JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE DEPARTMENT OF CIVIL ENGINEERING

Name of Subject	CONCRETE TECHNOLOGY
Subject Code	4CE4-08
Semester	IV
Internal Assessment	30 Marks
External Assessment	120 Marks
Credits	3
Name of Faculty	Mr. Krishan Kumar Saini Assistant Professor

VISION AND MISSION OF INSTITUTE

VISION

To become a renowned center of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

MISSION

- 1. Focus on evaluation of learning outcomes and motivate students to inculcate research Aptitude by project based learning.
- 2. Identify, based on informed perception of Indian, Regional and global needs, areas of focus and provide platform to gain knowledge and solutions.
- 3. Offer opportunities for interaction between academia and industry.
- 4. Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders can emerge in a range of professions.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE CIVIL ENGINEERING DEPARTMENT

VISION

To become a role model in the field of Civil Engineering for the sustainable development of the society.

MISSION

- 1. To provide outcome base education.
- 2. To create a learning environment conducive for achieving academic excellence.
- 3. To prepare civil engineers for the society with high ethical values.

PROGRAMME OUTCOMES (PO)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering Fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society** : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability** : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

JAIPUR ENGINEEIRNG COLLEGE AND RESEARCH CENTRE DEPARTMENT OF CIVIL ENGINEEIRNG

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: Contribute to the development of civil engineering projects being undertaken by Govt. and private or any other sector companies.

PEO2: Pursue higher education and contribute to teaching, research and development of civil engineering and related field.

PEO3: Successful career as an entrepreneur in civil engineering industry.

PROGRAM SPECIFIC OUTCOMES (PSOs):

PSO1: Enhancing the employability skills by making the students capable of qualifying National level competitive examinations.

PSO 2: Inculcating in students technical competencies to deal with practical aspects of civil engineering.

PSO 3: Cognizance of social awareness and environmental necessity along with ethical responsibility to have a successful career and become an entrepreneur.

Krishan Kumar Saini

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-08: CONCRETE TECHNOLOGY

Credit: 3

Max. Marks: 150 (IA:30, ETE:120)

End Term Exam: 3 Hours

3L+0T+0P

SN	CONTENTS	Hrs.
1	Introduction: to objective, scope and outcome of the subject	1
2	Ingredients of concrete: Cement: hydration of cement and its basic compounds, structure of hydrated cement, C-S-H gel, heat of hydration, gel-space ratio etc.	2
3	Aggregates: types, physical properties and standard methods for their determination, including Grading of aggregates as per IS. Manufactured sand- properties and IS Specifications for use in concrete.	2
4	Concrete: Grade of concrete, proportioning of ingredients, water content and its quality, water/cement ratio and its role, Properties of fresh concrete including workability, air content, Flow ability, Segregation, Bleeding and Viscosity etc. Factors affecting, methods of determination.	4
5	Properties of hardened concrete such as strengths, permeability, creep, shrinkage,factors influencing, Standard tests on fresh and hardened concrete as per IS code. Aggregate- cement interface, its effect on properties of concrete.	4
6	NDT : Introduction and their importance. Application & use of Rebound Hammer, Ultra-sonic pulse velocity meter, Rebar & Cover meter, half-cell potential meter, corrosion resistivity meter, core sampling. Interpretation of their results,	4
7	Concrete Handling in Field: Batching, mixing, placing and transportation of concrete, equipments for material handling, various methods their suitability and precautions. Compaction of concrete: methods & equipments. Curing of concrete: various methods their suitability.	4
8	Durability of concrete. Causes of deterioration, Carbonation, Tests for durability assessment	3
9	Admixture in concrete: Chemical and mineral admixtures, their types and uses: accelerator, retarders, water-proofing, plasticisers, super plasticizers-types, their suitability. Fly ash-properties for use in concrete, specifications of flyash as per IS 3812, and effect on properties of concrete. GGBFS, Microsilica and metakaolin- propertie, specifications and utility in concrete.	7

Syllabus of 2nd Year B. Tech. (AG) for students admitted in Session 2017-18 onwards.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

10	Concrete mix deign (IS method)- with and without water reducing admixtures	2
11	Form work: Requirements, their types. Typical formworks and shuttering/centering for Columns, beams, slabs, walls, etc. Slip and moving formwork.	3
12	Special types of concrete: Sulphate resisting concrete, under water concreting, pumpable concrete: methods and issues in making, salient properties and applications.	3
13	Concretes with tailored properties- including high performance concrete, with specific properties in fresh and hardened states, self-compacting concrete-materials, mix proportioning, test methods, use and applications with case studies.	3
	TOTAL	42

Office of Dean Academic Affairs Rajasthan Technical University, Kota

COURSE OUTCOMES

4CE4-08 CONCRETE TECHNOLOGY

- 1. Students will be able to understand various concrete ingredients along with their properties.
- 2. Students will be able to apply concrete handling and the NDT process in the field.
- 3. Students will be able to use admixtures in concrete and form work in structural element.
- 4. Students will be able to mix design of concrete and special concrete.

Subject Code	COs	Program Outcomes (POs)											
		РО- 1	PO- 2	РО- 3	PO- 4	РО- 5	PO- 6	РО- 7	PO- 8	РО- 9	PO- 10	РО- 11	PO- 12
	CO-1	2		1			3	3	1			1	2
4CE4	CO-2	1	2	3	2	3	2	1	1	2			2
-08	CO-3	2	1	2	2	3	2	2	2	1		1	2
	CO-4	1	2	3			2	2	2	3		1	3

Subject Code	COs	Program Specific Outcomes (PSOs)					
Subject Code	0.08	PSO-1	PSO-2	PSO-3			
	CO-1	2	1	2			
4004.00	CO-2	1	3	2			
4CE4-08	CO-3	3	3	1			
	CO-4	3	3	1			

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE, JAIPUR

	Lecture Plan							
Subject name: Concrete Technology Subject Code: 4CE4-08 Year: II nd Semester: IV th POs PO1; PO2; PO3;PO4;PO6;F PO8;PO9;PO11; PO12					various concre properties. CO2:-Student concrete hand the field. CO3:- Studen concrete admi	COs ts will be able to u ete ingredients alc is will be able to a ling and the NDT ts will be able to a xtures and handli ts will be able to a cial concrete.	ong with their pply process in analyze ng processes.	
S. No.	Lecture No.	Topic discussed to be		COs	Objective of Unit	Outcome of Lecture and CO Students are able to:-	From page to	
I	1	Introduction: Objective, scope and outcome of the course.		NA	To aware of outcome based education	To aware of outcome based education	NA	
	2		Understanding concrete ingredients			Understand concrete ingredients	T1 (66-68)	
	3		Understanding concrete properties.		Understandin g various	Understand concrete properties	T1 (69-81)	
	4	Physica of aggre	l Properties egates	CO1	concrete ingredients along with their properties	Understand Physical Properties of aggregates	T3(40-43)	
Π	5	Mechan properti aggrega	es of	CO1		Understand Mechanical properties of aggregates	T3(46-55)	
	6	Grade of Concrete		CO1		Understand Grade of Concrete	T1(298-306)	

DEPARTMENT OF CIVIL ENGINEERING

7	Water Cement Ratio	C01		Understand Water Cement Ratio	T3(115-119)
8	Properties of fresh concrete	CO1		Understand Properties of fresh concrete	T2(124-137)
9	Factors affecting concrete	CO1		Understand Factors affecting concrete	T3(77-79)
10	Properties of hardened concrete	CO1		Understand Properties of hardened concrete	T3(94-100)
11	Standard tests on hardened concrete	CO1		Understand Standard tests on hardened concrete	T1(311-315)
12	cement interface	CO1		Understand cement interface	T1(316-317)
13	cement interface effect on properties of concrete	CO1		Understand cement interface effect on properties of concrete	T1(317-322)
14	Concrete Handling Batching, mixing,	CO2		Understand Concrete Handling Batching, mixing,	T3(122-124)
15	Placing and transportatio n of concrete	CO2	Understandin g to apply concrete	Understand placing and transportatio n of concrete	T3(125-127)
16	Equipment's for material handling	CO2	handling and the NDT process in the field.	Understand equipment's for material handling	T1(247-250)
17	Compaction of concrete	CO2		Understand Compaction of concrete	T3(131-138)
18	Introduction and importance NDT	CO2		Understand Introduction and importance NDT	T1(437-438)

19	Application & use of NDT	CO2		Understand Application & use of NDT	T1(439)
20	Rebound Hammer, Ultra-sonic pulse velocity meter	CO2		Understand Rebound Hammer, Ultra- sonic pulse velocity meter	T1(439-447)
21	Interpretation of their results	CO2		Understand Interpretation of their results	T1(452-453)
22	Durability of concrete	CO2		Understand Durability of concrete	T1(352-353)
23	Causes of deterioration	CO2		Understand Causes of deterioration	T1(354-361)
24	Tests for durability assessment	CO2		Understand Tests for durability assessment	T1(398-400)
25	Chemical Admixture	CO3		Understand Chemical Admixture	T1(124-125)
26	Mineral admixtures	CO3		Understand mineral admixtures	T1(174-176)
27	Admixtures types and uses	CO3		Understand admixtures types and uses	T1(128-131)
28	GGBFS effect on properties of concrete	CO3	Understanding use admixtures in	Understand GGBFS effect on properties of concrete	T1(189-191)
29	Specifications of fly ash	CO3	concrete and form work in structural element.	Understand specifications of fly ash	T1(176-182)
30	Microsilica and metakaolin	CO3		Understand Microsilica and metakaolin	T1(184-188)
31	Admixture specifications and utility in concrete	CO3		Understand Admixture specifications and utility in concrete	T1(129-131)
32	Requirements Form work	CO3		Understand Requirements Form work	T4(2-3)

33	Types formworks	CO3		Understand Types formworks	T5(7-10)		
34	Typical formworks	CO3		Understand Typical formworks	T5(15-20)		
35	Concrete mix deign	CO4		Understand Concrete mix deign	T1(459-461)		
36	Concrete mix with and without water reducing admixtures	CO4		Understand Concrete mix with and without water reducing admixtures	T1(489-499)		
37	Sulphate resisting concrete	CO4		Understand Sulphate resisting concrete	T1(526-528)		
38	Under water concreting	CO4	Understanding mix design of concrete and special concrete.	Understand under water concreting	T1(262-264)		
39	Methods and issues in making concrete	CO4		Understand methods and issues in making concrete	T1(242-247)		
40	High performance concrete	CO4		Understand High performance concrete	T3(408-409)		
41	Self-Compacting Concrete materials	CO4		Understand Self-Compacting Concrete materials	T1(572-576)		
42	Test methods for SCC	CO4		Understand test methods for SCC	T1(577-588)		
		T1: CONCRETE TECHNOLOGY by M.S. Shetty, Sixth Edition					
		T2: CONCRETE TECHNOLOGY by M L Gambhir, Third Edition					
R	eference books:	T3: CONCRETE TECHNOLOGY by A.M. Neville, J.J. Brooks Second Edition					
		T4: Formwork for Concrete Structures by R. L. Peurifoy, Fourth Edition					
		IS Code	: 10262:2009, 10	262:2019, 456:200	0		

Content beyond syllabus

1. Light weight concrete

Source: Concrete Technology, Second Edition A. M. Neville and J. J. Brooks ISBN: 9780-273-73219-8 Page no. 339 – 355.

2. Factors Contributing to Cracks in Concrete Source: Concrete Technology, M.S. Shetty ISBN: 978-812-190-003-4 Page no. 361 – 370.