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VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional

,cultural and social enrichment of the lives of indivisuals and communities

MISSION OF INSTITUTE

Focus on evaluation of learining ,outcomes and motivate students to research apptitude by project

based learning.

• Identify based on informed perception of indian ,regional and global needs ,the area of focus and

provide plateform to gain knowledge and solutions.

•

• Offer oppurtunites for interaction between academic and industry .

• Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted

leaders may emerge.
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Vision

To become a role model in the field of Civil Engineering for the sustainable development of the

society.

Mission
1)To provide outcome base education.

2)To create a learning environment conducive for achieving academic excellence.

3)To prepare civil engineers for the society with high ethical values.
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Objective:
,

The primary purpose of the study of Fluid mechanics is to develop the capacity to understand important basic 

terms used in fluid mechanics, understand hydrostatics and buoyancy with practice of solving problems. Student 

could be able to understand Kinematics of flow and fluid dynamics, Bernoulli’s equation and laminar flow with 

practice of solving problems in practical life for the benefit of society and mankind. 

Outcomes 

 Student will be able to understand Dimensional, Model Analysis and Turbulent Flow with problems.

Student will be able to understand variable Flow in open channels , Gradually and Rapidly Varied Flow.

Student will be able to understand Impact of Jets and hydraulic machines

Student will be able to understand Hydrology, Ground water and Canal Hydraulics.
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Boundry Layer Theory

Displacement Thickness



HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS

(Re ∞)

BOUNDARY LAYER Thin region adjacent to surface of a body where viscous forces  dominate over inertia forces

Re >>1
Re = 

 inertia forces 


viscous  forces



 

Boundary  layer  

separation

Wake:

viscous  effects not

Flow fieimldportant

aroundvaonrticity not

Inner flaorwbitraryzero  Strongshape  
viscous

effects

Outer flow  Viscouseffect  s 

negligible  Vorticity zero  

(Inviscid  potential flow)

BOUNDARY LAYER THEORY



Steady ,incompressible 2-D flow with no body

forces. Valid for laminar flow

O.D.E for

dx

1 dU d

 dx U2
 (* 2) 0

0
dy

 ∼ ( 
 u

) n

(x)

•To solve eq. we first ”assume” an approximate 

velocity profile inside the B.L  Relate the wall 

shear stress to the velocity field

•Typically the velocity profile is taken to be a 

polynomial in y, and the degree of fluid  this 

polynominal determines the number of boundary 

conditions which may be  satisfied

•EXAMPLE:
u  
 a  b  c 2   f () LAMINAR 

FLOW OVER A FLAT PLATE:

•UU∞

U ≈

0,99U∞



Dimensionless gov. eqs.

X ;

Y;

“Naïve” way of solving problem for

If you drop the viscous term Euler’s eqs. (inviscid fluid)




  P 1 2 2

t
u 
x 


y 

 
y 


Re 

( 
x2 y2 )



.V 0

u*
* u*

* u* P* 1 2u* 2u*

u     (  )
t x y x Re x2 y2

. . _ ,
viscous terms

* P

U 2



P 

1

Re
 0Re  



• We can not satisfy all the boundary B.C.s because order of eqs. Reduces by 1

Inside B-L can not get rid of viscous terms

Derivation of B-L eqs. From the N-S eqs

• Physically based argument :determine the order of terms in N-S

• Limiting procedure as Re ∞ eqs. and throw out small terms

U∞

U (x,y)
y

L

U∞

δ

L 100

 1
*  



Assumption 1

Term Order



L
 *  1

u*

x*

 *

y*

v*

 *

x*

2u*

y*2

du*

dt*

(1) 
 1

(1)

*

 * 

 1

1

 *

  *

1

 *2

u*

u* 1
x*

 *



(1) (1)

Neglect since of order

>>>1

 *
* 

*
* 

* P* 1 2 * 2 *

 u 
t* x* y*

 
y*   


Re

(  )2 2

x* y*

u*
* u*

* u* P* 1 2u* 2u*

 u     (  )
t x y x Re x2 y2

*
*11 (1) 1

(1)
*2


(1)

(1)2
(1)

(* )2

(1)

(* )2

Also for y –direction

(1)
(1)

(* )

U(* )

(* )
(*)

(*)

U(* )

* *2(
 

* *

){  }
(1)2 (* )2

U(* )U(* )



small relative to

To good approximation pressure at the edge of B-

L. is equal to pressure on boundary layer.

known from the other• Time – dependant

flow

• Pressure at all points is the same

• Only need to consider x-direction B-L. eqs.

*

P*

y
U(* ) *

P*

x
U(1)

P  P ( x)

P  P(x, t )



Prandtl (1904)

u v

x 

y 

 0

Outer flow  

(inviscid)

y
x2-D planar

1)

2)
u

 u 
u

 v 
u

 
1  P


 u

2

t x y  x y2

Governing  eqs.for 

B.L

B-L.eqs.

still non-linear  but 

parabolic type

unknows u,v (x,y,t)

known from the potential flowP  P(x, t)



Need B.C.s & I.C.(time dependant)

•2-D, steady  BCs

y (y marching condition

• B-L. eqs. can be solved exactly for several cases

• Can approximate solution for other cases Limitation of 

B.L egs.: where they fail?

(1) Abrupt chances

• u= =0 at y=0

• u=u(y) at x=0

• u= U (x)
  )



(2) Eqs. are not applicable near the leading edge


 *  1

L
L is small invalid

(3) Where the flow separates not valid beyond the separation point

Separation point

Bernouilli eqs.  =constant

 dx 2 dx

1 dP 


1 
2U 

dV 
 0constant

 2

2

P


V




Valid along the streamlines

substitute the B.L eqs u,v can be found

dx

dp 
 0

dx dx

 1 dP 
 U

dU

known

SIMILARITY SOLUTION TO B.L. EQS

Example 1

Flow over a semi-infinite flat plateZero pressure gradient p = constant

Steady ,laminar & U=constant
dx

( dp 
 0 )



• Bernouilli eqs. outsideB.L

U=constant ,

Governing (B.L. eqs.) become

u u 2u
u  v 
x y y2

U
y

x

2
p 

1 
U 2 cons.

dp
 0

dx

u 



0
x y

(1)

(2)



B.C.
∞ , u U• y=0 u= v =0 (no-slip) & y

• x=0 u=U

Blasuis(1908) :

1.Introduce the stream function

• Recall ;

 (x,y)

u 


y


 

x

note that satisfies cont. eqs. substitute intoB.L. mom. Eqs

 2  2 3
.  . 

y xy x y2 y3
(2’)



• Now, assume that we have a similarity “stretching” variable, which has all velocity

i.e

  g(U , x, )

profiles on plate scaling on  .

u y

U

 f ( )
y

δ
x

dimensional analysis

x 

 g(

U x 
)  g(Re)

Re

1
∼ U( 2 )  ∼ 

 x 

U

 ∼
 

m2 m

s m
. .s  m

Rex
x

 1
∼ both U( )

Viscous dif. Depth




 

y


Re 

U x  x 

U

  5

Let [-] similarity variable

U

 x
  y

U

u 
 f ( )

Use similarity profile assumption to turn  2 

P.D.E 1 O.D.E

 x  

U
d

y y 

  udy  Uf ()dy  Uf ()
0 0 0

x  f ix e d

u 
 

y



U xF ()



  U x  f ()d 
0

F()

  U xF ()

  U xF () U

 x
  y

y

   0  udy
0

d


dy 


dx
y x

 into P.D.E for  (x,y) to get O.D.E for F( )

'U  xF

•Now, substitute




1 U F 
x 2 x



x
' dFF 

d 2

d2 F

d
F ''



U

 x
F ''2

y2




1
y

U 1


1


x 2  x x 2x




1 U (F F ')
x 2 x

'U  xF
U

 x
 


  U F '

y

''F U

2
 

U 
xy 2x

U 23
F '''

y3  x

Substituting into eq. (2’)

1 1 U 2

2x  x  x

U U 1 U   
U F '(  F ''')   ( ) 2 (F  F ')  U ( )  2 F '' F '''

 2 x 



 or

U 2 1 U 2

2x 2 x

1 U 2 U 2

2 x x
  F ''F '  F ''F   F ''F '  F '''

F '''
1 

FF ''  0
2

blasius eq. 3rd order , non linear ODE



u
y0

y0




 0
y

Note: for BVPF ''' FF ''  0 U

2x
  y

BC’s are

At y=0 u=v=0
  0

BC 1) 0
U F ' 

 
 0 F’(0)=0

BC 2) y0
  0 2 x

1 U 
  (F  F ') 0

F(0)=0

BC 3) (x,y  ) U



y

U

y
 U F ' U F '( ) 1 F '() 1



Or At x=0

BC 3) Matching B.C

• Solution to blasius eg a)power series  

b)runge-kutta

• results tabulated form for F,F’,F’’,etc

p.g 121

F(  ) dimensionless function

u U 
U F ' x0 U

F’( )=1 same with



0 0 0 0.33206

F’’= 0.33206 From the solution

#
0.99155

#
0.01591

U

 x
  y F u

U

F ' F ''

#
5.0

#
3.28329



• Velocity profile

5

 1 1

U 2

 1 U 
    (F 'F )

x 2 x

 Rex 
2 F ' F

1

Re x







U

  
1

2 x

U (5x1 3.28)

 0.86

Re x
U



0.8

x

U y

5

F’= u
U 



Shear stress distribution along the flat plate

 (x,y)  ( 
u




)
y x

u*  *

 
y* x*

u

y
» 6 1

x
U

U











For Re 104   0.00865 
1 

100

For Rex 10   0.000865
1000

At the wall (y=0) 0

y0

 (x)  
u

y

w (x)

U

 x 
F ''

 0
y0

2
 U 0 (x)  

y2
U 3

F ''(0)

 x
0 (x)  

Distribution along the wall 0.332



Non dimensionalize :

Re
1

2

f x
Rex Rex U

2



C 
0 

2F ''(0)


0.664


U.x
f



Ux
C 0.664

Friction coef.

Note : x  0   0 

 
y

xB.L eqs.are not valid near the leading edge

x

Up to the point we are considering

Drag force acting on the flat plate  We 

have to integrate shear stress



FD



per unitwidth

x

  0 ( )d
0

3
D 2F 1.328(b) U x

x

τ

x

dimensionless drag coef.( CD )

we have 2 wetted sides

2
A=2bx

1

2

D

D x

x

2FD

C
Re

U A

C 


1.328

valid for laminar flow i.e for Re  5.105 to 106

Width normal to the blackboard
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for Rex >10  turbulent drag becomes considerably greater

(Table)

Re
Re

x

x

5x



U

 x
U

 x

  y at   5 
u
 0.99  y 

U

5    
Ux

 :defined as the distance from the wall for whichu=0.99U

Boundary Layer Parameter (thicknesses)

Most widely used is  but is rather arbitrary y= when u=0.99 U

Boundary Layer Thickness : 



hard to establish

more physical parameters are needed

U U

 *
 *

an imaginary displacement of fluid from the surface to account for “lost” mass flow in boundary  layer

0 0

* *

0

.

mtot

u

*  

y*

 

0 

  udy   Udy   Udy   Udy or

U   (U u)dy    (1
U

)dy

µ0_ y
U

*

Displacement thickness: 



always by definitionif   cons.    *

U



an imaginary displacement of fluid of velocity to account for “lost” momentum due
to the formation of a boundary layer velocity profile

U

2
 

 U   (udy)U  (udy)u 
.0 _ . _ 0 ,

Mass flow in B.L

. _ . _ ,
Possible momentum

. . ,
actual momentum

. . ,
"lost" momentum

Momentum  thickness:
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