

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem – III Year / V Semester (2020-21) Subject –Structural Analysis-I Unit – II Presented by – Akhil Maheshwari (Asst. Prof., Department of Civil Engineering)

VISSION AND MISSION OF INSTITUTE

Vision

To become a renowned center of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

Mission

M-1: Focus on evaluation of learning outcomes and motivate students to inculcate research Aptitude by project based learning.

M-2: Identify, based on informed perception of Indian, Regional and global needs, areas of focus and provide platform to gain knowledge and solutions.

M-3: Offer opportunities for interaction between academia and industry.

M-4: Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders can emerge in a range of professions.

VISSION AND MISSION OF DEPARTMENT

VISION

To become a role model in the field of Civil Engineering for the sustainable development of the society.

MISSION

To provide outcome base education.

To create a learning environment conducive for achieving academic excellence.

To prepare civil engineers for the society with high ethical values.

PROGRAMME OUTCOMES (PO)

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering Fundamentals and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomes (CO)

CO1. Students will be able to understand the Static and Kinematic Indeterminacy.

CO 2. Students will be able to understand the different types of Prop, Fixed and Continuous Beam.

CO 3. Students will be able to understand the Slope Deflection and Moment Distribution Method.

CO 4. Students will be able to understand Mechanical vibrations.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	1	-	-	1	1	1	2
CO2	3	3	3	2	2	1	-	-	2	1	1	2
CO3	3	3	3	2	2	1	-	-	1	1	2	2
CO4	3	2	2	2	3	2	-	-	2	1	3	3

Teaching Plan

Lect No.	Unit Code	Topic Discription	Expexcted Month	Expected week	Plan of teaching
1	1.1	Introduction,Scope, and Coutcome of subject	July	1	PPT
2	2.1	Introduction to Indeterminate structures		1	PPT
3	2.2	Degrees of freedom per node			РРТ
4	2.3	Static and Kinematic indeterminacy (i.e. for beams, frames & portal with & without sway etc.)	July	1	PPT
5	2.4	Releases in structures		1	РРТ
6	2.5	Maxwell's reciprocal theorem and Betti's theorem.		1	PPT
7	2.6	Analysis of prop cantilever structures		1	PPT
8	2.7	Analysis of Indeterminate Structure (fixed and continues beams) using Area moment method	August	1	PPT
9	2.8	Conjugate beam method		1	РРТ
10	2.9	Three moments Theorem.		1	РРТ

Teaching Plan

Lect No.	Unit Code	Topic Discription	Expexcted Month	Expected week	Plan of teaching
11	3.1	Analysis of Statically Indeterminate Structures using Slope-deflection method		1	PPT
12	3.2	Moment-distribution method applied to continuous beams and portal frames with and without inclined members		1	PPT
13	4.1	Vibrations: Elementary concepts of structural vibration, Mathematical models, basic elements of vibratory system. Degree of reedom. Equivalent Spring stiffness of springs n parallel and in veries.		1	PPT
14	4.2			1	PPT
15	4.3	Simple Harmonic Motion: vector representation, characteristic, addition of harmonic motions, Angular oscillation.		1	PPT
16	4.4	Undamped free vibration of SDOF system: Newton's law of motion	ation of SDOF system: tion		РРТ
17	4.5	D Almbert's principle, deriving equation of motions, solution of differential equation of motion, frequency & period of vibration, amplitude of motion; Introduction to damped and forced vibration.	October	1	PPT

Static and Kinematic Indeterminacy of Structure

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

Structure

- A *structure* refers to a system of connected parts used to support a load.
- A *structure* defined as an assembly of different members connected to each other which transfers load from space to ground.
- Mainly of two types :
 - 1. Load Bearing Structure
 - 2. Framed Structure

Support System

- Supports are used in structures to provide it stability and strength.
- Main types of support :
 - 1. Fixed Support
 - 2. Hinged or Pinned Support
 - 3. Roller Support
 - 4. Vertical Guided Roller Support
 - 5. Horizontal Guided Roller Support

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

Fixed Support :

> No. of Reaction - 3 (R_{cx} , R_{cy} , M_{cz})

- R_{CX} -Reaction at joint `C ' in x-direction
- R_{CY} -Reaction at joint `C ' in y-direction
- M_{CZ}-Moment at joint `C ' aboutz-direction

Displacement in x-direction at joint `C` is zero (i.e $y_{CX} = O$)
Displacement in y-direction at joint `C` is zero (i.e $y_{CY} = O$)
Rotation about z-direction at joint `C` is zero (i.e $\theta_{CZ} = O$)

2-D Support Hinged or Pinned Support :

No. of Reaction - 2 (R_{AX}, R_{AY})

- R_{AX} -Reaction at joint `A ' in x-direction
- R_{AY} -Reaction at joint `A ' in y-direction

Resists horizontal and vertical forces

Displacement in x-direction at joint `A ` is zero (i.e y_{AX} = O)
 Displacement in y-direction at joint `A ` is zero (i.e y_{AY} = O)
 Rotation about z-direction at joint `A ` is not zero (i.e θ_{AZ} ≠ O)

Roller Support :

• R_{BY}-Reaction at joint 'B' in y-direction

Resists vertical forces

Displacement in x-direction at joint 'B ' is not zero (i.e y_{BX}≠O)
 Displacement in y-direction at joint 'B ' is zero (i.e y_{BY} = O)
 Rotation about z-direction at joint 'B ' is not zero (i.e θ_{BZ} ≠ O)

Vertical Guided Roller Support :

> No. of Reaction - 2 (R_{AX}, M_{AZ})

- R_{AX}-Reaction at joint `A ' in x-direction
- M_{AZ} Moment at joint `A ' about z-direction

Displacement in x-direction at joint `A ` is zero (i.e y_{AX} = O)
 Displacement in y-direction at joint `A ` is not zero (i.e y_{AY} ≠ O)
 Rotation about z-direction at joint `A ` is zero (i.e θ_{AZ} =O)

Horizontal Guided Roller Support :

- > No. of Reaction 2 (R_{AY} , M_{AZ})
- R_{AY}-Reaction at joint `A ' in y-direction
- M_{AZ} Moment at joint `A ' about z-direction

Displacement in y-direction at joint `A ` is zero (i.e y_{AY} = O)
 Displacement in x-direction at joint `A ` is not zero (i.e y_{AX} ≠ O)
 Rotation about z-direction at joint `A ` is zero (i.e θ_{AZ} =O)

Spring Support :

• R_{AY}-Reaction at joint `A ' in y-direction

 \rightarrow Displacement in y-direction at joint A is zero (i.e y_{AY} = O)

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

Internal Hinge or Pin :

Characteristics :

Moment at 'C ' is zero (i.e. M@C = O)

Displacement in y-direction at joint `C ` is not zero (i.e y_{CY} ≠ O)
Displacement in x-direction at joint `C ` is not zero (i.e y_{CX} ≠ O)

 \geq Rotation about z-direction at joint C are may be different at either side (i.e $\theta_{C_1} \neq \theta_{C_2}$)

Internal Roller :

Can't transfer horizontal reaction (axial thrust)(i.e. F_{BX} = O)

Displacement in y-direction at joint `B `may not be zero (i.e $y_{BY} \neq O$)
Displacement in x-direction at joint `B ` is not zero (i.e $y_{BX} \neq O$)

Internal Link :

• Portion ' BC ' is known as internal link.

Characteristics :

- Two internal pins at B & C
- Portion BC contains only axial load because moment at B and C is zero.(i.e. M@B& M@C = O)
- > Displacement in y-direction at joint `B & C `is not zero (i.e Y_{BY} , $y_{CY} \neq O$)
- \searrow Displacement in x-direction at joint `B & C ` is not zero (i.e Y_{Bx}, Y_{CX} \neq O)

Torsional Spring Support :

Characteristics :

• θ_z -Rotational resistance at joint in z-direction

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

Fixed Support :

- \geq No. of Reaction 6 (R_{cx}, R_{cy}, R_{cz}, M_{cx}, M_{cy}, M_{cz})
- R_{CX}, R_{CY}, R_{CZ} Reaction at joint 'C' in x, y, z-direction
- M_{CX}, M_{CY}, M_{CZ}-Moment at joint `C' about x, y, z-direction

Hinged or Pinned Support :

R_{CX}, R_{CY}, R_{CZ} - Reaction at joint 'C ' in x, y, z-direction

Resists horizontal and vertical forces

Displacement in x,y,z-direction at joint 'C ' is zero (i.e y_{CX}, y_{CY},y_{CZ} = O)
Rotation about x,y,z-direction at joint 'C ' is not zero (i.e θ_{CX} , θ_{CY} , $\theta_{CZ} \neq O$)

Roller Support :

> No. of Reaction - 1 (R_{CY})

• R_{CY} - Reaction at joint `C ' in y-direction

Resists vertical forces

Displacement in y-direction at joint `C` is zero (i.e $y_{CY} = O$)
Displacement in x,z-direction at joint `C` is not zero (i.e y_{CX} , $y_{CZ} \neq O$)
Rotation about x,y,z-direction at joint `C` is not zero (i.e θ_{CX} , θ_{CY} , $\theta_{CZ} \neq O$)

- When a body is in static equilibrium, no translation or rotation occurs in any direction.
- Since there is no translation, the sum of the forces acting on the body must be zero.
- Since there is no rotation, the sum of the moments about any point must be zero.

PIN JOINT PLANE FRAME (2-DTruss)

No. of Equilibrium Equation : 2

- ∑ Fx = O
- ∑ Fy =O

PIN JOINT SPACE FRAME (3-DTruss)

No. of Equilibrium Equation: 3

- ∑ Fx = O
- ∑ Fy =O
- ∑ Fz = O

RIGID JOINT PLANE FRAME (2-D Frame)

No. of Equilibrium Equation : 3

- ∑ Fx = O
- ∑ Fy =O
- ∑ Mz = O

RIGID JOINT SPACE FRAME (3-D Frame)

No. of Equilibrium Equation : 6

- ∑ Fx = O
- ∑ Fy = O
- ∑ Fz = O
- ∑ Mx = O
- ∑My=O
- ∑Mz=O

NOTE : Above equilibrium equations are used to find members forces and moments . To find out support reaction equilibrium equation for any type of structure always remains 3(i.e. Σ Fx = 0 Σ Fy = 0 Σ Mz = 0)for 2-D and 6 for 3-D structure.

Static Indeterminacy

Statical Determinant Structure :

- If condition of static equilibrium are sufficient to analyse the structure, it is called Statical Determinant Structure.
- Bending moment and Shear force are independent of material properties and cross section.
- Stresses are not induced due to temp. changes and support settlement.

Static Indeterminacy

Statical Indeterminant Structure :

- If condition of static equilibrium are not sufficient to analyse the structure , it is called Statical Indeterminant Structure.
- Bending moment and Shear force are dependent on material properties and cross section.
- Stresses are induced due to temp. changes and support settlement.

Static Indeterminacy

Static Indeterminacy = External Indeterminacy + Internal Indeterminacy Ds = Dse +

Dsi

External Indeterminacy : If no. of reactions are more than equilibrium equation is known as Externally Indeterminant Structure.

No of Reactions = 4 Equilibrium Equations=3 for 2-D and 6 for 3-D structure. Beams is externally indeterminate to the first degree

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR
Internal Indeterminacy : If no. of Internal forces or stresses can't evaluated based on equilibrium equation is known as Internally Indeterminant Structure.

 Member forces of Truss can not be determined based on statics alone, forces in the members can be calculated based on equations of equilibrium. Thus, structures is internally indeterminate to first degree.

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

(A) Rigid Jointed Plane Frame :

- External Indeterminacy, Dse : R-E
- Internal Indeterminacy, Dsi : 3C-r'

OR

Ds = 3m+R-3j-r'

- R = No. of external unknown reaction
- E = No. of Equilibrium Equation = 3
- m = No. of members , j = joints
- C = No. of close loop
- r' = Total no. of internal released or

-1

= No. of members

connected

with internal hinge

Some of the example for the r':

r' = 3-1 = 2 (i.e. member connected to hinges = 3)

(B) Rigid Jointed Space Frame :

- External Indeterminacy, Dse : R-E
- Internal Indeterminacy, Dsi : 6C-r'

OR

Ds = 6m+R-6j-r'

- R = No. of external unknown reaction
- E = No. of Equilibrium Equation = 6
- m = No. of members , j = joints
- C = No. of close loop
- r' = Total no. of internal released or
 - = No. of members
 - 3* connected -1

with internal hinge

(C) Pinned Jointed Plane Frame :

- External Indeterminacy, Dse : R-E
- Internal Indeterminacy, Dsi : m+E-2j

R = No. of external unknown reaction

E = No. of Equilibrium Equation = 3

m = No. of members

Ds = m+R-2j

OR

(D) Pinned Jointed Space Frame :

- External Indeterminacy, Dse : R-E
- Internal Indeterminacy, Dsi : m+E-3j

R = No. of external unknown reaction

E = No. of Equilibrium Equation = 6

m = No. of members

Ds = m+R-3j

OR

- Ds < 0 : Unstable & statically determinant structure
 Deficient Frame or Structure
- Ds = 0 : Stable & statically determinant structure
 Perfect Frame or Structure
- Ds > 0 : Stable & statically indeterminant structure
 Redundant Frame or Structure

- Kinematic Indeterminacy = Degree of Freedom
- If the displacement component of joint can't be determined by Compatibility Equation , it is called Kinematic Indeterminant Structure.

Degree of Kinematic Indeterminacy(D_k):

 It is defined as total number of unrestrained displacement (translation and rotation) component at joint.

Fixed Support :

Displacement in x-direction at joint 'C' is zero (i.e $y_{CX} = O$ Displacement in y-direction at joint 'C' is zero (i.e $y_{CY} = O$ Rotation about z-direction at joint 'C' is zero (i.e $\theta_{CZ} = O$)

Hinged or Pinned Support :

• θ_{AZ} -Rotation about z-direction at joint 'A '

Resists horizontal and vertical forces

Displacement in x-direction at joint `A` is zero (i.e y_{AX} = O)
 Displacement in y-direction at joint `A` is zero (i.e y_{AY} = O)
 Rotation about z-direction at joint `A` is not zero (i.e θ_{AZ} ≠ O)

Roller Support :

- y_{BX} -Displacement in x-direction at joint 'B'
- θ_{BZ} -Rotation about z-direction at joint 'B'

Resists vertical forces

Displacement in x-direction at joint 'B ' is not zero (i.e y_{BX}≠O)
 Displacement in y-direction at joint 'B ' is zero (i.e y_{BY} = O)
 Rotation about z-direction at joint 'B ' is not zero (i.e θ_{BZ} ≠ O)

Vertical Guided Roller Support :

Degree of Freedom - 1(y_{AY})

y_{AY}-Displacement in y-direction at joint 'A'

Displacement in x-direction at joint `A ` is zero (i.e y_{AX} = O)
 Displacement in y-direction at joint `A ` is not zero (i.e y_{AY} ≠ O)
 Rotation about z-direction at joint `A ` is zero (i.e θ_{AZ} =O)

Horizontal Guided Roller Support :

Degree of Freedom - 1(y_{AX})

y_{AX}-Displacement in x-direction at joint 'A'

Displacement in y-direction at joint `A ` is zero (i.e y_{AY} = O)
 Displacement in x-direction at joint `A ` is not zero (i.e y_{AX} ≠ O
 Rotation about z-direction at joint `A ` is zero (i.e θ_{AZ} =O)

Fixed Support :

Displacement in x,y,z-direction at joint `C` is zero (i.e y_{CX}, y_{CY}, y_{CZ} = O)
Rotation about x,y,z-direction at joint `C` is zero (i.e θ_{CX} , θ_{CY} , θ_{CZ} = O)

Hinged or Pinned Support :

- \geq Degree of Freedom 3 ($\theta_{CX}, \theta_{CY}, \theta_{CZ}$)
- θ_{CX} , θ_{CY} , θ_{CZ} -Rotation about x,y,z-direction at joint 'C '

- Resists horizontal and vertical forces
- Displacement in x,y,z-direction at joint `C ` is zero (i.e y_{CX}, y_{CY},y_{CZ} = O)
 Rotation about x,y,z-direction at joint `C ` is not zero (i.e θ_{CX} , θ_{CY} , $\theta_{CZ} \neq O$)

Roller Support :

- \geq Degree of Freedom 5 (y_{cx}, y_{cz}, θ_{cx} , θ_{cy} , θ_{cz})
- y_{CX}, y_{CZ}-Displacement in x,z-direction at joint `C`
- θ_{CX} , θ_{CY} , θ_{CZ} Rotation about x,y,z-direction at joint 'C '

Internal Hinge or Pin :

$$\blacktriangleright \text{ Degree of Freedom} - 4(y_{CX}, y_{CY}, \theta_{C_1}, \theta_{C_2})$$

Displacement in y-direction at joint `C` is not zero (i.e $y_{CY} \neq O$)
Displacement in x-direction at joint `C` is not zero (i.e $y_{CX} \neq O$)

➢ Rotation about z-direction at joint `C ` are may be different at eit i.e $θ_{C_1} ≠ θ_{C_2}$)

•

Free End :

 \rightarrow Degree of Freedom – 3(y_{BX}, y_{BY}, θ_{BZ})

Displacement in x-direction at joint 'B ' is not zero (i.e y_{BX} ≠ O)
Displacement in y-direction at joint 'B ' is not zero (i.e y_{BY} ≠ O)
Rotation about z-direction at joint 'B ' is not zero (i.e θ_{BZ} ≠ O)

Axial Thrust Release:

 \geq Degree of Freedom – 4(y_{CX1}, y_{CX2}, y_{CY}, θ_{cz})

Displacement in x-direction at joint 'C ' is not zero (i.e y_{CX1}, y_{CX2} ≠ O)
 Displacement in y-direction at joint 'C ' is not zero (i.e y_{CY} ≠ O)
 Rotation about z-direction at joint 'C ' is not zero (i.e θ_{CZ} ≠ O)

Shear Release:

 \geq Degree of Freedom – 4(y_{CY1}, y_{CY2}, y_{CX}, θ_{cz})

Displacement in x-direction at joint 'C ' is not zero (i.e y_{CX} ≠ O)
 Displacement in y-direction at joint 'C ' is not zero (i.e y_{CY1}, y_{CY2} ≠ O)
 Rotation about z-direction at joint 'C ' is not zero (i.e θ_{CZ} ≠ O)

Frame Joint:

Degree of Freedom –
$$5(y_{OY}, y_{OX}, \theta_{OAZ}, \theta_{OBZ}, \theta_{OCZ})$$

Displacement in x-direction at joint 'O' is not zero (i.e $y_{OX} \neq O$)
Displacement in y-direction at joint 'O' is not zero (i.e $y_{OY} \neq O$)
Rotation about z-direction at joint 'O' is not zero (i.e θ_{OAZ} , θ_{OBZ} , $\theta_{OCZ} \neq O$)

Internal Roller:

 \blacktriangleright Degree of Freedom – 5(y_{CX1}, y_{CX2}, θ_{CZ1} , θ_{CZ2} , y_{CY})

Displacement in x-direction at joint 'C' is not zero (i.e $y_{CX_1}, y_{CX_2} \neq 0$)
Displacement in y-direction at joint 'C' is not zero (i.e $y_{CY} \neq 0$)
Rotation about z-direction at joint 'C' is not zero (i.e $\theta_{CZ_1}, \theta_{CZ_2} \neq 0$)

(A) Rigid Jointed Plane Frame :

- Dk : 3j-R+r'
- Dk(NAD) : Dk-m'

R = No. of external unknown reaction

NAD=Neglecting Axial Deformations m' = No. of axially rigid members

(Beams are azially rigid or stiffness is r' = Total no. of internal released or infinite) = No. of members

connected -1

with internal hinge

(B) Rigid Jointed Space Frame :

- Dk : 6j-R+r'
- Dk(NAD) : Dk-m'

R = No. of external unknown reaction

NAD=Neglecting Axial Deformations m' = No. of axially rigid members

- r' = Total no. of internal released or
 - = No. of members
 - 3* connected -1 with internal hinge

• (C) Pinned Jointed Plane Frame :

NAD=Neglecting Axial Deformations

• Dk : 2j-R

• Dk(NAD) : 0

R = No. of external unknown reaction j = No. of joints

• (D) Pinned Jointed Space Frame :

NAD=Neglecting Axial Deformations

• Dk : 3j-R

• Dk(NAD) : 0

R = No. of external unknown reaction j = No. of joints

Stability of Structure

External stability :

- For any 2-D structure 3 no. of reactions and foe 3-D structure 6 no. of reactions are required to keep structure in stable condition.
- All reactions should not be Parallel.
- All reactions should not be Concurrent (line of action meets at one point).

Lingtoble Structure because of

Stability of Structure

Internal stability :

- No part of structure can move rigidly releative to other part.
- For geometric stability there should not be any condition of mechanism.
- Static Indeterminacy should not be less than zero.(i.e. Ds >=0)(But it is not mandatory, sometimes structure is not stable though this conditions satisfied)
- For internal stability following conditions should be satisfied :

(1) Pinned Jointed Plane Truss : m>=2j-3 m = No. of members
(2) Pinned Jointed Space Truss : m>=3j-6 j = No. of joints
(3) Rigid Jointed Plane Frame : 3m>=3j-3
(4) Rigid Jointed Space Frame : 6m>=6j-6

Example of unstable structure :

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

Stability of Structure

Example of unstable structure :

Unstable because of local member failure.

Geometric unstable because of no diagonal member.

Examples

* Calculate static indeterminacy and comment on stability of structure :

Dse =R-E = 3-3=0 Ds=0 Dsi = 3C-r'= 0 (no close loop) Stable and Determinate Structure

Dse =R-E =7-3=4 Ds=3 (internal hinge is part of internal indeterminacy) Dsi =3C-r'=3*0-(2-1)=-1 (no close loop)

Stable and Indeterminate Structure

3)

Dse=R-E=6-3=3 Ds=1 Dsi=3C-r'=3*0-(2*(2-1))=-2 (no close loop) Stable and Indeterminate Structure

Examples

* Calculate static indeterminacy and comment on stability of structure :

Dse =R-E =7-3=4 Ds=2 Dsi =3C-r'=3*0-2*(2-1)=-2 (no close loop, two hinges & not link,link is only vertical) Stable and Indeterminate Structure

Dse =R-E =6-3=3 Ds=2 (Guided roller) Dsi =3C-r'=3*0-(2-1)=-1 (no close loop and one releases) Stable and Indeterminate Structure

Dse=R-E=6-3=3 Ds=1 Dsi=3C-r'=3*0-2=-2 (no close loop and two releases) Stable and Indeterminate Structure

Examples

* Calculate static indeterminacy and comment on stability of structure :

Dse =R-E =5-2=3(no axial load) Ds=3 Dsi =3C-r'=0 (no close loop)

Stable and Indeterminate Structure

Dse =R-E =10-3=7 Ds=6 Dsi =3C-r'=3*0-(2-1)=-1 (no close loop) Stable and Indeterminate Structure

Dse=R-E=4-3=1 Ds=12 Dsi=3C-r'=3*4-(2-1)=11 (4 close loop and one hinge) Stable and Indeterminate Structure
* Calculate static indeterminacy and comment on stability of structure :

Dse =R-E =3-3=3 Ds=1 Dsi =3C-r'=-2 (no close loop and two releases) Stable and Indeterminate Structure

Dse =R-E =5-3=2 Ds=2 Dsi =3C-r'=3*0-0=0 (no close loop) Stable and Indeterminate Structure

Dse=R-E=8-3=5 Ds=3 Dsi=3C-r'=3*0-2=-2 (0 close loop and two releases) Stable and Indeterminate Structure

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

* Calculate static indeterminacy and comment on stability of structure :

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

is support not internal joint)

* Calculate static indeterminacy and comment on stability of structure :

Dse =R-E =12-6=6 Ds=12 Dsi =6C-r'=6*1-0=6 (one close loop and zero releases) Stable and Indeterminate Structure

Dse =R-E =16-6=10 Ds=13 Dsi =6C-r'=6*1-3(2-1)=3 (one close loop and 3 releases) Stable and Indeterminate Structure

Dse=R-E=3-3=0 Ds=2 Dsi=m+E-2j=13+3-2*7=2 (13 members and 7 joints) Stable and Indeterminate Structure

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

18)

16)

17)

33.17

777

* Calculate static indeterminacy and comment on stability of structure :

Dse =R-E =4-3=1 Ds=3 Dsi =m+E-2j=17+3-2*9=2 (17 members and 9 joints) Stable and Indeterminate Structure

Dse =R-E =6-3=3 Ds=0 Dsi =m+E-2j=12+3-2*9=-3 (12 members and 9 joints) Stable and Determinate Structure

Dse=R-E=3-3=0 Ds=2 Dsi=m+E-2j=19+3-2*10=2 (19 members and 10 joints) Stable and Indeterminate Structure

* Calculate kinematic indeterminacy structure :

Dk =3j-R+r' =3*4-4=8 Dk(NAD)=Dk-m=8-3=5

Dk =3j-R+r' =3*5-5+2*(2-1)=12 Dk(NAD)=Dk-m=12-4=8

Dk =3j-R+r' =3*4-7=5 Dk(NAD)=Dk-m=5-3=2

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

777

Dk =3j-R+r' =3*8-6+2=20 Dk(NAD)=Dk-m=20-7=13

Dk =3j-R+r' =3*4-3=9 Dk(NAD)=Dk-m=9-3=6

Dk =3j-R+r' =3*9-7=20 Dk(NAD)=Dk-m=20-10=10

* Calculate kinematic indeterminacy structure :

Dk =2j-R =2*6-4=8 Dk(NAD)=0

8)

777

Dk =2j-R =2*7-3=9 Dk(NAD)=0

Dk =3j-R+r' =3*9-6=21 Dk(NAD)=Dk-m=21-10=11

Dk =3j-R+r' =3*3-5=4 Dk(NAD)=Dk-m=4-2=2

Akhil Maheshwari (Asst. Professor), JECRC, JAIPUR

10)

9)

7)

th

Fixed and continuous beam

NEED FOR SUPPORT

- THE LOAD CARRYING STRUCTURES NEED SUPPORTS TO AVOID
 - -DEFORMATION
 - -BENDING
 - -INSTABILITY

UNIFORMLY VARYING LOAD

COMBINED UDL AND UVL

TYPES OF SUPPORT

• VERTICAL AND HORI... LOADS DETERMINE REACTION AND LINE

Types of Support

- In order for loaded parts to remain in equilibrium, the balancing forces are the reaction forces at the supports
- Most real life products have support geometries which differ from the idealized case
- Designer must select the conservative case

Types of Support

- Guided is support at the end of the beams that prevent rotation, but permits longitudinal and transverse displacement
- Free or unsupported is when the beam is totally free to rotate in any direction
- Held is support at the end of the beam that prevents longitudinal and transverse displacement but permits rotation

Types of Support

- Simply Supported is support at the end of the beam that prevents transverse displacement, but permits rotation and longitudinal displacement
- Fixed is support at the ends of the beam that prevents rotation and transverse displacement, but permits longitudinal displacement

Idealized Supports

Idealized Supports

SIMPLE SUPPORT

ROLLER SUPPORT

& click to enlarge

LOCATION ÓF ROLLER BEARING TO SUPPORT JET

HINGED SUPPORT

COMBINED SUPPORT

HINGED SUPPORT

ROLLER SUPPORT

Concentrated and Distributed Loads

Representation of simply supported rectangular beams with concentrated and uniformly distributed loads.

Calculate the support reactions

Solution:

.

First change UDL in to point load.

Resolved all the forces in horizontal and vertical direction. Since roller at B (only one vertical reaction) and hinged at point B (one vertical and one horizontal reaction).

Let reaction at hinged i.e., point B is RBH and RBV, and reaction at roller support i.e. point D is RDV Let ΣΗ & ΣV is the sum of horizontal and vertical component of the forces ,The supported beam is in equilibrium, hence

$$\begin{split} \Sigma H &= \Sigma V = 0 \\ R H &= R B H = 0 \\ R B H &= 0 \\ \Sigma V &= R B V -50 -5 - R D V = 0 \\ R B V + R D V &= 55 \\ & \dots(ii) \end{split}$$

Taking moment about point B

50 × 0.5 - RBV × 0 - RDV × 5 + 5 × 7 = 0 RDV =12 KNANS

Putting the value of RBV in equation (ii)

RBV = 43KNANS

Hence RBH = 0, RDV = 12KN, RBV = 43KN

Types of loads

- Concentrated loads (eg. P₁, P₂, P₃, P₄)
- When a load is spread along the axis of a beam is a *distributed load*. Distributed loads are measured by their *intensity* q (force per unit distance)
- Uniformly distributed load has constant intensity q (fig 4-2a)
- A varying load has an intensity q that changes with distance along the axis. *Linearly varying load from q₁ - q₂* (fig 4-2b)
 - Another kind of load is a *couple of moment* M₁ acting on the overhanging beam (fig 4-2c)

FIG. 4-2 Types of beams: (a) simple beam, (b) cantilever beam, and (c) beam with an overhang

Distributed Load

For calculation purposes, distributed load can be represented as a single load acting on the center point of the distributed area.

Total force = area of distributed load (W : height and L: length) Point of action: center point of the area

Deflection Calculation

Type of Beams

Statically Determinate

Simply Supported Beam

Overhanging Beam

Cantilever Beam

Type of Beams

Statically Indeterminate

Continuous Beam

Propped Cantilever Beam

Fixed Beam

PROPPED CANTILEVER BEAM

Akhil Maheshwari (Asst. Prof., Department of Civil Engineering), JECRC, JAIPUR

Idealized Supports

Akhil Maheshwari (Asst. Prof., Department of Civil Engineering), JECRC, JAIPUR

SIMPLE SUPPORT

Akhil Maheshwari (Asst. Prof., Department of Civil Engineering), JECRC, JAIPUR
ROLLER SUPPORT

BEARING TO SUPPORT

HINGED SUPPORT

765min

KNEE HINGE

PROPPED CANTILEVER

• A propped cantilever beam AB supports a uniform load q determine the reactions, shear forces, bending moments, slopes, and deflections.

Beams

 Members that are slender and support loads applied perpendicular to their longitudinal axis.

Statically Indeterminate Beams

• Can you guess how we find the "extra" reactions?

LECTURE CONTENTS WITH A BLEND OF NPTEL CONTENTS

https://nptel.ac.in/courses/105/101/105101085/

REFERENCES/BIBLOGRAPHY

- (1) Wikipedia
- (2) NPTEL
- (3) Books: Structural Engineering (by Gupta and Pundit)
- (4) Books: B.C. Punmia
- (5) Books: R.K. Bansal
- (6) Books: G.K. Grover

JECRC Foundation

