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A number can be represented with different base values. We are familiar with the 
numbers in the base 10 (known as decimal numbers), with digits taking values 
0,1,2,…,8,9. 
 
A computer uses a Binary number system which has a base 2 and digits can have only 
TWO values: 0 and 1. 
 
A decimal number with a few digits can be expressed in binary form using a large 
number of digits. Thus  the number 65 can be expressed in binary form as 1000001. 
 
The binary form can be expressed more compactly by grouping 3 binary digits together to 
form an octal  number. An octal number with base 8 makes use of the EIGHT digits 
0,1,2,3,4,5,6 and 7. 
 
A more compact representation is used by Hexadecimal representation which groups 4 
binary digits together. It can make use of 16 digits, but since we have only 10 digits, the 
remaining 6 digits are made up of first 6 letters of the alphabet. Thus the hexadecimal 
base uses 0,1,2,….8,9,A,B,C,D,E,F as digits.  
 
 
To summarize 
Decimal : base 10 
Binary : base 2 
Octal: base 8 
Hexadecimal : base 16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Decimal, Binary, Octal, and Hex Numbers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

0 0000 0 0 

Decimal Binary Octal Hexadecimal

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 



 
 
Conversion of binary to decimal ( base 2 to base 10) 
 
Each position of binary digit can be replaced by an equivalent power of 2 as shown 
below.  
 

2n-1 2n-2 …… …… 23 22 21 20 

        
 
Thus to convert any binary number replace each binary digit (bit) with its power and add 
up.  
Example:  convert (1011)2 to its decimal equivalent 
Represent the weight of each digit in the given number using the above table. 
 

2n-1 2n-2 …… …… 23 22 21 20 

    1 0 1 1 
 
Now add up all the powers after multiplying by the digit values, 0 or 1 
(1011)2 
= 23 x 1 +  22 x 0 + 21 x 1 + 20 x 1 
= 8  +  0  + 2  + 1 
= 11 
Example2:  convert (1000100)2 to its decimal equivalent 
 = 26 x 1  + 25 x 0  +24 x 0+ 23 x 0 + 22 x 1  + 21 x 0  + 20 x 0   
  = 64 + 0 + 0+ 0 + 4 + 0 + 0  
 
  = (68)10 
 
 
 
 
 
 
 
 
 
 
 



 
Conversion of decimal to binary ( base 10 to base 2) 
 
Here we keep on dividing the number by 2 recursively till it reduces to zero. Then we 
print the remainders in reverse order.  
 
Example:  convert (68)10 to binary   

68/2 = 34   remainder is 0 
  34/  2 = 17 remainder is 0 
  17 / 2 = 8   remainder is 1 
   8 / 2 = 4    remainder is 0 
   4 / 2 = 2    remainder is 0 
   2 / 2 = 1    remainder is 0 
              1 / 2 = 0    remainder is 1 
We stop here as the number has been reduced to zero and collect the remainders in 
reverse order. 
Answer = 1 0  0  0  1  0  0 
 Note:  the answer is read from bottom (MSB, most significant bit) to top (LSB 
least significant bit) as (1000100)2 .  
You should be able to write a recursive function to convert a binary integer into its 
decimal equivalent. 
 
 
 
 

 
Conversion of binary fraction to decimal fraction 
 
In a binary fraction, the position of each digit(bit) indicates its relative weight as was the 
case with the integer part, except the weights to in the reverse direction. Thus after the 
decimal point, the first digit (bit) has a weight of  ½ , the next one  has a weight of ¼ , 
followed by 1/8 and so on. 
 

20     . 2-1 2-2 2-3 2-4 … .... … 

       . 1 0 1 1 0 0 0 
 
The decimal equivalent of this binary number 0.1011 can be worked out by considering 
the weight of each bit. Thus in this case it turns out to be  

(1/2) x 1 + (1/4) x 0 + (1/8) x 1 + (1/16) x 1. 

 

 



 

 

 

 

 
Conversion of decimal fraction to binary fraction 

To convert a decimal fraction to its binary fraction, multiplication by 2 is carried out 
repetitively and the integer part of the result is saved and placed after the decimal point. 
The fractional part is taken and multiplied by 2. The process can be stopped any time 
after the desired accuracy has been achieved.  
 
 Example:  convert ( 0.68)10 to binary fraction. 
 
0.68 * 2 =  1.36   integer part is  1 
Take the fractional part and continue the process  
0.36 * 2 =   0.72  integer part is  0 
0.72 * 2 =   1.44  integer part is  1 
0.44 * 2 =   0.88  integer part is  0 
 
The digits are placed in the order in which they are generated, and not in the reverse 
order. Let us say we need the accuracy up to 4 decimal places. Here is the result. 
      Answer =  0. 1 0 1 0….. 
 
Example:  convert ( 70.68)10 to binary equivalent.  
First convert 70 into its binary form which is 1000110. Then convert 0.68 into binary 
form upto 4 decimal places to get 0.1010. Now put the two parts together. 
 
  Answer = 1 0  0  0  1  1  0 . 1 0 1 0…. 
 
 
 

Octal Number System 
 
 
•Base or radix 8 number system. 
 
•1 octal digit is equivalent to 3 bits. 
 
•Octal numbers are 0 to7. (see the chart down below) 
 
•Numbers are expressed as powers of 8. See this table 



 
 

8n-1 8n-2 …… …… 83 82 81 80 

     6 3 2 
 
 
 
Conversion of octal to decimal  
( base 8 to base 10) 
 
Example:  convert (632)8 to decimal 
  = (6 x 82) + (3 x 81) + (2 x 80) 
 
  = (6 x 64) + (3 x 8) + (2 x 1) 
 
  = 384 + 24 + 2 
 
  = (410)10 
 
 
Conversion of decimal to octal ( base 10 to base 8) 
 
Example:  convert (177)10 to octal equivalent 
  177 /  8 = 22 remainder is 1 
   22 / 8 = 2 remainder is 6 
   2 / 8 =  0 remainder is 2 
    
        Answer = 2  6  1 
 
Note:  the answer is read from bottom to top as (261)8, the same as   with the binary case. 
 
 
Conversion of decimal fraction to octal fraction is carried out in the same manner as 
decimal to binary except that now the multiplication is carried out by 8.  
 
Example:  convert (0.523)10 to octal equivalent up to 3 decimal places 
 0.523 x 8 = 4.184 ,its integer part is 4 
 0.184 x 8 = 1.472, its integer part is 1 
 0.472 x 8 = 3.776 , its integer part is 3 
 
So the answer is (0.413..)8   
 



 
 
 
 
 
 
 
Conversion of decimal to binary (using octal) 
 
When the numbers are large, conversion to binary would take a large number of division 
by 2. It can be simplified by first converting the number to octal and then converting each 
octal into its binary form: 
Example:  convert (177)10 to its binary equivalent using octal form 
Step 1: convert it to the octal form first as  shown above 
 This yields (2  6  1)8  
Step 2: Now convert each octal code into its 3 bit binary form, thus 2 is replaced by 010, 
6 is replaced by 110 and 1 is replaced by 001. The binary equivalent is 
( 010  110  001)2 
 
Example:  convert (177.523)10 to its binary equivalent up to 6 decimal places using octal 
form. 
Step 1: convert 177  to its octal form first, to get (2  6  1)8 and then convert that to the 
 binary form  as  shown above, which is ( 010 110 001)2 
Step 2: convert 0.523 to its octal form which is (0.413..)8   
Step 3: convert this into the binary form, digit by digit. This yields (0.100 001 011…) 
Step 4: Now put it all together  
 ( 010 110 001 . 100 001 011…)2 
 
 
 
Conversion of binary to decimal  (using octal) 
 
First convert the binary number into its octal form. Conversion of binary numbers to octal  
simply requires grouping bits in the binary number into groups of three bits 
 
 
•Groups are formed beginning with the Least Significant Bit and progressing to the MSB.  
Start from right hand side and proceed to left. If the left most group  contains only a 
single digit or a double digit, add zeroes to make it  3 digits. 
 
•Thus  
11 100 1112  
= 011   100   1112  
=     3     4     78 



 
And 
       1 100 010 101 010 010 0012  
= 001 100 010 101 010 010 0012 
= 14252218 
 
Now it can be converted into the decimal form. 
 
 
 
 
 
 

Hexadecimal Number System 
 
 
•Base or radix 16 number system. 
 
•1 hex digit is equivalent to 4 bits. 
 
•Numbers are 0,1,2…..8,9, A, B, C, D, E,  F. 
 
  B is 11,  E is 14 
 
•Numbers are expressed as powers of 16. 
 
•160 = 1, 161 = 16, 162 = 256, 163 = 4096, 164 = 65536, … 
 
 
Conversion of hex to decimal ( base 16 to base 10) 
 
Example:  convert (F4C)16 to decimal 
 
  = (F x 162) + (4 x 161) + (C x 160) 
 
  = (15 x 256) + (4 x 16) + (12 x 1)  
 
 
 
Conversion of decimal to hex ( base 10 to base 16) 
 
Example:  convert (4768)10 to hex. 
 
 = 4768 / 16 = 298 remainder 0 



 
 = 298 / 16 = 18 remainder 10 (A) 
 
 = 18 / 16 = 1 remainder 2 
 
 = 1 / 16 = 0 remainder 1 
   
   Answer:  1  2   A   0 
 
Note:  the answer is read from bottom to top , same as with the binary case. 
 
  = 3840 + 64 + 12 + 0 
  = (3916)10 
 
 
 
 
 
 
 
Conversion of binary to  hex 
 
•Conversion of binary numbers to hex simply requires grouping bits in the binary 
numbers into groups of four bits. 
 
•Groups are formed beginning with the LSB and progressing to the MSB.   
 
 
•1110  01112 = E716 
 
•1 1000 1010 1000 01112  
= 0001 1000 1010 1000 01112 
=       1       8       A      8       716  
 
 
 





DeMorgan’s Theory 

DeMorgan’s Theorems are basically two sets of rules or laws developed from the Boolean 

expressions for AND, OR and NOT using two input variables, A and B. These two rules or 

theorems allow the input variables to be negated and converted from one form of a Boolean 

function into an opposite form. 

DeMorgan’s first theorem states that two (or more) variables NOR´ed together is the same as the 

two variables inverted (Complement) and AND´ed, while the second theorem states that two (or 

more) variables NAND´ed together is the same as the two terms inverted (Complement) and 

OR´ed. That is replace all the OR operators with AND operators, or all the AND operators with 

an OR operators. 

DeMorgan’s First Theorem 

DeMorgan’s First theorem proves that when two (or more) input variables are AND’ed and 

negated, they are equivalent to the OR of the complements of the individual variables. Thus the 

equivalent of the NAND function will be a negative-OR function, proving that A.B = A+B. We 

can show this operation using the following table. 

 

 



 

 



 



 



 

 

Sequential logic circuits are generally termed as two state or Bistable devices 

which can have their output or outputs set in one of two basic states, a logic 

level “1” or a logic level “0” and will remain “latched” (hence the name latch) 

indefinitely in this current state or condition until some other input trigger pulse 

or signal is applied which will cause the bistable to change its state once again. 

  



 



 



 

 

  

  



 



 

 



 

 

The JK flip flop is basically a gated SR flip-flop with the addition of a clock input 

circuitry that prevents the illegal or invalid output condition that can occur when both 

inputs S and R are equal to logic level “1”. Due to this additional clocked input, a JK 

flip-flop has four possible input combinations, “logic 1”, “logic 0”, “no change” and 

“toggle”. The symbol for a JK flip flop is similar to that of an SR Bistable Latch as seen 

in the previous tutorial except for the addition of a clock input. 

 



 

 

  



 

 

 



 

Then on the “Low-to-High” transition of the clock pulse the inputs of the “master” 
flip flop are fed through to the gated inputs of the “slave” flip flop and on the 
“High-to-Low” transition the same inputs are reflected on the output of the 
“slave” making this type of flip flop edge or pulse-triggered. 

Then, the circuit accepts input data when the clock signal is “HIGH”, and passes 
the data to the output on the falling-edge of the clock signal. In other words, 



the Master-Slave JK Flip flop is a “Synchronous” device as it only passes data 
with the timing of the clock signal. 

  



 



 

  



 

↓ and ↑ indicates direction of clock pulse as it is assumed D-type flip flops are 

edge triggered 



 



 



 


