the external forces is positive. 
Actually, the algebraic sum of external and internal work done must be zero. 

Energy Methods 
and Applications 
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Strain Energy 

The strain energy is the work done by the internal forces due to distortion or 
displacement of the body. It may be represented by internal work done or potential 
energy. In elastic bodies, strain energy is released on removal of the loads or 
deformation. The general equation of strain energy is as follows : 

where, 

S = axial force 

= Biaxial shear forces 

Me My = Biaxial bending moments 

T =. Torsion 

A = Area of cross section of the member 

A,, A, = Reduced area of the cross section in the xz and yz planes 

ds = Elemental length along the direction of force or stress 

E = Modulus of elasticity 

G = Shear modulus 

K = A constant based oncross sectional shape of the twisting member 
known as form factor 

I,, 1, = Moment of inertia of the cross section about the neutral axis 
parallel to x and y axes 

Principle of Virtual Work 

If a structure is in equilibrium under the action of a set of external forces and is 
subjected to a set of displacements compatible with the constraints of the Structure, 

-the total work done by the external and internal forces during the displacement must 
be zero. 

Castigliano's Theorem-I 

The partial derivative of the strain energy U of a linearly elastic structure representec' 
in terms of displacements with respect to any displacement Aj at coordinate j is equai 
to the force PI at coordinate j. Mathematically, 

Castigllano's Theorem-Il ., 

The partial derivative of the strain energy of a linearly elastic structure represented :;I 

terms of forces witb respect to any force PI at coordinate j is equal to the 
displacement A,+, at coordinate j. Mathematically. 

Minimm Energy Theorem or Principle of Least Work 

In any and every case of statically indetermiIIate structure where an indefinite 
number of different values of the redundant forces and displacements satisfy the 
conditions of statical eq@librium, their actual values ace those that render the total 
strain energy stored to a minimum 

Therefore, au a2u . - = 0 and -1s positive ax ax2 
where X = redundant force. 



In a linearly elastic struchue in static equilibrium, the displacement at coordinate i 
due to a unit force acting at coordinate j is equal to the displacement at coordinate j 
due to unit force at coudinate i. Mathematically, 

Generallsod Reclprocd Theorem or Bettl's Theonm 

In a linearly elastic structure in static equilibrium, subjected to two system of forces, 
the vimai work done by the fist  system of forces during the displacements caused 
by the second system of forces is equal to the virtual work done by the second system 
of forces during the displacements caused by the first system of forces. 

PI, P,, P3 = first system of forces at coordinate 1 ,2  and 3. 

P,', P i ,  P,' = second system of forces at coordinate 1.2 and 3. 

A,, 4, A, = Displacement due to second system forces at coordinate 1.2 and 3. 

A',, At2, At3 = Displacement due to fist system forces at c o d h a t e  1 ,2  and 3. 

11.11 ANSWERS TO SAQs 

SAQ I 

Total strain energy of the beam, 

au According to minimum energy principle, - = 0 
aR 

Thus, we geCR = 148.704 t 

SAQ 2 
Let reaction at B = tension in BD = R 

Tension in AD and CD each = P and length of BD = 1 

W-R We have, P = - 
2cos0 , 

au According to minimum energy principle. - = 0 aR '! 

Thus, we get, R = a n d P =  'w cos2e 
1 + 2 ~ 0 ~ 3 8  1 +kos38 ' 

SAQ 3 

Take the member BD as redundant. Considering compressive force as positive and 
tensile force as negative. 

and C K'I = 21(1 + 6) 



:. Correcting factor, X = - X,PK~ - - -- 
K21 2 

Applying the formula F = P + XK, we get the forces in the various members as given 
in the last column of Table 1 1.10. 

Table 11.10 

SAQ 4 

Take the member BC as redundant. Considering the compessive force as positive 
and tensile force as negative. 

Correcting factor X = - - - 

Applying the fonnula F =  P + XK, we get the forces in the various members as given 
in the last column of Table 1 1.1 1. 

Table 11.11 

SAQ 5 

(a) Let the horizontal reaction at A = H t be taken as redundant. 
Thus,weget,H, = (2x4-H) = ( 8 - H ) t  

and mA = 0, it gives Va = 4 N?' and Va = 4 N.1 

au According to minimum energy principle, - = 0 
aH 

. . 



Thus, we get, 

For the frame given in this ~roblem, value of M in members AB, DC and BC is 
given in Table 1 1.12. 

Table 11.12 

For this frame, 
4 4 4 

~ ( H Y - 3 ) y d y  + j ( ~ - 8 ) y ~ d ~  + 4 1 ( 4 ~ - 4 x - 1 6 ) &  = 0 
0 0 0 

It gives, H = 5.8 N 

Thus, HA = 5.8 N t HD = 2.2 N t and 

Member AB 

M = ~ y - y 2  

Thus, MA = 0 and ME = 7.20Nm 

dU For maximisation of M ,  - - 
mi - O  

It gives, y = 2.9 m and (M),, = + 8.41 N m 

Member DC 

M = Hy-8y 

Thus, MD = 0 and Me = - 8.8 N m 

Member BC 

M = 4 H - 4 ~ - 1 6  

MB = +7.2Nm and Me = -8.8Nmand 

If the point of contraflexure is at x from B, then 

(M), = 4H-4x-16 = Owhichgivesx = 1.8m 

Now, after calculating the bending moment ordinates, we can draw the bending 
moment diagram (BMD) as given in Figure 11.33. 

mpm 11.33 t Bending Moment Magrm 
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-- 

Firstly, we consider the one-half portion of the ring ABC as equilibrium. Now 
we draw the free body diagram of ABC. 

Moment at any section x makiig an angle 0 with the horizontal is as follows : 

Strain energy stored by the semicircular ring ABC 

au 
We assume Mo as redundant and by the principle of minimum energy, - - 

aM0 
- 0 

WR MA = (-) - (rc - 2) waxm - ve] 
2It 

It BM at B ,  i.e. at 0 = -, 
2 

WR [ ~ a x ~ + v e ]  MB = (+) 7 
Now at the point of contrafIexurel M = 0 

Of, 
2 

cos 0: = -, i.e. 8 = cos- 
It (t) i.e.. 

Now, after calculating the bending moment ordinates, we can draw the bending 
moment diagram (BMD) as given in Figure 11.34. 

FIph 11.34 1 Beadiog Moment DLagh 

Here, contraction in the length of vertical diameter = 2 x vertical deflection of B. 

Again. the strain energy stored by the semi-circr~lar part ABC of the ring 



au According to Castigliano's Second Theorem, - = 6 aw 
WR" 2 w R ' ( x 2 - 8 ) = - ( K 2 - 8 )  .-. Vertical deflection of B = - = - aw IMEI  8xEI 

:. Contraction in the length of vertical diameter = wR3 (x2 - 8)  
4xEI ' 

Now, we impose two equal and opposite horizontal forces H at A and C. So free 
body diagram of the semicircular ring is as given,in Figure 11 35 

Bending moment at any section X making an angle 8 with the horizontal 

.-. Strain energy stored by the semicircular ring ABC 

According to Castigliano's Second Theorem, 
Y 

Displacemeno ~f C relative to A : 

aM Since, - = R sin 81 
aH 

Putting the actual value of H = 0, we get 

Since, the expansion in the length of horizontal diameter is equal to the 
horizontal displacement of C relative to A. 

wR3 :. Required expansion = - (4 - n) 27tEl 

b o w  Methods 
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I s,,,, -11 
Let the horizontal thrust at A and B each = H be taken as redundant. 

It gives V, = 2.5 t ? and V, = 7.5 t ? 
We know that for framed stnictures total strah energy is as follows : 

av 
~ c c o r d i n ~  to minimum energy principle, - = 0 aH 

Thus, we get, 

For the frame given in this problem, value of M in members AB, DC and BC is given 
in Table 11.13. 

Table 11.13 

oto 10 

L I I I I 

Here the members are of unifornl flexural rigidity, i.e. EZ = constant. 

Thus, we get, 

Thus, we get on putting the values 
5 5 

(- 0 . 6 ~ )  (br - 0.6Hx) dr + 1 (- 0.6) ( x  + 5) 130 - 2x - 0.6H (x + 511 dr + 
0 0 

T(- O.&) (k - 0.6Hr) br c 0 
0 

It gives, H = 4.583 t 

Now, we can calculate the bending moment ordinates as follows : 

BMatA = Ica, = 0 

Now, after calculating the bending moment ordinates, we can draw the bending 
moment diagram (B hlD) as given in Figure 11.36. 
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Fipm 11.36 : Bending Moment Diagram 

SAQ 7 
From Table 11.9 of two sets of forces and corresponding displacements, we get 

c PA' = 5 (0.003) + 3 (0.001) + 1 (0.002) - 4 (- 0.001) + 2&' = 0 . 0 3  + 24'  

c P A  = 10 (0.001) + 4 (0.002) + 5 (0.002) + 2 (0.001) + 1 (0.002) = 0.032 

According to Betti's law, 

PA' = PA 
Thus, 0.024 + a', = 0.032 

We get, A', = 0.004 radian 


