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Stress Transformation
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Stress transformation is a method of rotating  

the normal stresses and shear on a cross-section  

element to a new coordinate system. Typically  

this is to evaluate the stress and shear with the  

principal stresses.

What is Stress Transformation Actually?
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Take a look at the image below

What is Stress Transformation Actually?

Two pieces of wood, cut at an angle, and glued together. The wood is being  

pulled apart by a tensile force P. How do we know if the glued joint can sustain  

the resultant stress that this force produces? We need to calculate the normal and  

shear stresses perpendicular and parallel to the join
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Therefore, we need to rotate, or transform, the coordinates  

associated with the force P to the direction associated with the  

angle of the glued joint. Then, we can evaluate the stresses along  

these new directions, x' and y'

What is Stress Transformation Actually?

Once we've rotated the coordinate system, we need to transform  

the forces acting in the old coordinate frame to this new  

coordinate frame 5



The final result for the normal and shear stresses in our new

coordinate system (denoted by theta, which is a counterclockwise

rotation from the x axis to the x' axis) is given by

What is Stress TransformationActually?
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Principal and Shear stresses

Skipping to Final Equation of Normal Stress ……………………….

 Principal Stresses

There will be 2 normal stresses . Max and Min

Stresses .These normal stresses will occur when

the shear stress is zero, which means
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Principal and Shear stresses

 Shear Stress

This Stress will have Max value at 45⁰ . There will be

2 Shear Stresses both Equal and Opposite in direction.
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Shear FailurePrincipal Failure

Principal and Shear stresses

Ductile Steel BarCast Iron



MOHR’s Circle

A graphical method to represent the plane stress (also  

strain) relations. It’s a very effective way to visualize  

a specific point’s stress states, stress transformations  

for an angle, principal and maximum shear stresses .

10



11

MOHR’s Circle

The Mohr circle is used to determine graphically the stress  

components acting on a rotated coordinate system, i.e., acting  

on a differently oriented plane passing through that point

http://www.wikiwand.com/en/Circle
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MOHR’s Circle

 Equation of the Mohr circle

From equilibrium of forces on the infinitesimal  

element, the magnitudes of the normal stress and  

the shear stress are given by:



Stress Transformation Equations
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If we vary  from 0° to 360°, we will get all possible values of x1 and x1y1  

for a given stress state. It would be useful to represent x1 and x1y1 as  

functions of  in graphical form.



To do this, we must re-write the transformation equations.
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Substitue for avg and R to get
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x1y1
2 R2 x1   avg 2 

which is the equation for a circle with centre (avg,0) and radius R.

This circle is usually referred to as  

Mohr’s circle, after the German civil  

engineer Otto Mohr (1835-1918). He  

developed the graphical technique for  

drawing the circle in 1882.

The construction of Mohr’s circle is  

one of the few graphical techniques  

still used in engineering. It provides  

a simple and clear picture of an  

otherwise complicated analysis.



Sign Convention for Mohr’s Circle
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Notice that shear stress is plotted as positive downward.

The reason for doing this is that 2 is then positive counterclockwise,  

which agrees with the direction of 2 used in the derivation of the  

tranformation equations and the direction of  on the stress element.

Notice that although 2 appears in Mohr’s circle,  appears on the  

stress element.



Procedure for Constructing Mohr’s Circle

1. Draw a set of coordinate axes with x1 as abscissa (positive to the  

right) and x1y1 as ordinate (positive downward).

2. Locate the centre of the circle c at the point having coordinates x1

 avg and x1y1 0.

3. Locate point A, representing the stress conditions on the x face of
the element by plotting its coordinates x1  x and x1y1  xy. Note  

that point A on the circle corresponds to  = 0°.

4. Locate point B, representing the stress conditions on the y face of
the element by plotting its coordinates x1  y and x1y1  xy.  

Note that point B on the circle corresponds to  = 90°.

5. Draw a line from point A to point B, a diameter of the circle passing  

through point c. Points A and B (representing stresses on planes  

at 90° to each other) are at opposite ends of the diameter (and  

therefore 180° apart on the circle).

6. Using point c as the centre, draw Mohr’s circle through points A

and B. This circle has radius R.

(based on Gere)
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Stresses on an Inclined Element
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1. On Mohr’s circle, measure an angle 2 counterclockwise from

radius cA, because point A corresponds to  = 0 and hence is

the reference point from which angles are measured.

2. The angle 2 locates the point D on the circle, which has  

coordinates x1 and x1y1. Point D represents the stresses on the  

x1 face of the inclined element.

3. Point E, which is diametrically opposite point D on the circle, is  

located at an angle 2 + 180° from cA (and 180° from cD). Thus  

point E gives the stress on the y1 face of the inclined element.

4. So, as we rotate the x1y1 axes counterclockwise by an angle ,  

the point on Mohr’s circle corresponding to the x1 face moves  

counterclockwise through an angle 2.

(based on Gere)
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Principal Stresses
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Maximum Shear Stress
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directions of the  

shear forces.



Example: The state of plane stress at a point is represented by the stress  

element below. Draw the Mohr’s circle, determine the principal stresses and  

the maximum shear stresses, and draw the corresponding stress elements.

80 MPa 80 MPa

50 MPa

x

y

25 MPa



avg

 x  y 

80  50
 15  

2 2
c 

c

A (=0)

A

B (=90)B

R  65 2 25 2  69.6

R  50 152 252

R

1
2

1,2  c  R

1,2  15  69.6

1  54.6 MPa

 2  84.6 MPa

max
 max  R  69.6 MPa

 s  c  15 MPa

50 MPa

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84.6 MPa

84.6 MPa

54.6 MPa

x

y

54.6 MPa

10.5o

100.5o


c

B (=90)
R

80 MPa 80 MPa

50 MPa

x

y

50 MPa

A (=0)

25 MPa

1
2

22

21

 0.3846
25

8015

1

1 100.5 2  10.5

2  21.0180  201

22 21.0

tan 22 

2


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
c

A (=0)

B (=90)
R

80 MPa 80 MPa

50 MPa

x

y

50 MPa

25 MPa

22

2

15 MPa

15 MPa

15 MPa

x

y

15 MPa

-34.5o

55.5o

2smax

22 21.0

2s max  21.0  90 111.0

2smin

22 21.0

2s min   (90  21.0)  69.0

 s min 34.5

taking sign convention into  

account

max

min

s max  55.5
69.6 MPa
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80 MPa 80 MPa

50 MPa

x

y

25 MPa

50 MPa

A (=0)



B (=90)25.8 MPa

x

y

4.15 MPa

25.8 MPa

x1

y1

-30o

Example: The state of plane stress at a point is represented by the stress

element below. Find the stresses on an element inclined at 30° clockwise

and draw the corresponding stress elements.

-60°

-60+180°

C ( = -30°)

C

D ( = -30+90°)

4.15 MPa

D

22

x1 = c – R cos(22+60)

y1  = c + R cos(22+60)

x1y1= -R sin (22+60)

x1  = -26

y1 = -4

x1y1= -69

2

 = -30°

2 = -60°
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68.8 MPa




80 MPa 80 MPax

y

50 MPa

25 MPa

Example: The state of plane stress at a point is represented by the  

stress element below. Find the principal stresses.

50 MPa

15


 

 25 50


 80  25

yx y 
M  



 xy x

We must find the eigenvalues of  

this matrix.

Remember the general idea of eigenvalues. We are looking  

for values of  such that:

Ar = r where r is a vector, and A is a matrix.

Ar – r = 0 or (A – I) r = 0 where I is the identity matrix.

For this equation to be true, either r = 0 or det (A – I) = 0.  

Solving the latter equation (the “characteristic equation”)  

gives us the eigenvalues 1 and 2.


