Binary

Decimal

Octal and

Hexadecimal number systems

A number can be represented with different base values. We are familiar with the
numbers in the base 10 (known as decimal numbers), with digits taking values
0,12,...,8,9.

A computer uses a Binary number system which has a base 2 and digits can have only
TWO values: 0 and 1.

A decimal number with a few digits can be expressed in binary form using a large
number of digits. Thus the number 65 can be expressed in binary form as 1000001.

The binary form can be expressed more compactly by grouping 3 binary digits together to
form an octal number. An octal number with base 8 makes use of the EIGHT digits
0,1,2,3,4,5,6 and 7.

A more compact representation is used by Hexadecimal representation which groups 4
binary digits together. It can make use of 16 digits, but since we have only 10 digits, the
remaining 6 digits are made up of first 6 letters of the alphabet. Thus the hexadecimal
base uses 0,1,2,....8,9,A,B,C,D,E,F as digits.

To summarize
Decimal : base 10
Binary : base 2

Octal: base 8
Hexadecimal : base 16

Decimal, Binary, Octal, and Hex Numbers

Decimal Binary Octal Hexadecimal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 3)
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Conversion of binary to decimal (base 2 to base 10)

Each position of binary digit can be replaced by an equivalent power of 2 as shown
below.

ol onZ 2% 122 |2t |2V

Thus to convert any binary number replace each binary digit (bit) with its power and add

up.
Example: convert (1011)2 to its decimal equivalent

Represent the weight of each digit in the given number using the above table.

2P 23 122 |2t |2V

1 0 1 1

Now add up all the powers after multiplying by the digit values, 0 or 1

(1011)7
=2°x1+ 2°x0+2'x1+2°x1
=8 +0+2 +1

=11

Example2: convert (1000100)2 to its decimal equivalent
=2°x1 +2°x0 +2*x0+2°x0+2°x1 +2'x0 +2°x0
=64+0+0+0+4+0+0

=(68)10

Conversion of decimal to binary (base 10 to base 2)

Here we keep on dividing the number by 2 recursively till it reduces to zero. Then we
print the remainders in reverse order.

Example: convert (68)10 to binary
68/2 =34 remainder is O
34/ 2 =17 remainder is 0
17/2 =8 remainderis 1
8/2=4 remainderis0
4/2=2 remainderis0
2/2=1 remainderisO
1/2=0 remainderisl
We stop here as the number has been reduced to zero and collect the remainders in
reverse order.
Answer=1000100
Note: the answer is read from bottom (MSB, most significant bit) to top (LSB
least significant bit) as (1000100)2 .

You should be able to write a recursive function to convert a binary integer into its
decimal equivalent.

Conversion of binary fraction to decimal fraction

In a binary fraction, the position of each digit(bit) indicates its relative weight as was the
case with the integer part, except the weights to in the reverse direction. Thus after the
decimal point, the first digit (bit) has a weight of %, the next one has a weight of % ,
followed by 1/8 and so on.

20 - [l 572 73 o4

1 0 1 1 0 0 0

The decimal equivalent of this binary number 0.1011 can be worked out by considering
the weight of each bit. Thus in this case it turns out to be

(1/2) x 1+ (1/4) x 0 + (1/8) x 1 + (1/16) x 1.

Conversion of decimal fraction to binary fraction

To convert a decimal fraction to its binary fraction, multiplication by 2 is carried out
repetitively and the integer part of the result is saved and placed after the decimal point.
The fractional part is taken and multiplied by 2. The process can be stopped any time
after the desired accuracy has been achieved.

Example: convert (0.68)10 to binary fraction.

0.68* 2= 1.36 integer partis 1
Take the fractional part and continue the process
0.36 *2= 0.72 integer partis 0
0.72*2 = 1.44 integer partis 1
0.44*2 = 0.88 integer partis 0

The digits are placed in the order in which they are generated, and not in the reverse
order. Let us say we need the accuracy up to 4 decimal places. Here is the result.
Answer= 0.1010.....

Example: convert (70.68)10 to binary equivalent.

First convert 70 into its binary form which is 1000110. Then convert 0.68 into binary
form upto 4 decimal places to get 0.1010. Now put the two parts together.

Answer=1000110.1010....

Octal Number System

*Base or radix 8 number system.
«1 octal digit is equivalent to 3 bits.
*Octal numbers are 0 to7. (see the chart down below)

*Numbers are expressed as powers of 8. See this table

gt g™ L g |8 |8t |8’

Conversion of octal to decimal
(base 8 to base 10)

Example: convert (632)g to decimal
= (6x82) + (3x81)+(2x80)

=(6x64)+(B3x8)+(2x1)
=384+24+2

= (410)10

Conversion of decimal to octal (base 10 to base 8)

Example: convert (177)10 to octal equivalent

177/ 8 =22 remainder is 1
22 / 8 =2 remainder is 6
2 /8= 0remainder is 2

Answer=2 6 1

Note: the answer is read from bottom to top as (261)g, the same as with the binary case.

Conversion of decimal fraction to octal fraction is carried out in the same manner as
decimal to binary except that now the multiplication is carried out by 8.

Example: convert (0.523)10 to octal equivalent up to 3 decimal places
0.523 x 8 = 4.184 ,its integer part is 4
0.184 x 8 = 1.472, its integer part is 1
0.472 x 8 = 3.776 , its integer part is 3

So the answer is (0.413..)8

Conversion of decimal to binary (using octal)

When the numbers are large, conversion to binary would take a large number of division
by 2. It can be simplified by first converting the number to octal and then converting each
octal into its binary form:
Example: convert (177)10 to its binary equivalent using octal form
Step 1: convert it to the octal form first as shown above

This yields (2 6 1)g
Step 2: Now convert each octal code into its 3 bit binary form, thus 2 is replaced by 010,
6 is replaced by 110 and 1 is replaced by 001. The binary equivalent is
(010 110 001)2

Example: convert (177.523)10 to its binary equivalent up to 6 decimal places using octal

form.
Step 1: convert 177 to its octal form first, to get (2 6 1)g and then convert that to the

binary form as shown above, which is (010 110 001)2
Step 2: convert 0.523 to its octal form which is (0.413..)g8

Step 3: convert this into the binary form, digit by digit. This yields (0.100 001 011...)
Step 4: Now put it all together
(010110001.100001011...)2

Conversion of binary to decimal (using octal)

First convert the binary number into its octal form. Conversion of binary numbers to octal
simply requires grouping bits in the binary number into groups of three bits

*Groups are formed beginning with the Least Significant Bit and progressing to the MSB.
Start from right hand side and proceed to left. If the left most group contains only a
single digit or a double digit, add zeroes to make it 3 digits.

*Thus
11100 1119

=011 100 111y
= 3 4 Tg

And
1100010 101 010 010 0012

=001 100 010 101 010 010 0012
= 1425221g

Now it can be converted into the decimal form.

Hexadecimal Number System

*Base or radix 16 number system.

*1 hex digit is equivalent to 4 bits.

*Numbers are 0,1,2.....8,9, A,B,C, D, E, F.
Bisll, Eisl4

*Numbers are expressed as powers of 16.

«160 =1, 161 = 16, 162 = 256, 163 = 4096, 164 = 65536, ...

Conversion of hex to decimal (base 16 to base 10)
Example: convert (F4C)1g to decimal
= (F x 162) + (4 x 161) + (C x 160)

= (15x 256) + (4 x 16) + (12x 1)

Conversion of decimal to hex (base 10 to base 16)

Example: convert (4768)10 to hex.

=4768 /16 = 298 remainder 0

=298/ 16 = 18 remainder 10 (A)
=18/16 = 1 remainder 2
=1/16 =0 remainder 1
Answer: 1 2 A 0
Note: the answer is read from bottom to top , same as with the binary case.

=3840+64+12+0
=(3916)10

Conversion of binary to hex

*Conversion of binary numbers to hex simply requires grouping bits in the binary
numbers into groups of four bits.

*Groups are formed beginning with the LSB and progressing to the MSB.

«1110 0111 = E716

+1 1000 1010 1000 01115
0001 1000 1010 1000 01115
1 8 A 8 715

Buffer

Inverter
(NOT gate)

2-input
AND gate

2-input
NAND
gate

2-input
OR gate

2-input
NOR gate

2-input
EX-OR
gate

2-input
EX-NOR
gate

>

YO YUY O UYY

>

@ >

@ >

@ >

@™ >

A

A
B

<

=<

<

=<

<

<

=<

oY

]

1

Y

1

0
A B|Y
0 0|0
0 1|0
1 0]0
T
ATIBH Y
0 0|1
0 1 1
1 011
U [o)
A B|lY
0 0|0
0 1 1
1011
1111
ABlY
0 0|1
0 1]|0
1 0]0
1 1 |0
A B|lY
0 0|0
0 1|1
3o i |
sl ED
A BlY
0 0|1
0 110
1 0]0
L))

Y =AB

Y=A+B

Y=A®B

DeMorgan’s Theory

DeMorgan’s Theorems are basically two sets of rules or laws developed from the Boolean
expressions for AND, OR and NOT using two input variables, A and B. These two rules or
theorems allow the input variables to be negated and converted from one form of a Boolean
function into an opposite form.

DeMorgan’s first theorem states that two (or more) variables NOR "ed together is the same as the
two variables inverted (Complement) and AND ed, while the second theorem states that two (or
more) variables NAND ed together is the same as the two terms inverted (Complement) and
OR’ed. That is replace all the OR operators with AND operators, or all the AND operators with
an OR operators.

DeMorgan’s First Theorem

DeMorgan’s First theorem proves that when two (or more) input variables are AND’ed and
negated, they are equivalent to the OR of the complements of the individual variables. Thus the
equivalent of the NAND function will be a negative-OR function, proving that A.B = A+B. We
can show this operation using the following table.

Verifying DeMorgan's First Theorem using Truth Table

Truth Table Cwtputs For Esch Term

B A AR AB A E A+E
0 0 0 1 1 1 1
0 1 0 1 0 1 1
1 0 0 1 1 0 1
1 1 1 0 0 0 0

We can also show that AR = A+E using logic gates as shown.

DeMorgan’s First Law Implementation using Logic Gates

MAMD
o A B a8
B
A
A+B
B

Megalive-OR

The top logic gate arrangement of: AB can be implemented using a standard NAMD gate
with inputs & and B. The lower logic gate arrangement first inverts the two inputs
prnducingE and B. These then become the inputs to the OR gate. Therefore the cutput
from the OR gate becomes: A+B

Then we can see here that astandard OR gate function with inverters (MOT gates) on
each of its inputs is equivalent to 3 MAMD gate function. So an individual MAMD gate can
be represented in this way as the equivalency of a MAMND Zate is 2 negative-OR.

DeMorgan's Second Theorem

DetMorgan’s 5econd theorem proves that when two (or more) input variables are OR'ed
and negated, they are equivalent to the AND of the complements of the individual
variables. Thus the equivalent of the NOR function is a negative-AMD function proving

that A+B = AB, and again we can show operation this using the following truth table.

Verifying DeMorgan's Second Theorem using Truth Table

Truth Table Cutputs For Esch Term

B & | a+E | B+E A B A.B
0 0 0 1 1 1 1
0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 1 0 0 0 0

We can also show that A+B = AB using the following logic gates example.

DeMorgan's Second Law Implementation using Logic Gates
NOR

A A+B AvB

Dt

Megative-AND

The top logic gate arrangement of; A+B can be implemented using a standard MOR gate
function using inputs A and B. The lower logic gate arrangement first inverts the two
inputs, thus prl::u:lucingE and B. Thus then become the inputs to the AND gate. Therefore
the output from the AMD gate becomes: AB

Then we can see that a standard AMD gate function with inverters ([MOT gates) on each of
its inputs produces an equivalent output condition to a standard MOR gate function, and
an individual MOR gate can be represented in this way as the equivalency of a NOR gate s

anegative-AND.

Although we have used DeMorgan’s thearems with only two input variables A and B, they

are equally valid for use with three, four or more input variable expressions, for example:

For a 3-variable input

BC=A+B+C

and also

A+B+C=AB.C

For a 4-variable input

and also

and soon.

i e Sequential Logic
:{> Combinational —> . .
logecreut | .. Circuits
Presdnus e Sequential Logic Circuits use flip-flops as

Stae
memory elements and inwhich their output is

memory | &I L o i
mary Si!:;:d dependent on the input state

Unlike Combinational Logic circuits that change state depending upon the actual signals

being applied to their inputs at that time, Sequential Logic circuits have some form of
inherent “Memary” built in.

This means that sequential logic circuits are able to take into account their previous input
state aswell as those actually present, a sort of “before” and “after” effect is involved with

sequential circuits.

In other words, the output state of 2 "sequential logic circuit” is a function of the following
three states, the “present input’, the “past input” and/or the “past output”. Sequential Logic
circuits remember these conditions and stay fived in their current state until the next clock

signal changes one of the states, giving sequential logic circuits “Memory”

Sequential logic circuits are generally termed as two state or Bistable devices
which can have their output or outputs set in one of two basic states, a logic
level “1” or a logic level “0” and will remain “latched” (hence the name latch)
indefinitely in this current state or condition until some other input trigger pulse
or signal is applied which will cause the bistable to change its state once again.

Sequential Logic Representation

I put Culgd
b L.
Combinational :I|>
Logic Circuit Posilive
F eadback
Fravious
Staie

Memory = _I'I_ Clock

Thewaord “5equential” means that things happen in a “sequence”, one after another and in
Sequential Logic circuits, the actual clock signal determines when things will happen next.
Ssimple sequential logic circuits can be constructed from standard Bistable circuits such
as: Flip-flops, Latches and Counters and which themselves can be made by simply
connecting together universal MAMD Gates and/or NOR Gates in a particular

combinational way to produce the required sequential circuit.

Classification of Sequential Logic

As standard logic gates are the building blocks of combinational circuits, bistable latches
and flip-flops are the basic building blocks of sequential logic circuits. Sequential logic
circuits can be constructed to produce either simple edge-trigzered flip-flops or more
complex sequential circuits such as storage registers, shift registers, memory devices or
counters. Either way sequential logic circuits can be divided into the following three main

categaries:

1. Event Driven - asynchronous circuits that change state immediatebly when
enabled.

2. Clock Driven - synchronous circuits that are synchronised to a specific clock
signal.

3. Pulse Driven - which is 2 combination of the two that responds to trigeering

pulses.

Sequential Logic Circuit

L] L] L
Event Driven Clock Driven c
(Asynchromou) [Synchronous) Fulse Driven
I I |
L
Cyclic M on-cyclic

Aswell as the two logic states mentioned above logic level *1° and logic level *0° a third

element is introduced that separates sequential logic circuits from their combinational

logic counterparts, namely TIME. Sequential lagic circuits return back to their original

steady state once reset and sequential circuits with loops or feedback paths are said to be

“oyclic” in nature.

We now know that in sequential circuits changes occur only on the application of a clock

signal making it synchronous, otherwise the circuit is asynchronous and depends upon an

external input. To retain their current state, sequential circuits rely on feedback and this

occurs when a fraction of the output is fed back to the input and this is demonstrated as:

Sequential Feedback Loop

I mapu +
.‘!ﬁ +

Fesachark

e
Ciutputs

-

The two inverters or MOT gates are connected in series with the output at Q fed back to

the input. Unfortunately, this configuration never changes state because the output wall

always be the same, either 2 1" or 207 it is permanently set. However, we can see how

feedback works by examining the most basic sequential logic components, called the SR

flip-flop.

SR Flip-Flop

The SR flip-flop, also known as a 58 Latch, can be considered as one of the most basic
sequential logic circuit pozsible. This simple flip-flop is basically 2 one-bit memory bistable
device that has two inputs, one whichwall "3ET” the device (meaning the output = *1%), and
15 |labelled § and one which wall "RESET" the device (meaning the output = “0°), |abelled R

Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop back to
its original state with an output Q that will be either at a logic level “1° or logic “0°

depending upon this set/reset condition.

Abasic MAMND zate SR flip-flop circuit provides feedback from both of its outputs back to
its opposing inputs and 15 commonly used in memory circuits to store a single data bit.
Then the SR flip-flop actually has three inputs, 5et, Reset and its current output Q relating
toit's current state or history. The term “Flip-flop” relates to the actual operation of the
device, as it can be “flipped” into one logic Set state or “flopped” back into the opposing

logic Reset state.

The NAND Gate SR Flip-Flop

The simplest way ta make any basic single bit set-reset SR flip-flop is to connect together
a pair of cross-coupled 2-input MAMD gates as shown, to form a Set-Reset Bistable also
known as an active LOW 5R MAMND Gate Latch, so that there is feedback from each output
to one of the other MAMD gate inputs. This device consists of two inputs, one called the
%et, 5 and the other called the Reset, R with two corresponding outputs Q and its inverse

or complement G (not-Q) as shown below:.

The Basic SR Flip-flop

S o— o0 o LI —x Q
SR
Flip-tlop
R o— o0 Y a
o L&
H (resat)
Symixl Circul
The Set State

Consider the circuit shown above. If the input R is at logic level "0° (R =0) and input 5 is at
logic level *17 (5 = 1), the MAMD gate ¥ has at least one of its inputs at logic “0" therefore,
its outp utEa must be at a logic level 17 ([MAMND Gate principles). Dutputﬁ i5 also fed back
to input "A” and so both inputs to MAMD gate X are at logic level * 17, and therefore its

cutput Q must be at lozic level 07

Again MAMD gate principals. If the reset input R changes state, and goes HIGH to logic "1”
with S remaining HIGH also at logic level *1°, MAMD gate Yinputs arenow R="1"and B =
“07 Since one of its inputs 1z still at logic level “0° the output at astil | remains HIGH at
logic level 17 and there i1s no change of state. Therefore, the flip-flop circuit s said to be
“Latched” or *5et” with El ="1"and Q ="0"

Reset State

In this second stable state,ﬁ is at logic level “0°, (not O = "0") its inverse output at Q is at
logic level *1°, (Q ="1"), and is given by R ="1" and 5 = “0". As gate X has one of its inputs at
logic *0" its output © must equal logic level *1” (again HAMD gate principles). Qutput Q is
fed back to input “B", 50 bath inputs to MAMD gate ¥ are at logic " 17 therefc:ure__ﬁ ="0"

If the set input, 5 now changes state to logic "1 wath input R remaining at logic *1", output
Estill remains LOW at logic level “0" and there is no change of state. Therefore, the flip-
flop circuits “Reset” state has also been latched and we can define this “set/reset” action in
the following truth table.

Truth Table for this Set-Reset Function

5101
Set

1 1 0 1 o change

o | 1] 1| o Rezst (s 0
Feset

1 1 1 a o change
Irnvalid { 0 1 1 nvelid Condition

It can be seen that when both inputs 5 ="1" and R = "1 the outputs Q and El can be at
either logic level *1° or "0°, depending upon the state of the inputs 5 or R BEFORE this
input condition existed. Therefore the condition of 5 = R ="1" does not change the state of
the outputs Q and a

However, the input state of 5="0" and R ="0" 15 an undesirable or invalid condition and
must be avoided. The condition of 5 = R ="0" causes both outputs Q and Etn he HIGH
together at logic level “1" when we would normally wantatc- be the inverse of Q. The
result is that the flip-flop looses contral of Q and 5 and if the two inputs are now
switched “"HIGH" again after this condition to logic “1°, the flip-flop becomes unstable and
switches to an unknown data state based upon the unbalance as shown in the following

switching diagram.

“EaEET " The JK Flip Flop

Ja— K Lag H\hﬂ‘ I il 7
— }""F-‘"“F') L il The JK Flip-flop is similar to the SR Flip-flop but
v i . . .
ko] e, }_56‘*’4 thereis no change in state when the J and K
i inputs are both LOW

Then to overcome these two fundamental design problems with the SR flip-flop design,

the JK flip Flop was developed.

This simple JK flip Flop is the most widely used of all the flip-flop designs and is
considered to be a universal flip-flop circuit. The two inputs labelled “J° and "K” are not
shortened abbreviated letters of other words, such as 5" for Set and "R” for Reset, but are
themselves autonomous letters chosen by its inventor Jack Kilby to distinguish the flip-

flop design from other types.

The sequential operation of the JK flip flop is exactly the same as for the previous 5R flip-
flop with the same "Set” and "Reset” inputs. The difference this time is that the "JK flip
flop™ has no invalid or forbidden input states of the SR Latch even when 5 and R are both
at logic“1"
The JK flip flop is basically a gated SR flip-flop with the addition of a clock input
circuitry that prevents the illegal or invalid output condition that can occur when both
inputs S and R are equal to logic level “1”. Due to this additional clocked input, a JK
flip-flop has four possible input combinations, “logic 17, “logic 0”, “no change” and

“toggle”. The symbol for a JK flip flop is similar to that of an SR Bistable Latch as seen
in the previous tutorial except for the addition of a clock input.

The Basic JK Flip-flop

Taggles on leading edge SR flip-flap
of dock signal i

L | 5 i
Je— JK —-q\ }I_D: eQ

I
I
Fip-flo - § ! '
| |
K @—| @0 ! I
I

Both the 5 and the R inputs of the previous 5R bistable have now been replaced by two
inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this
equatesto: J=5and K =R

The two 2-input AND gates of the gated 5K bistable have now been replaced by two 3-
input NAMND gates with the third input of each gate connected to the outputs at Q and E!
This cross coupling of the SR flip-flop allows the previously invalid conditionof 5="1" and

R ="1"state to be used to produce a "toggle action” as the two inputs are now interlockad.

If the circuit is now "SET" the J input is inhibited by the "0" status Dfﬁthmugh the lower
NAND gate. If the circuit is "RESET" the K input is inhibited by the "0" status of O through
the upper NAND gate. As Q) and E} are always different we can use them to contral the
input. When both inputs J and K are equal to logic *17, the JK flip flop toggles as shown in
the following truth table.

The Truth Table for the JK Function

(e

v
Clk) K Q 0
X 0 0 1 0 Memary
same a5 . o o o . no change
for the
SR Latch 1 0] 1 1 0
Reset Q=0
X 0 1 0 1
"I 1 0 0 1
SetQs1
X 1 0 1 0
"I 1 1 0 1
Togzle
"I 1 1 1 0

Then the JK flip-flop is basically an SR flip flop with feedback which enables only one of its
two input terminals, either SET or RESET to be active at any one time under normal
switching thereby eliminating the invalid condition seen previously in the SR flip flop

circuit.

However, if both the Jand Kinputs are HIGH at logic ™1 () = K = 1), when the clock input
goes HIGH, the circuit will "toggle™ as its outputs switch and change state complementing
each other. This results in the JK flip-flop acting more like a T-tvpe togzle flip-flop when
both terminals are "HIGH® Howewver, as the outputs are fed back to the inputs, this can
cause the output at Q to oscillate between SET and RESET continuously after being

complemented once.

While this JK flip-flop circuit is an improvement on the clocked SR flip-flop it also suffers

from timing problems called “race” if the output Q changes state before the timing pulse

of the clock input has time to go "OFF". To avoid this the timing pulse period { T) must be

kept as short as possible (high frequency). As this is sometimes not possible with basic JK
flip-flops built using basic NAND or NOR gates, far more advanced master-slave (edge-

triggered) flip-flops were developed which are more stable.

Master-Slave JK Flip-flop

The master-slave flip-flop eliminates all the timing problems by using two SR flip-flops
connected together in a series configuration. One flip-flop acts as the "Master” circuit,
which triggers on the leading edge of the clock pulse while the other acts as the "Slave”
circuit, which triggers on the falling edge of the clock pulse. This results in the two
sections, the master section and the slave section being enabled during opposite half-

cycles of the clock signal.

The TTL 74L573 is a Dual JK flip-flop |C, which contains two individual JK type bistable's
within a single chip enabling single or master-slave toggle flip-flops to be made. Other JK
flip flop IC's include the 74L5107 Dual JK flip-flop with clear, the 7405109 Dual positive-
edge triggered JK flip flop and the 74L5112 Dual negative-edge triggered flip-flop with

both preset and clear inputs.

The Master-5lave JK Flip-flop
The Master-Slave Flip-Flop is basically two gated SR flip-flops connected togetherina

series configuration with the slave having an inverted clock pulse. The outputs from Q and
ﬁfmm the “Slave” flip-flop are fed back to the inputs of the “Master” with the outputs of
the "Master” flip flop being connected to the two inputs of the “Slave” flip flop. This
feedback configuration from the slawve’'s output to the master’s input gives the

characteristic toggle of the JK flip flop as shown below.

The Master-Slave JK Flip Flop

“Master Lateh” “Slave Lach”
ra N
|__ | F I \5(:
e) : D T
Ulk.{. I I :
| | |
i i | _
o DD DD
| | |

The input signals J and K are connected to the gated “*master® SR flip flop which "locks”
the input condition while the clock (Clk) input is "HIGH" at logic level 17 As the clock
input of the “slave” flip flop is the inverse (complement) of the “master” clock input, the
"slave" 5R flip flop does not toggle. The outputs from the "master”® flip flop are only "seen”

by the gated “slave” flip flop when the clock input goes "LOW" to logic level “07,

When the clock is "LOW?, the outputs from the “master” flip flop are latched and any
additional changes to its inputs are ignored. The gated "slave” flip flop now responds to

the state of its inputs passed over by the "master” section.

Then on the “Low-to-High” transition of the clock pulse the inputs of the “master’
flip flop are fed through to the gated inputs of the “slave” flip flop and on the
“‘High-to-Low” transition the same inputs are reflected on the output of the
“slave” making this type of flip flop edge or pulse-triggered.

Then, the circuit accepts input data when the clock signal is “HIGH”, and passes
the data to the output on the falling-edge of the clock signal. In other words,

the Master-Slave JK Flip flop is a “Synchronous” device as it only passes data
with the timing of the clock signal.

One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the
indeterminate input condition of SET = "0" and RESET =*0" is forbidden.

This state will force both outputs to be at logic * 1", over-riding the feedback latching
action and whichever input goes to logic level 17 first will lose control, while the other

input still at logic "0" controls the resulting state of the latch.

But in order to prevent this from happening an inverter can be connected between the
"SET" and the "EESET" inputs to produce another type of flip flop circuit known as a Data
Latch, Delay flip flop. D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is

more generally called.

The D Flip Flop is by far the most important of the clocked flip-flops as it ensures that
ensures that inputs 5 and K are never equal to one at the same time. The D-type flip flop
are constructed from a gated SE flip-flop with an inverter added between the 5 and the R

inputs to allow for a single D (Data) input.

Then this single data input. labelled *D” and is used in place of the *Set” signal, and the
inverter is used to generate the complementary *Reset” input thereby making a level-
sensitive D-type flip-flop from a level-sensitive SR-latchasnow 5=Dand R=not D as

shown.

D-type Flip-Flop Circuit

Data (D) @ S
)’ Q

Clack (Clk) -—L[
Symbal =
%_}—

D@— —@Q
C-type
Clk @— Flip-flop Inverter

Gated SR Flip-flop
_.IE it i

il

We remember that a simple SR flip-flop reguires two inputs, one to *SET" the output and
one to “RESET” the output. By connecting an inverter (NOT gate) to the SR flip-flop we
can "SET" and "RESET” the flip-flop using just one input as now the two input signals are
complements of each other. This complement avoids the ambiguity inherent in the SR

latch when both inputs are LOW, since that state is no longer possible.

Thus this single input is called the "DATA" input. If this data input is held HIGH the flip flop
would be "SET” and when it is LOW the flip flop would change and become “RESET”.
However, this would be rather pointless since the output of the flip flop would always

change on every pulse applied to this data input.

To avoid this an additional input called the "CLOCK” or "ENABLE” input is used to isolate
the data input from the flip flop’s latching circuitry after the desired data has been stored.
The effect is that D input condition is only copied to the output Q when the clock input is

active. This then forms the basis of another sequential device called 2 D Flip Flop.

The "D flip flop” will store and output whatever logic level is applied to its data terminal so
long as the clock input is HIGH. Once the clock input goes LOW the “set” and “reset”
inputs of the flip-flop are both held at logic level “1” so it will not change state and store
whatever data was present on its output before the clock transition occurred. In other

words the output is "latched” at either logic *07 or logic "1"

Truth Table for the D-type Flip Flop

Memory
=) X
) - Q no change
ts1 | 0 0 1 Reset (s 0
tel 1 1 0 Set Qs 1

| and 7 indicates direction of clock pulse as it is assumed D-type flip flops are
edge triggered

Toggle Flip-flop

While the Data (D) flip-flop is a variation of a clocked SR flip-flop constructed using either
NMAMND or NOR gates, the Toggle (T) flip-flop is a variation of the clocked JK flip-flop. The
togzzle or T-type flip-flop gets its name from the fact that its two outputs Q and E} invert

from their previous state as it toggles back and forth every time it is triggered (T = 1).

7 ol Thatis, the Q andﬁcutputs changetoa 1" ifitwas "0% and "0" if it was
previously a“1" but only when the " T" input changes HIGH, otherwise
—p ok they do not change, and its this asynchronous toggling action we are
Qj— interested in here,

The JK isrenamed T for T-type or Toggle flip-flop and is generally represented by the logic
or graphical symbaol shown. The Toggle schematic symbol has two inputs available, one

represents the “toggle” (T) input and the other the “clock” (CLK) input.

Also, just like the 74L573 JK flip-flop, the T-type can also be configured to have an enable
input called EM or CE [clock enable) allowing it to hold the last data state stored onits
putputs indefinately. Thus with the clock enable input set, the application of any new clock
pulses prevents toggling of the outputs. But this "enable” feature, if required, must be

implimented using additional logic gates.

Logic “1" — The triangle of chevron on the input of either type of T-type
T J' J i flip-flop indicates that it is an edge-triggered device. If thereis a

- small bubble or circle at the input, then it indicates that the flip-
— iz

¥ Posithe or Magative or
rising-edge fallingedge

flop togsles on the negative falling edge (HIGH-to-LOW) of
each pulse, otherwise, it changes state on the positive or rising

transistional edge (LOW-to-HIGH) of each input pulse.

Thenwe can create the logic circuit of a single bit toggle flip-flop using the basic JK flip-
flop by connecting the J and K data inputs together where the common point at the

connection of the two inputs is designated T, as shown.

The Toggle Flip-flop

T d Q) = Output 1— 1T Q = Output
CLK —{» - —pCLK
K - |
JK Toggle T-type
Flip-flop Flip-flop
) ty tz 1z Ly tg tr ts
CLK T I I]‘ T T‘I inp ut
0

Q Q Q Q Q I'E! output
]

Suppose that initially CLK and input T are both LOW (CLK. = T =0}, and that output Q is
HIGH (Q = 1). At the rising edge or falling edge of a CLK pulse, the logic 0" condition
present at T prevents the output at Q from changing state. Thus the output remains

unchanged when T =0.

Mow let's suppose that input T is HIGH (T = 1) and CLK is LOW (CLK = 0}. At the rising
edge (assuming positive transistion] of a CLK pulse at time t,, the output at Q changes
state and becomes LOW, making a HIGH. The negative transistion of the clock pulse from
HIGH to LOW at time t; has no effect on the output at Q as the flip-flop is reset into one
stable state.

At the next rising edge of the clock signal at time t, the logic "1" at T passes to O, changing
its state making output O HIGH again. The negative transistion of the CLK pulse attime t,
from HIGH to LOW once again has no effect on the cutput. Thus the Q output of the flip-
flop "toggles” at each positive going edge (for this example) of the CLK pulse.

Characteristics Table for the Toggle Function

-
1 0 0 0

0 1 1
1 0 1
r 1 1 0

Then we can define the switching action of the toggle flip-flop in Boolean form as being:

Q+1=TQ+TQ
Where: Q represents the present steady state of the flip-flop and Q+1 is the next

switching state.

You may have noticed that the characteristic equation given in Boolean form for the
toggle flip-flop above will produce an output HIGH for the next state (Q+1) if the two
inputs of T and Q are different, and a LOW output if these inputs are the same.

This idea of Q+1 is HIGH only when either of the inputs is HIGH but not when both inputs
are HIGH, that is either input but not both represents the same Boolean Algebra
expression of an Exclusive-OR Function which is given as:

Q+1=TQ+TQ=TXORQ=TEHQ

Then we can represent the switching action of a togzle flip-flop using a 2-input Exclusive-
OR (Ex-OR) gate.

