Unit-5

The errors, which occur during measurement are known as measurement errors.

Accuracy

It is the closeness with which an instrument reading approaches the true value of the quantity being measured.

Point accuracy- This is the accuracy of th instrument only at one point on its scale.It doesnot give give any information about the general accuracy of the instrument.

Accuracy as " Percentage of Scale Range".-When an instrument has uniform scale its accuracy may be expressed in ters of scale range.For eg. the accuracy of thermometer having scale of $500^{\circ} \mathrm{C}$ may be expressed as $\pm 0.5 \%$ scale range. This means that the accuracy of thermometer when the reading is $500^{\circ} \mathrm{C}$ is $\pm 0.5 \%$ which is negligible, but when the reading is $25^{\circ} \mathrm{C}$,the error is very high and therefore specification of accuracy is highly misleading.
3. Accuracy as Percentage of True Value - Such type of accuracy of the instruments is determined by identifying the measured value regarding their true value. The accuracy of the instruments is neglected up to ± 0.5 percent from the true value.

Precision

Definition: The term precision means two or more values of the measurements are closed to each other. The value of precision differs because of the observational error. The precision is used for finding the consistency or reproducibility of the measurement. The conformity and the number of significant figures are the characteristics of the precision.

The high precision means the result of the measurements are consistent or the repeated values of the reading are obtained. The low precision means the value of the measurement varies. But it is not necessary that the highly precise reading gives the accurate result.

Example - Consider the $100 \mathrm{~V}, 101 \mathrm{~V}, 102 \mathrm{~V}, 103 \mathrm{~V}$ and 105 V are the different readings of the voltages taken by the voltmeter. The readings are nearly close to each other. They are not exactly same because of the error. But as the reading are close to each other then we say that the readings are precise.

Measurement Error

Definition: The measurement error is defined as the difference between the true or actual value and the measured value. The true value is the average of the infinite number of measurements, and the measured value is the precise value.

1. Gross Errors

The gross error occurs because of the human mistakes. For examples consider the person using the instruments takes the wrong reading, or they can record the incorrect data. Such type of
error comes under the gross error. The gross error can only be avoided by taking the reading carefully.

For example - The experimenter reads the $31.5^{\circ} \mathrm{C}$ reading while the actual reading is 21.5 C 0 . This happens because of the oversights. The experimenter takes the wrong reading and because of which the error occurs in the measurement.

Such type of error is very common in the measurement. The complete elimination of such type of error is not possible. Some of the gross error easily detected by the experimenter but some of them are difficult to find. Two methods can remove the gross error.

Two methods can remove the gross error. These methods are

- The reading should be taken very carefully.
- Two or more readings should be taken of the measurement quantity. The readings are taken by the different experimenter and at a different point for removing the error.

2. Systematic Errors

The systematic errors are mainly classified into three categories.

1. Instrumental Errors
2. Environmental Errors
3. Observational Errors

2 (i) Instrumental Errors

These errors mainly arise due to the three main reasons.
(a) Inherent Shortcomings of Instruments - Such types of errors are inbuilt in instruments because of their mechanical structure. They may be due to manufacturing, calibration or operation of the device. These errors may cause the error to read too low or too high.

For example - If the instrument uses the weak spring then it gives the high value of measuring quantity. The error occurs in the instrument because of the friction or hysteresis loss.
(b) Misuse of Instrument - The error occurs in the instrument because of the fault of the operator. A good instrument used in an unintelligent way may give an enormous result.

For example - the misuse of the instrument may cause the failure to adjust the zero of instruments, poor initial adjustment, using lead to too high resistance. These improper practices may not cause permanent damage to the instrument, but all the same, they cause errors.
(c) Loading Effect - It is the most common type of error which is caused by the instrument in measurement work. For example, when the voltmeter is connected to the high resistance circuit it gives a misleading reading, and when it is connected to the low resistance circuit, it gives the dependable reading. This means the voltmeter has a loading effect on the circuit.

The error caused by the loading effect can be overcome by using the meters intelligently. For example, when measuring a low resistance by the ammeter-voltmeter method, a voltmeter having a very high value of resistance should be used.

2 (ii) Environmental Errors

These errors are due to the external condition of the measuring devices. Such types of errors mainly occur due to the effect of temperature, pressure, humidity, dust, vibration or because of the magnetic or electrostatic field. The corrective measures employed to eliminate or to reduce these undesirable effects are

- The arrangement should be made to keep the conditions as constant as possible.
- Using the equipment which is free from these effects.
- By using the techniques which eliminate the effect of these disturbances.
- By applying the computed corrections.

2 (iii) Observational Errors

Such types of errors are due to the wrong observation of the reading. There are many sources of observational error. For example, the pointer of a voltmeter resets slightly above the surface of the scale. Thus an error occurs (because of parallax) unless the line of vision of the observer is exactly above the pointer. To minimise the parallax error highly accurate meters are provided with mirrored scales.

3. Random Errors

The error which is caused by the sudden change in the atmospheric condition, such type of error is called random error. These types of error remain even after the removal of the systematic error. Hence such type of error is also called residual error.

Following are the parameters that are used in statistical analysis.

- Mean
- Median
- Variance
- Deviation
- Standard Deviation

Now, let us discuss about these statistical parameters.

Mean

Let $x_{1}, x_{2}, x_{3}, \ldots . . x_{n}$ are the N readings of a particular measurement. The mean or average value of these readings can be calculated by using the following formula.

Formula for Finding the Mean of the Ungrouped Data

$$
\begin{aligned}
& \text { Mean }=\frac{\text { Sum of the VariablesTotal }}{\text { Number of Variates }} \\
& \text { Mean }=\frac{x_{1}+x_{2}+x_{3}+x_{4}+\ldots .+x_{n}}{n} \\
& \text { Symbolically, } \mathrm{A}=\frac{\sum x_{i}}{n} ; \mathrm{i}=1,2,3,4, \ldots, \mathrm{n} .
\end{aligned}
$$

If the number of readings of a particular measurement are more, then the mean or average value will be approximately equal to true value

Median

If the number of readings of a particular measurement are more, then it is difficult to calculate the mean or average value. Here, calculate the median value and it will be approximately equal to mean value.

For calculating median value, first we have to arrange the readings of a particular measurement in an ascending order. We can calculate the median value by using the following formula, when the number of readings is either an odd number or even number.
n is odd,

Median $=\left(\frac{n+1}{2}\right)^{t h}$ observation
n is even,
Median $=\frac{\left(\frac{n}{2}\right)^{t h}+\left(\frac{n}{2}+1\right)^{t h} \text { observation }}{2}$

Deviation from Mean

The difference between the reading of a particular measurement and the mean value is known as deviation from mean. In short, it is called deviation. Mathematically, it can be represented as

$$
\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{m}
$$

Where,
d_{i} is the deviation of $i^{\text {th }}$ reading from mean.
x_{i} is the value of $i^{\text {th }}$ reading.
m is the mean or average value.

Standard Deviation

The root mean square of deviation is called standard deviation. Mathematically, it can be represented as

We can use the above formula for standard deviation, when the number of readings, N is less than 20.When readings are greater than 20 we use N instead of $\mathrm{N}-1$.

Note - If the value of standard deviation is small, then there will be more accuracy in the reading values of measurement.

Variance

The square of standard deviation is called variance. Mathematically, it can be represented as

$$
\begin{aligned}
\sigma^{2} & =\frac{\sum\left(x_{i}-\mu\right)^{2}}{n} \\
& =\frac{\left(x_{1}-\mu\right)^{2}+\left(x_{1}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}}{n}
\end{aligned}
$$

Numerical on Combination of errors and limiting error

$$
\begin{aligned}
& \text { proof:- } \\
& x=x_{1}+x_{2}+x_{3} \text { : cor } x=x_{1}+x_{2}+x_{3} \text {. } \\
& \text { diff. partially on both sides. } \\
& \delta x=\delta x,+\delta x_{2}+\delta x_{3} \\
& \frac{\delta x}{x}=\left(\frac{x_{1}}{\lambda_{1}}\right) \frac{\delta x_{1}}{x}+\left(\frac{\left.x_{2}\right)}{x_{2}} x x_{2}+\frac{\delta x_{3}}{x}-\left(\frac{x_{3}}{\lambda_{3}}\right)\right. \\
& \frac{\delta x}{x}= \pm\left[\frac{x_{1}}{x}\left(\frac{\delta x_{1}}{x_{1}}\right)+\frac{a_{2}}{x}\left(\frac{\delta x_{2}}{x_{2}}\right)+\frac{\lambda_{3}}{x}\left(\frac{\delta x_{3}}{x_{3}}\right)\right] \\
& \text { 4. Multiplication/division of variables. } \\
& x=x_{1} x_{2} x_{3} \text { (or) } \frac{1}{x_{1} x_{2} x_{3}} \text { (o) } \frac{x_{1}}{x_{2} x_{3}} \\
& \frac{\delta x}{x}= \pm\left[\frac{\delta x_{1}}{x_{1}}+\frac{\delta x_{2}}{x_{2}}+\frac{\delta x_{3}}{x_{3}}\right] ; \quad \text { poof } \quad \begin{array}{r}
\text { Apply oof on } t \\
\text { sides, diff... } \\
\text { yon will set... }
\end{array} \\
& 5 \cdot y=\frac{x_{1}^{m} \cdot x_{2}^{n}}{x_{3}^{p}} \\
& \frac{\delta y}{y}=\left[m \frac{\delta x_{1}}{x_{1}}+n \frac{\delta x_{2}}{x_{2}}+p \frac{\delta x_{3}}{x_{3}}\right] . \\
& \text { If any error is lying within the limits that means min. } \\
& \text { nd max-value, it is known as unknown error it is denotes } \\
& \text { by "土" symbol. } E \delta \%=(100 \pm 5)=(952 \text { to 100-2) } \\
& \text { urestion Two resistors are given as } R_{1}=100 \pm 4 \%(100 \pm 4 \Omega) \\
& R_{2}=50 \pm 2 \% \quad(50 \pm 4 \Omega) \\
& \text {) when they are connected in series, find the equivalent resistance. } \\
& \text { i) Find (R1- (iii) Find } R_{2} \text {) } R_{1} R_{2} \text { (aV) } \frac{R_{1}}{R_{2}}
\end{aligned}
$$

In case of multiplication (or) division the $\%$ limiting errors are simply added but dort add the error in value form.
Q2:- Two resistors are given as $R_{1}=100 \pm 6 \Omega=(100 \pm 6 \%)$
$R_{2}=(50 \pm 2 \Omega)=(50 \pm 4 \%)$
(i) $R_{1}+R_{2}$
(ii) $R_{1}-R_{2}$
(iii) $R_{1} R_{2}$ (iv) $\frac{R_{1}}{R_{2}}$
$\underline{S O I O}_{0}$
(i) Req $=R_{1}+R_{2}=100+50=150 \Omega$

$$
\left.\therefore \frac{\delta x}{x}= \pm\left(\frac{x_{1}}{x^{2}} \frac{\delta x_{1}}{x_{1}}+\frac{x_{2}}{x^{2}} \frac{\delta x_{2}}{x_{2}}\right)= \pm\left(\frac{100}{150} \times(6)+\frac{50}{150} 19\right)\right]
$$

$$
=4.665 \quad 5.33 \%
$$

$$
\therefore \quad \text { Req }=150 \pm 15 \cdot 367=150 \pm 8 \Omega=(100 \pm 6 \Omega)+(50 \pm 2 \Omega)
$$

$$
\binom{\text { Nominal }}{\text { value }}\binom{x}{100}=\binom{\text { Err in }}{\text { value }}
$$

(ii) $\begin{aligned} R_{\text {eq }}=R_{1}-R_{2}=100-50=50 \Omega & =(100 \pm 6)-(50 \pm 2) \\ & =(50 \pm 8 \Omega .\end{aligned}$

$$
\therefore \quad \frac{5 \lambda}{x}= \pm\left(\frac{100}{\$ 50}(6)+\frac{50}{50}(2)\right)= \pm 16 \%
$$

$$
\therefore \text { Req }=50 \pm 16 \%=50 \pm 8) 22
$$

(iii) $\begin{aligned} \text { Req }=R_{1} R_{2}=(100 \pm 6 \%)(50 \pm 4 \% & =5000 \pm(10 \%) \\ & =(5000 \pm 500) \Omega\end{aligned}$

$$
\begin{aligned}
& \text { (iv) } \quad \text { Req }=\frac{R_{1}}{R_{2}}=\frac{100}{50} \pm(6 \pm 4)=2 \pm 10 \%=(2 \pm 0.2) \Omega \\
& \text { (v) } \quad R_{\text {eq }}=\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)}
\end{aligned}
$$

Solution:-

$$
\begin{aligned}
& \text { (c) }\left(R_{1}+R_{2}\right)=(100 \pm 4 \%)+(50 \pm 2 \%) \\
& =(100 \pm 4 \Omega)+(50 \pm \Omega) \\
& =150 \pm 6 \Omega \\
& =150 \pm \frac{b 0}{150} \times 100 \equiv 150 \pm 3.33 \% \\
& \frac{\delta x}{x}= \pm\left[\frac{\lambda_{1}}{\lambda} \frac{\delta x_{1}}{x_{1}}+\frac{x_{2}}{\lambda_{1}} \frac{\delta x_{2}}{\lambda^{2}}\right] \\
& = \pm\left[\frac{100}{150} \times 4+\frac{50}{150} \times 2\right] \\
& = \pm 3.33 \%
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left(R_{1}-R_{2}\right)=(100 \pm 4 \%)+(50 \pm 25) \\
& x_{1}=x_{1}-x_{2}=100-50=50 \Omega \text {. } \\
& \frac{\delta x}{\lambda}= \pm\left[\frac{x_{1}}{\lambda} \frac{\delta x_{1}}{x_{1}}+\frac{x_{2}}{x^{2}} \frac{\delta x_{2}}{x_{2}}\right]= \pm\left[\frac{100}{50} \times 4+\frac{50}{50} \times 2\right] \\
& \frac{\delta x}{\lambda}= \pm 10 \%
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& R_{1} R_{2} \Rightarrow \quad x=x_{1} x_{2} \Rightarrow \quad \rightarrow \quad \frac{\delta x}{x}=\frac{\delta x_{1}}{x_{1}}+\frac{\delta x_{2}}{x_{2}} \\
& \therefore=100 \times 50=5000 \Omega ; x=\frac{\delta x}{x}=u_{1}+2=+6 \% \\
& \therefore R_{\text {es }}=R_{1} R_{2}=5000 \pm 6 \%=(5000 \pm 300) \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=0.8453 \bar{\sigma} \\
& \therefore \gamma=0.67450=\frac{0.4765}{h}=0.8453 \mathrm{D} \\
& h=\frac{0.4765}{(0.6745) \sigma} \\
& h=\frac{0.706}{\sigma} \\
& n=\frac{1}{\sigma \sqrt{2}} \\
& h \sigma=\frac{1}{\sqrt{2}} \\
& \text { mean probable error }=\gamma_{m} \\
& \gamma_{m}=\frac{0.67450}{\sqrt{(n-1)}}=\frac{\gamma}{\sqrt{(n-1)}} \quad \text { for }(n \leq 20) \\
& r_{m}=\frac{\gamma}{\sqrt{n}} ; n>20 \text {. }
\end{aligned}
$$

standard deviation of mean $\sigma_{m}=\frac{\sigma}{\sqrt{n}}$. standard deviation of stondarel deviation $\Rightarrow \sigma_{\sigma}=\frac{\sigma}{\sqrt{2 n}}$

$$
\begin{array}{r}
\sigma_{0}=\frac{\sigma}{\sqrt{D}} \times \frac{1}{\sqrt{2}}=\frac{\sigma_{m}}{\sqrt{2}} \\
\therefore \sigma_{\sigma}=\frac{\sigma m}{\sqrt{2}}
\end{array}
$$

minimum range of error $=x_{\text {ant }}-x_{\text {min }}$
maximum rank e of error $=x_{m o x}-x_{\text {avis }}$.
average range of error $=\frac{\left.\text { (lave }-x_{\text {min }}\right)+\left(x_{\text {mas }}-x_{\text {avg }}\right)}{2}$

$$
\text { Aug. Ratge of error }=\frac{x_{\text {mas }}-x_{\text {min }}}{2}
$$

(AB) central value:- If we make a larese no. of measurements and if the plus effects are equal to the minus effects, they would cancel eat, ?
 other and we would obtain the scatter rouen a central value. This condition is frequently met in practice.
Histogram : - when a no. of multisample observarions are taken , experimentally there is a scatter of data about some central value.? ane method of presenting test results in the form of a histograms.?

$$
\rightarrow \text { distribution crave. }
$$

and smaller increments the histogram
world finally change into a smooth,
curve.

central value)

The most probable value of measured variable (variates is the ? asthmatic mean of the no. of readings taken. Theoretically, an ? infinite no. of readings would हुive the best result, although in practice, only finite no. of measurements can be made.
Measure of Dispersion from the mean:-
Dispersion:- The property which denotes the extent to which
the values are dispersed about the central value called dispersion. dispersion $=$ spread $=$ scatter
curvet:- Greater precision $\quad\left(b_{1}>5_{2}\right.$)
curve 2:- Lower precision
$x \Rightarrow$ deviation from the central value.

```
7
```)
\[
?
\]
\[
>
\]
```

Dispersion is more for cuaves. That means.... (13)

```
 A lasge dispersion indicates that some factors involved in the meashesement process ase not under close control and \(B\) it it becomes mose difficult to estimate the measurat quantity with confidence ond definiteness.
\[
\text { Rantुe } \left.\Rightarrow\left(x_{2}-x_{1}\right) ; \quad x_{r_{1}}-x_{3}\right) \text {; }
\]

Deviation:- Deviation ts the departure of the obsesved readins from the asitbmatic mean of the frap of readings.
\(d_{1}=x_{1}-\bar{x}\)
\(d_{2}=x_{2}-\bar{x}\)
\(d_{n}=x_{n}-\bar{x}\) \(\sum d_{i}=d_{1}+d_{2}+\cdots+d_{n}\)
\(=\left(x_{1}-\bar{x}\right)+\left(x_{2}-x\right)+\cdots+\left(a_{n}-\bar{x}\right)\)
\(=\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)-n x^{x}\)
\(=n \bar{x}-n \bar{x}\)
\(=d_{i}=0\).
\(\therefore\) Digebraic sum of deviatsons is a/way zero.
Highly precice instruments yield a low value of average deviation between the readings. The average deriation is an indicabion of the precision of the instruments used in makings the measmaements.
\[
\begin{aligned}
& \text { i.e. } \bar{D}=\frac{\left|d_{1}\right|+1 d_{2}|+\cdots+\cdots|}{n}=\text { ang deviation. } \\
& \text { (precision) } \propto \frac{1}{(a v \text { g.deviation) }}
\end{aligned}
\]

Noítsmatic mean \((\cap m)=\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}=\prod_{i=1}^{n} x_{i}=x_{i}=x_{i}=\)
Deviations(di) ; \(d_{1}=x_{1}-\bar{x} ; d_{2}=x_{2}-\bar{x}, d_{n}=x_{n}-x_{x}\)
\[
d_{i}=x_{i}-\bar{x}
\]
mean deviation \(=\bar{D}=\frac{\left|d_{1}\right|+|d=1+\cdots+|d n|}{n}\)
Standard deriation (0) \(=\sqrt{\frac{d_{1}^{2}+d r^{2}+\cdots \cdots n^{2}}{n}}\)
\[
\begin{aligned}
& \left\{=\sqrt{\frac{\sum_{i=1}^{n}(n-1)}{(n)}}\left\{\begin{array}{l}
\text { for pinite no. } 10 \text { obsemvations }
\end{array}\right.\right.
\end{aligned}
\]

Wariance \((v)=\sigma^{2}=\) Cstandar deniation) \({ }^{2}\)
\[
\text { probable error }(\gamma)=0 \cdot 67456
\]
\[
r=0.67450
\]

\[
h \rightarrow \text { precision index }
\]

``` Fifg:- Normal probabitity curver (or) Ȩaussian cuave.
\(\Rightarrow\) The value of 5 determines the sharpress of the curve Gince the curve drops shaaply owing to the terem \(\left(-5^{2}\right)\) beings in
the exponent. The sharp arve evidently indicales that the deviations are mose closely fromped to fiether arcrend deviation \(x=0\).
\(\Rightarrow\) IE is clees that the probabitity that a variate lies in a given range becomes less as the deviation of the rounge becomes sreater.
If greater the value of \(5 \cdots\) for \(x\) more probatility less. \(\therefore\) Thus the name... precision indese for \(b\) is reasonable. \(\Rightarrow\) A lasge value of \(b\) represents bits precision of the data because the probabicity of oceneance of variates in a given rounge falts off rapidity as the deviabion increases
because the vaeriantes tends to cluster (becomes closer) into a
``` naeraw range.

Probable Error:-
The confidence in the best value (most probable value) is connected with the shoapness of the distribution curve.

Total area o the givassian curve \(=1\).
\[
\frac{1}{\sigma \sqrt{2 \pi}} \int_{-3 \sigma}^{3 \sigma} \exp \left(-x^{2} / 2 \sigma^{2}\right) d_{\lambda}=1 .
\]

A convenient measure of precision is the quantity (8), called. probable error.
\[
\begin{aligned}
& \frac{h}{\sqrt{\pi}} \int_{-\gamma}^{\gamma} e x\left(-h^{2} x^{2}\right) d x=\frac{1}{2} \\
& \therefore \quad 2=0.6745 \sigma=\frac{0.4769}{h}
\end{aligned}
\]
average deviation for normal cellule:
\[
\begin{aligned}
& \bar{D}=\int_{-\infty}^{+\infty}|x| y d x \\
& b=\frac{1}{\sqrt{n D}} \Rightarrow D=\frac{\gamma}{0.4769 \sqrt{n}}=\frac{\gamma}{0.8453} \\
& r=0.8453 \bar{D} \\
& P E=\gamma=0.67450=\frac{0.4769}{n}=0.8453 \bar{D} .
\end{aligned}
\]
for finite reading sn); probable ernes \(\left(r_{m}\right)=0.6745 \frac{\sigma}{\sqrt{n}}\)
\[
\text { standard deviation of mean } \sigma_{m}=\frac{\sigma}{\sqrt{n}}
\]
\[
\text { stondardderiation of standard deviation } \sigma_{\sigma}=\frac{\sigma}{\sqrt{2 n}}=\frac{\sigma_{m}}{\sqrt{2}}
\]
```

                \therefore (Time-const)mecs.> (Time-constont)epecbica).
                The time taken by the imstrument inorder to kive the response
    is known as dead-time
            Thege is no electrical nat imestia b/c the mass of electron is
        very very small. Wbere as every mecpanical body will offer,
        some inertra so that it takes considerable amovent of time inosder ?
        to give the response. B/C meebanical time constonts are always?
    Egeater tsan that of eleefrical time constonts.
    Dead zone: - For the largest value of input. The rosponse of the
    is zero. Beyond this input value the instrument 
    gives the response. the correspondings portion of input wheal the
    output is known as dead zene.
    Threshold :- ft what particular input value, the instrument
        will give the responce is known as threshold (cr) pick-up
    (1)
                            (2)
    (1) STlentify the from the above plot which instrument istoo best inst:% A
    (2) Find the deadzone, threshold }=+12\mathrm{ unit
        deodzone =2 unpis
    ```

more no. of divisions \(\Rightarrow\) mare clasity, mare resolutions.
the smallest value of changुe in input that we can detect with more darifiness (os more certainity is knawn as resolution.

Fedelity \(:\) The readingुs obtained bow muck faith fully represer tred in the recond book is kown as fedelity.

Nignificant figures:-
when we are representing tbe sifnificant figuses in a resultont variable alcoays we will sepect the min sigmificant figuae of the given variable.
Iypes of standards.
1. Intermational slds \(\Rightarrow\) IEEE, ISO

Es.. stid. vottacse \(\Rightarrow\) westem cimpany.
westerm sta-cell \(\rightarrow E=1.0183=1.0183 \mathrm{VOH}\)
(1tighest accurasy) \(\Rightarrow\) not avaiphle por common man (Patents)
2. National standards (primary etandards). ISI.
(mueh more accurate). not maila bte
3. Secondary standards (Induskial standaeds).

Every industry has its own standards...., not ancuilabste
Q:- Noer students Egiven the curerent readingsi by using ammeter
and recorded as 10.03 A, 10.11A, 10.12A, 10.08 A. (a)
Find the (i) Am
(ii) deviations(di), (icii) mean deniabions (D)
(IN) sta.deviafion \((0)\); (v) variance \(=0^{2}\); (\(v i\)) probtorble es. (v) mean poobtiste ersor: (i) om (staderiabion of me (vii) Oo (std desiabion of sta deviabion). (iiii) min ronge of esror, moxe romge of erscr.
Sol:-
\[
\begin{aligned}
& n m=\bar{x}=10+0.065 \cong 10.08 \\
& d_{1}=10.03-10.08=-0.05 \\
& d_{2}=10.41-10.08=+0.03 \\
& A_{13}=10.12-10.08=+0.04 \\
& d_{4}=10.08-10.08=0.00 \\
& D=\frac{10.05)+(0.03)+0.04+0}{4} \\
& D=0.03 \\
& \infty=\sqrt{\frac{d_{1}^{2}+d z^{2}+d 3^{2}+d^{2}}{(2-1)}} \\
& =\sqrt{\frac{0.05^{2}+0.03+0.04^{2}+6}{(4-1)}} \\
& =\sqrt{\frac{26+9+16}{3 \times 10^{4}}} \\
& \text { variance }=\sigma^{2}=0.001684 \\
& 0=0.0408 . \\
& \text { mean probable error }(r)=0.65450=0.6545 \times 0.0408=0.0 \text { : } \\
& \text { Stand. deriafion of mean (om) }=\frac{5}{\sqrt{n}}-\frac{0.0408}{\sqrt{4}}=0.0204 \\
& \text { st.de. ⿴\zh11 st.de.(T) }=\frac{1}{\sqrt{2}} \mathrm{~cm}_{\mathrm{m}}=0.0144 \\
& \text { mean probabe error }\left(\gamma \text { m) }=\frac{r}{\sqrt{n-1}}=\frac{0.0275}{\sqrt{3}}=0.015\right. \\
& \text { min range of error }=100=x \text { aus } x \text { min }=10.08-10.03=0.05 \\
& \max n=x_{m a x}=\operatorname{Hang}_{\max }=10.100-10.08=0.04 \\
& \text { AVos } n=\frac{0.05}{2}+10.0 \%= \pm 0.045 \text {. }
\end{aligned}
\]```

