Lective-2
Binomial distribution: suppose there are n independent -trials of an experiment. Let p alcnote the probability of recess and q be the probability of a failure in a single trial. (Here Let a random experiment be per/os.ned repeatedly, each repetition being called a trial and let the happening of an event in a trial is called a success and its non-happening a failure)

Now the probability of getting or successes in these n. independent triads. $=(p \ldots p \ldots p)(q, q \ldots q)$.
rtiones $(n-r)$ times.

$$
=p^{r o} q^{(n-r)}\{\text { by the multiplication }
$$

theorem $\}$.
But These or of elecesses in n trials can occur in "Ge ways. since "cr ways are mutually exclusive, then the probability of having r r accesses out of in trials is given by.

$$
P(r)=n \operatorname{cr} p^{r} q^{n-r} \text { (addition th.) }
$$

Note: i) Above probability fun ${ }^{n}$ is probability mass function ($p m f$)

$$
\because P(x=r) \geqslant 0 \quad f r=0,12, \ldots n \text { as } p, q \geqslant 0
$$

and $\sum_{r=0}^{n} P(X=r)=\sum_{r=0}^{n} C_{r} p^{r} q^{n-r}$

$$
\begin{aligned}
& ={ }^{n} c_{0} p^{0} q^{n-0}+{ }^{n} c_{1} p q^{n-1}+\cdots+{ }^{n} c_{n-1} p^{n-1} v+{ }^{n} c_{n} p^{n} \\
& =(q+p)^{n} . \\
& =1^{n}=1
\end{aligned}
$$

2.) Since. The probabilities $P(x=r)$ are the nencecosive terms in the expancion of Binomial expression $(q+p)^{n}$, therefor this distribution is called Binomial distribution.
3.) Binomial ditsibibation is ale knouon is Bernoulli distribution of ate.

1) If 10% of the pens manufaeteved by a company are. dupestive. Find the probabity that a box of 12 pens curtains: (i) exactly tovo defective pens (ii) at least two defective pens.
DoIt. Let $p=$ probability of a defethire pen $=0.1$

$$
\therefore q=0.9 \text { and } n=12
$$

(i) Probability that the box contains two, defective pens.

$$
=1^{2} c_{2} p^{2} q^{10}=1^{12} c_{2}(0.1)^{2}(0.9)^{10}=0.2301
$$

(ii) Probability that the box contains at least two defective pans $=1-$ [prob. that the box contains either none OL one non - defective pen]

$$
\begin{aligned}
& =1-[p(1=0)+p(\kappa=1)] \\
& =1-\left[{ }^{12} c_{0} p^{0} q^{12}+{ }^{12} q p^{\prime} q^{11}\right] \\
& =1-\left[{ }^{12} c_{0}(0.9)^{2}+{ }^{12} q(0.1)(0.9)^{11}\right] \\
& =0.341 .
\end{aligned}
$$

Q\& The incidence of an occupational disease in an industry is such that the workmen have a 20% chance of Duffing from it. What is the probability that out of 6 workmen 4 or more will suffer from disease?
pols $p=$ the probability of a man suffering from disease

$$
\begin{aligned}
& =\frac{20}{100} \\
& =\frac{1}{5}
\end{aligned}
$$

, then $q=1-p=1-\frac{1}{5}$

$$
q=\frac{4}{5}
$$

Her $n=6$.
Required probability that out of 6 workmen 4 or more will suffers from disease $=P(4)+P(5)+P(6)$

$$
=6 c_{4} q^{2} p^{4}+6 c_{5} 9 p^{5}+6 c_{6} p^{6}
$$

$=53$
Note, क्र the binomiab distributione 11 pase vaid to be parametess.
2. If $p=p=\frac{1}{2}$, the bimominal distribilian is called, Nymmetricale distaibution ethembise it is called Nkene distribetion.

Menn and Variance of Binominal. Nistribatiben:
For, the binomine risoributions

$$
\begin{aligned}
& P(S)=n\left(A, p^{\prime \prime} q^{n=\%}\right. \\
& \text { Mean }=\mu=E(x)=\sum_{k=0}^{n} \mu P(x) \\
& =\frac{S_{n=0}^{\prime \prime}}{\pi \cdot n\left(r p^{r} q^{n+n}\right.} \\
& =0+n c_{1} q^{n-1} p+2^{n} c_{2} q^{n-2} p^{2}+\ldots+n_{1}^{n} c_{n} q^{0} p^{n} \\
& =n q^{n-1} p+n(n-1) q^{n-2} \beta^{2}+\frac{n(n-1)(n-2)}{2!} q^{n-3} \beta^{3} \\
& +\cdots+n p^{n} \\
& =n p\left[q^{n-1}+(n-1) q^{n-2} p+\frac{n(n-1)(n-2)}{2} q^{n-3} p^{2}+\cdots+p^{n-1}\right] \\
& =n p(q+p)^{n-1} \\
& =n p \text {. }
\end{aligned}
$$

Variance

$$
\begin{aligned}
\operatorname{var} \cdot(x) & =E[x-E(x)]^{2} \\
& =E(x-\mu)^{2} \\
& =E\left(x^{2}\right)-2 \mu E(x)+\mu^{2} \quad[\because E(x)=\mu] \\
& =E\left(x^{2}\right)-2 E(x) \cdot E(x)+[E(x)]^{2} \\
\sigma^{2} & =E\left(x^{2}\right)-[E(x)]^{2} \\
\therefore \quad \sigma^{2} & =\sum_{r=0}^{n} r^{2} P(r)-\mu^{2} \\
& =\sum_{r=0}^{n}[r+r(r-1)] P(r)-(n p)^{2} \\
& =\sum_{r=0}^{n} r P(r)+\sum_{r=0}^{n} r(r-1) P(r)-n^{2} p^{2}
\end{aligned}
$$

$$
\text { Variance } \begin{aligned}
\sigma^{2}= & \mu+\sum_{r=0}^{n} r(r-1) p(r)-n^{2} p^{2} \\
= & \mu+\sum_{r=0}^{n} r(r-1){ }^{n}\left(r q^{n-r} p^{r}-n^{2} p^{2}\right. \\
= & \mu+\left[2 \cdot 1^{n}\left(q q^{n-2} p^{2}+3 \cdot 2^{n} c_{3} q^{n-2} p^{3}+\cdots+n(n-1)^{n} c_{n} p^{n}\right]\right. \\
& =n^{2} p^{2} \\
= & \mu+\left[n(n-1) q^{n-2} p^{2}+n(n-1)(n-2) q^{n-3} p^{3}\right. \\
& \left.+\cdots+n(n-1) p^{n}\right]-n^{2} p^{2} \\
= & \mu+n(n-1) p^{2}\left[q^{n-2}+(n-2) q^{n-3} p+\cdots+p^{n-2}\right]-n^{2} p^{2} \\
= & \mu+n(n-1) p^{2}\left[g^{n-2} c_{0} q^{n-2}+n+2 c_{1} q^{n-3} p+\cdots\right. \\
= & \mu+n(n-1) p^{2}(q+p)^{n-2}-n^{2} p^{2} \\
= & n p-n p^{2} \\
= & n p(1-p) . \\
= & n p q \cdot
\end{aligned}
$$

Q If on an average 8 ships out of 10 arrive safely at a port. Find the mean and standard deviation of the number of ships arriving safely cut of a total of low ships.
Sol: Here $p=$ probability of safer arrival $=\frac{8}{10}=0.8$.

$$
q=1-p=0,2
$$

mean of ships returning safely is given by.

$$
\begin{aligned}
& n p=1600 \times 0.8=1280 \\
& \text { standard duration }=\sqrt{n p q}=16
\end{aligned}
$$

Recurrence formula for the Binomial Distribution:

$$
\because P(r)={ }^{n} C_{r} p^{r} q^{n-r}
$$

Similarly, $p(r+1)=n_{C_{x+1}} p^{r+1} q^{n-r-1}$.

$$
\begin{aligned}
\therefore \frac{p(r+1)}{p(r)} & =\frac{n!p^{r+1} q^{n-r-1}}{(r+1))(n-r-1)!} \cdot / \frac{n!p^{r} q^{n-r}}{r!(n-r)!} \\
& =\frac{n-r}{r+1} \frac{p}{q} \\
\Rightarrow p(r+1) & =\frac{(n-r)}{(r+1)} \frac{p}{q} p(r)
\end{aligned}
$$

Fitting a Binomial distribution: When a binomial distribution is -10 be fitted to observe data, the following procedure is adopted.
r). Find the values of p and q.
2) Expand the binomial $(q+p)^{n}$
3.) Multiply - each. Term of the expanded binomial by N (the total frequency of the given sit of data) in order to oblain the expected frequency in each category.
Q. Six dice are thrown:729-times. How many times do you expect atlcast three dice to show a five or six?
Loon: $p=$ the probability of getting 5 or 6 witt one dies

$$
\begin{aligned}
& =\frac{2}{6}=\frac{1}{3} \\
q & =1-p=1-\frac{1}{3}=\frac{2}{3} \\
n & =6, N=72.9
\end{aligned}
$$

The expected $n \theta$. of times atleast three dice showing

$$
\begin{aligned}
\text { five or six }= & 729[P(3)+P(4)+P(5)+P(6)] \\
= & 729\left[{ }^{6} C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{3}+6 C_{4}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{4}+{ }^{6} C_{3}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{5}\right. \\
& \left.+{ }^{6} c_{6}\left(\frac{1}{3}\right)^{6}\right] \\
= & 729\left[\frac{160}{729}+\frac{60}{729}+\frac{12}{729}+\frac{1}{729}\right]=233
\end{aligned}
$$

Q. Out of 800 families with 4 children each, how many families would be expected ito have 2 boys and 2 girls.
soft: Since probabilities for boys and girls are equal.

$$
\begin{aligned}
& p=\text { probability of having a boy }=\frac{1}{2} \\
& q=\text { probability of having a girl }=\frac{1}{2} . \\
& n=4, N=800
\end{aligned}
$$

The expected number of families haunt 2 bays.

$$
\begin{aligned}
\text { and } 2 \text { galls } & =800 \times 4 C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2} \\
& =800 \times 6 \times \frac{1}{16}=300 .
\end{aligned}
$$

Q The following data show the number of seeds germina-- ling out of 10 on damp filter for 80 set of seeds. Fit a binomial olistribution to this data

$$
\begin{array}{cccccccccccc}
x: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
f: & 6 & 20 & 28 & 12 & .8 & 6 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

sol":

$$
\left.\begin{array}{llllllllllll}
x: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
f: & 6 & 20 & 28 & 12 & 8 & 6 & 0 & 0 & 0 & 0 & 9
\end{array} \right\rvert\, N=80
$$

$$
f_{x}: 0 \quad 20 \quad 56 \quad 36 \quad 3230 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \mid \sum f x=174
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum f x}{N}=\frac{174}{80} \\
& \bar{x}=2.175
\end{aligned}
$$

$$
\begin{aligned}
& \text { mean }=n p=2.175 . \\
& \quad p=\frac{2.175}{n}=\frac{2.175}{10}=2175 \\
& q=1-p=17825
\end{aligned}
$$

The theoretical frequencies are given below
X

0
1
2
3
4
5
6

7

8

9
10

Theoretical frequencies

$$
80 \times(.7825)^{10}(12175)^{\circ}=6.9
$$

$$
80 \times \log ^{10}(.7825)^{9}(12175)=19.1
$$

$$
80 \times \log _{2}(17825)^{8}(12175)^{2}=2410
$$

$$
80 \times \operatorname{lo}_{3}(.7825)^{7}(.2175)^{3}=17.8
$$

$$
816
$$

$$
219
$$

$$
0 \cdot 7
$$

$$
0.1
$$

$$
0.0
$$

$$
810
$$

$$
0.0
$$

Total 80.1
Q. Fit a binomial distribution to the following data

$$
\begin{array}{ccccccc}
x: & 0 & 1 & 2 & 3 & 4 & 5 \\
f: & 2 & 14 & 20 & 34 & 22 & 8
\end{array}
$$

doll
Given $n=5, \quad N=\Sigma f=100$
mean of the given frequency distribution

$$
=\frac{\sum f_{i x_{i}}^{\prime}}{\sum f_{i}^{\prime}}=\frac{14+40+102+88+40}{100}=2.84
$$

\because mean of binomial distribution $=n p$

$$
\begin{array}{ll}
\Rightarrow & n p=2.84 \\
& p=\frac{2.84}{n}=\frac{2.84}{5}=0.568 \\
& q=1-p=1-0.568=0.432
\end{array}
$$

The Theoretical frequencies are give as

X	Theoretical frequency. $\left(N n_{c k} p^{r} q^{n-r}\right)$
0	$100 \times(0.432)^{5}=1.5$
1	$100 \times 5(0.568)(0.432)^{4}=9.8$
2	$100 \times 10(0.568)^{2}(0.432)^{3}=26.0$
3	$100 \times 10(0.568)^{3}(0.43)^{2}=34.2$
4	$100 \times 5(0.568)^{4}(0.432)=22.5$
5	$100 \times(0.5688)^{5}=5.9$

Theoretical frequency. ($N^{n} n^{n} p^{r} q^{n-c}$)

$$
.100 \times(0.432)^{5}=1.5
$$

$$
100 \times 5(0.568)(0.432)^{4}=9.8
$$

$$
100 \times 10(0,568)^{2}(0,432)^{3}=26,0
$$

$$
100 \times 10(0.568)^{3}(0.432)^{2}=34.2
$$

$$
100 \times 5(0.568)^{4}(0.432)=2215
$$

$$
100 \times(0.568)^{5}=5.9
$$

Total 99.9

Note:
(1) Arithmetic mean (AM): It is a quotient obtain by dividing the sum of observation.
($5 x_{i}$) by the number of observations $(n)\left[\bar{x}=\frac{\sum x_{i}}{n}\right]$ ie. Arithmetic Average.
(2.) Median: The median of a series of data is defined as that value which divides the whole series in to two equal parts.
Determination of median: arrange in ascending or (For ungrouped data) descending order. If no. of observations n is odd then median is $\left(\frac{n+1}{2}\right)$ th obscesuation If n is even then median is average of $\left(\frac{\eta}{2}\right)^{\text {th }}$ and $\frac{n+n}{2}\left(\frac{n}{2}+1\right)^{\text {th }}$ observation.
(For grouped data): calculate cumulative frequencies. I total frequency n is odd then $\left(\frac{n+1}{2}\right)$ th observation is median $7 n$ is even the in mean of $\frac{n}{2}$ th and $\left(\frac{n}{2}+1\right)^{\text {th }}$ observation is meghan
(3.) Mode: The mode is Mc value of a variate that occurs moot often. ie. the point having maximuin frequency.

Binomial distribution:
The moment crenesating function about origin is

$$
\begin{aligned}
M_{x}(t)=E\left(e^{x t}\right) & =\sum_{r=0}^{n} e^{t x_{t}} \cdot p(r) \\
& =\sum_{r=0}^{n} e^{t \cdot t} n c_{r} p^{r} q^{n-r} \\
& =\sum_{r=0}^{n} n c_{r}\left(p e^{t}\right)^{r} q^{n-r} \\
& =\left(q+p e^{t}\right)^{n}
\end{aligned}
$$

Moments about origen

$$
\begin{aligned}
& \mu_{1}^{\prime}=\left[\frac{d}{d t} M_{x}(t)\right]_{t=0}=\left[n \cdot p e^{t}\left(q+p e^{t}\right)^{n-1}\right]_{i=0}=n p \\
& \begin{array}{l}
\mu_{1}^{\prime}=n p \\
\mu_{2}^{\prime}=\left[\frac{d^{2}}{d t^{2}} M_{x}(t)\right]_{t=0}=n p\left[e^{\dot{t}}\left(q+p e^{t}\right)^{n-1}+(n-1) e^{2 t} p\left(q+p e^{t}\right)^{n-2}\right]_{t=0}
\end{array} \\
& =n p\left[\frac{n-1}{q}+(n-1) p p p^{n-2}=n p[1+(n-1) p]=n p+n(n-1) p^{2}\right. \\
& \begin{array}{l}
u_{2}^{\prime}=n^{2} p \\
\left.\frac{d^{3} M_{x}(t)}{d t^{3}}\right]_{t=0}=
\end{array} \\
& \mu_{3}^{\prime}=n p+n(n-1)(n-2) p^{3}+3 n(n-1) p^{2} \\
& \mu_{4}^{\prime}=\left[\frac{d^{4} m_{x}(t)}{d t^{4}}\right]_{t=0} \\
& \mu_{4}^{\prime}=n(n-1)(n-2)(n-3) p^{4}+6 n(n-1)(n-2) p^{3}+7 n(n-1) p^{2}+n p
\end{aligned}
$$

Central Moments

$$
\begin{aligned}
& \mu_{1}=\sum_{i=1}^{n} p_{i}\left(x_{i}-\bar{x}\right) \\
& \mu_{1}=0 \\
& \because \mu_{2}=\mu_{2}^{\prime}-\mu_{1}^{\prime 2}=n^{2} p^{2}+n p q-n^{2} p^{2} \\
& \mu_{2}=n p q \\
& \because \mu_{3}=\mu_{3}^{\prime 8}-3 \mu_{2}^{\prime} \mu_{4}^{\prime}+2 \mu_{1}^{3} \\
& \mu_{3}=n p q(q-p)
\end{aligned}
$$

$$
\begin{aligned}
\because \mu_{4} & =\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{4}^{\prime 2}-3 \mu_{1}^{\prime 4} \\
\mu_{4} & =n p q[1+3(n-2) p q]
\end{aligned}
$$

Moment Generating function about $\bar{x}(=\mu=n p)$

$$
\begin{aligned}
& \text { Moment Generating funcul } \\
& M_{x}(t)=E\left[e^{t(x-\mu)}\right]=E\left[e^{(t x-\mu t)}\right]=e^{-\mu t} E\left[e^{t x}\right] \\
&=e^{-n p t}\left(q+p e^{t}\right)^{n} \\
& M_{x}(t)=\left(q e^{-p t}+p e^{q t}\right)^{n}
\end{aligned}
$$

moments about mean can be Calculated by MGF about \bar{x}

$$
\begin{aligned}
& \mu_{1}=\left[\frac{d}{d t} M_{\pi}(t) \text { about Mean }\right]_{t=0} \\
& \mu_{1}=0 \\
& \mu_{2}=n p q \text { and so on. }
\end{aligned}
$$

Recurrence Relation for the Central Moments of Binomial Distribution
By definition

$$
\begin{aligned}
& \text { Definition } \\
& \text { i } \mu_{r}=E\left[(x-\mu)^{r q}\right]=\sum_{x=0}^{n}(x-n p)^{r} P(x) \\
&=\sum_{x=0}^{n}(x-n p)^{r}{ }^{n} C_{x} p^{x} q^{n-x} \\
& \mu_{c}=\sum_{x=0}^{n} n C_{x}(x-n p)^{r} p^{x}(1-p)^{n-x}
\end{aligned}
$$

Now differentiating both sides w.r to p, we get,

$$
\begin{aligned}
& \frac{d \mu_{r}}{d p}=\sum_{x=0}^{n}{ }^{n} c_{x}\left[(-n) r(x-n p)^{r-1} p^{x}(1-p)^{n-x}\right. \\
&\left.+(x-n p)^{r}\left\{x p^{x-1}(1-p)^{n-x}-p^{x}(n-x)(1-p)^{n-x-1}\right\}\right] \\
&= \sum_{x=0}^{n}(-n r) \cdot(x-n p)^{r-1} \cdot n c_{x} p^{x}(1-p)^{n-x} \\
&+\sum_{x=0}^{n}(x-n p)^{r} n c_{x} p^{x} q^{n-x}\left\{\frac{x}{p}-\frac{(n-x)}{q}\right\} \\
&=-n_{r} \sum_{x=0}^{n}(x-n p)^{r-1} p(x)+\sum_{x=0}^{n}(x-n p)^{r} p(x)\left[\frac{x-n p}{p q}\right] \\
& \frac{d \mu_{r}}{d p}=(-n r) \cdot \mu_{k-1}+\frac{1}{p q} \mu_{r+1} \\
& b a r r \mu_{r-1}+
\end{aligned}
$$

or $\sqrt[\mu_{r+1}]{ }=p q\left[n r \mu_{r-1}+\frac{d \mu_{r}}{d p}\right]$

Karl Pearson's β and γ coefficients for Binomial Distribution:

$$
\begin{aligned}
& \beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=\frac{[n p q(q-p)]^{2}}{(n p q)^{3}}=\frac{(q-p)^{2}}{n p q} \\
& \beta_{1}=\frac{(1-2 p)^{2}}{n p q} \\
& r_{1}=\sqrt{\beta_{1}}=\frac{1-2 p}{\sqrt{n p q}} \\
& \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{n p q[1+3(n-2) p q]}{(n p q)^{2}} \\
& \beta_{2}=3+\frac{1-6 p q}{n p q} \\
& \gamma_{2}=\beta_{2}-3=\frac{1-6 p q}{n p q}
\end{aligned}
$$

Distribution function of Binomial Distribution:

$$
\begin{aligned}
F(x) & =P(x \leqslant x) \\
& =P(x \leqslant r)=\sum_{r=-\infty}^{r} n G_{r} p^{r} q^{n+r}
\end{aligned}
$$

Probability Generating function of Binomial Distribution:

$$
\begin{aligned}
G_{x}(z) & =\sum_{i=0}^{n} p_{i} z^{i} \\
\text { at } i & =r \\
& =\sum_{i=0}^{n}{ }^{n} G_{r} p^{r} q^{n-r} z^{r} \\
& =\sum_{r=0}^{n} n G_{r}(p z)^{r} q^{n-r} \\
G_{x}(z) & =(q+p z)^{n}
\end{aligned}
$$

Mode of Binomial Distribution: Mode is the value of x for which $P(x)$ is maximum. Let $x=r$ be the modal value.

$$
\begin{aligned}
& \text { which } P(x) \text { is maxurncr} \\
& \text { ie. } P(x=r)>P(x=r-1) \text { and } P(x=r)>P(x=r+1)
\end{aligned}
$$

Now $\frac{P(x=r)}{P(x=r-1)}=\frac{n c_{r} p^{r} q^{n-r}}{n c_{r-1} p^{r-1} q^{n-r+1}}=\frac{n-r+1}{r} \frac{p}{q}>1$

$$
\begin{equation*}
\Rightarrow \quad r<(n+1) p . \tag{1}
\end{equation*}
$$

Now $\frac{p(x=r)}{p(x=r+1)}=\frac{n^{n} c_{\varepsilon} p^{r} q^{n-r}}{n c_{\varepsilon+1} p^{r+1} q^{n-(r+1)}}=\frac{r+1}{(1-r)} \frac{q}{p}>1$

$$
\begin{aligned}
\Rightarrow \quad \text { From (1) and (2), } & (n p-q<r<(n+1) p \\
& \text { or }\{(n+1) p-1\}<r<\{(n+1) p\}
\end{aligned}
$$

Tutorial

Q1 The probability distribution of a random variable x is given below. Find (i) $E(x)$, (ii) var. (x), (iii) $E(2 x-3)$ (iv) var. $(2 x-3)$

$X:$	-2	-1	0	1	2	
	$P(x=x)$	$:$	0.2	0.1	0.3	0.3
	0.1					

SH 1"

$$
\text { (i) } \begin{aligned}
& E(x)=\sum x_{i} p i=0=\bar{x} \\
& \text { var. }(x)\left.=E(\cdot x-x)^{2}\right\}=E\left(x^{2}\right)-\{E(x)\}^{2} \\
&=x_{i}^{2} p i-(\bar{x})^{2} \\
& \text { (ii) Var. }(x)=4 \times 0.2+0.1+0+0.3+0.4=1.6 \\
& \text { (iii) } \begin{aligned}
E(2 x-3) & =2 E(x)-3 \\
& =2 \times 0-3=-3 \\
\text { (iv) } \operatorname{Var} \cdot(2 x-3) & =2^{2} \text { var. }(x)=4(1.6)=6.4
\end{aligned}
\end{aligned}
$$

Q.2. Calculate the first four moments about mean from the following data:

$x:$	0	1	2	3	4	5	6	7	8
f_{i}	5	10	15	20	25	20	15	10	5

Also, calculate the values of β_{1} and β_{2}.

where $\bar{x}=\frac{\Sigma f(x)}{\Sigma f}=\frac{500}{125}=4$

Moment about mean

$$
\begin{array}{ll}
\text { monte about mean } & ; \quad \beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=0 \\
\mu_{1}=\frac{E f(x-x)}{E f}=0 & ; \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{3716}{16}=2.35 \\
\mu_{2}=\frac{E f(x-x)^{2}}{E f}=4 \\
\mu_{3}=\frac{E f(x-x)^{3}}{E f}=0 \\
\mu_{4}=\frac{E f(x-x)^{y}}{E f}=37.6
\end{array}
$$

Q.3.A conchmous random variable x is distributed over
the interval $[0,1]$ with pdf $f(x)=a x^{2}+b x$, where a, b are constants, If the mean of x is 0.5 , find the values of a and b.
Sol: $\quad \because \quad f(x)$ is pod f

$$
\begin{aligned}
& \therefore \quad-\int_{0}^{0} f(x) d x=1 \\
\Rightarrow \quad & \int_{0}^{1}\left(a x^{2}+b x\right) d x=1
\end{aligned}
$$

$$
\begin{equation*}
\text { or } \quad \frac{a}{3}+\frac{b}{2}=1 \quad \text { or } \quad 2 a+3 b=6 \tag{1}
\end{equation*}
$$

\because Given mean $=\bar{x}=0.5$

$$
\begin{align*}
\therefore \quad x & =E(x)=\int_{-\infty}^{\infty} x f(x) d x \\
0.5 & =\int_{0}^{1} x\left(a x^{2}+b x\right) d x \\
\text { or } 0.5 & =\frac{a}{4}+\frac{b}{3} \quad \text { or } \quad 3 a+4 b=6 \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
\begin{aligned}
& a=-6 \\
& b=6
\end{aligned}
$$

Mathematical Expectation
(a) For univariate variable

The expaction of a random variable x is defined as

$$
\bar{X}=E(X)= \begin{cases}\sum_{i} x_{i} p_{i} & \text { if } x \text { is discrete } R \cdot V \cdot \text { mich } \\ \text { pmf pi } \\ \int_{-\infty}^{\infty} x \cdot f(x) d x . & \text {; if } x \text { is continuous RV } \\ \text { with pdf } f(x)\end{cases}
$$

provided the relevant sum or integral is absolutely convergent and \bar{x} denotes mean of the corresponding distribution.
IF X is a R R V and $g(x)$ is any function of X, then

$$
E[g(x)]=\left[\begin{array}{cc}
\sum_{i} g\left(x_{i}\right) p_{i} & ; \text { if } x \text { is discrete } R \cdot V \text { wilt } \\
\int_{-\infty}^{\infty} g\left(x=x_{i}\right)=p_{i} \\
\underbrace{}_{i} f(x) d x & \text { if } x \text { is continuous R.V. }
\end{array}\right.
$$

(b) For Bivariate R.V:

If (X, Y) is a two-dimensional Random variable then

$$
\begin{aligned}
E\{h(x, y)\} & =\sum_{i} \sum_{j} h\left(x_{i}, y_{j}\right) p_{i j} ; \text { for discrete } R \cdot V . \\
& =\int_{-\infty}^{0} \int_{-\infty}^{\infty} h(x, y) f(x, y) d x, d y \text {; for contr, R.V. }
\end{aligned}
$$

where $f(x, y)$ denotes joint p. diff.
and bi j denotes joint pim.f.
Addition Theorem of Expectation: If $x_{1}, x_{2} \ldots, x_{n}$ are RV. then

$$
E\left(x_{1}+x_{2}+\cdots+x_{n}\right)=E\left(x_{1}\right)+E\left(x_{2}\right)+\cdots+E\left(x_{n}\right)
$$

Multiplication Theorem of Expectation $I_{f} x_{1}, x_{2} \ldots, x_{n}$ are n independent $X \cdot V$. then

$$
E\left(x_{1} x_{2} \ldots, x_{n}\right)=E\left(x_{1}\right) E\left(x_{2}\right) \ldots E\left(x_{n}\right)
$$

Note: 互: $E(a x+b)=a E(x)+b ; a, b$ are constants

Q Two unbiased dice are throion. Find the expected value. Theistic. of the sum of numbers of pets. on them.
$s+14$
The probability distribution of X (the Rum of the numbers obtained ontwo dice) is

$$
\begin{aligned}
& \text { values of } x, x: 2,34567812 \\
& P(x): \frac{1}{36}, 2 / 36 \quad 3 / 36 \text {. } 1 / 56 \frac{5}{36} \quad \frac{6}{36} \quad \frac{5}{36} \quad \frac{4}{36} \quad \frac{3}{36} \quad \frac{2}{36} \frac{1}{36} \\
& E(x)=\left(2 \times \frac{1}{36}\right)+\left(3 \times \frac{2}{36}\right)+\left(4 \times \frac{3}{36}\right)+\left(5 \times \frac{4}{36}\right)+\left(6 \times \frac{5}{36}\right) \\
& +\left(7 \times \frac{6}{36}\right)+\left(8 \times \frac{8}{36}\right)+\left(9 \times \frac{4}{36}\right)+\left(10 \times \frac{3}{36}\right) \\
& +\left(11 \times \frac{2}{86}\right)+\left(12 \times \frac{1}{36}\right) \\
& =\frac{252}{36}=7 .
\end{aligned}
$$

1 The protsability that there is ritleaet one error in an accounts statement prepared by. A is 0.2 and for B and C they are 0,25 and 0,4 respectively. A, B and C prepared 10, 16 and 20 statements respectively. Find the expected number. of correct statements in all.
Ail: Given that $P(A)=2, P(B)=.25$ and $P(C)=4$ where events A, B, C denotes for an error in accounts prepared by them.

$$
\begin{aligned}
& P(\bar{A})=1-.2=.8 \\
& P(\bar{B})=1.25=.75 \\
& P(\bar{C})=1-.4=.6
\end{aligned}
$$

Let X be the random variable which denote number of account Statements prepared by them.

$$
\begin{gathered}
\text { Values of } X, \quad x: 10: 16 \quad 20 \\
\beta(x): 8175 \\
E(X)=(10 \times 18)+(16 \times 175)+(20 \times 16) \\
=
\end{gathered}
$$

Q. Find the expectation of the number on a dies when thea, and th. enchi.

ANn: Let X be the random variable which prepresents the number on die e when thrown, then is probability distribution is

$$
\begin{aligned}
& x: \begin{array}{llllll}
x & 1 & 2 & 3 & 4 & 5
\end{array} \\
& P(x): \begin{array}{llllll}
16 & y_{6} & y_{6} & y_{6} & y_{6} & y_{6}
\end{array} \\
& E(x)=\left(1 \times \frac{1}{6}\right)+\left(2 \times \frac{1}{6}\right)+\left(3 \times \frac{1}{6}\right)+\left(4 \times \frac{1}{6}\right)+\left(5 \times \frac{1}{6}\right)+\left(5 \times \frac{1}{6}\right) \\
& =\frac{7}{2}
\end{aligned}
$$

Note: in :1 $E\left(X_{1}+x_{2}+\cdots+x_{n}\right)=E\left(x_{1}\right)+E\left(X_{2}\right)+\cdots+\left(E X_{n}\right)$. $x_{1}, x_{2}, \ldots x_{n}$ are random variables; provided all expectations exists

Thin $\cdot \dot{E}\left(x_{1} x_{2}, \ldots x_{n}\right)=E\left(x_{1}\right) E\left(x_{2}\right) \ldots E\left(x_{n}\right)$.
$x_{i}, x_{2}, x_{3} \ldots, x_{n}$ are independent random variables and provided all expectations exist.

Variance.

$$
\begin{aligned}
& \text { or } \sigma^{2}=E\left(x^{2}\right)-[E(x)]^{2}
\end{aligned}
$$

Nate: (i) $\operatorname{Var}(a x)=a^{2} \operatorname{Var}(x)$.
(ii) Var. $(a x+b)=\operatorname{cicar}^{2} \cdot(x)$

Q A random variable x has the following probability distribution:

$$
\begin{array}{lcccccc}
x_{i}: & -2 & -1 & 0 & 1 & 2 & 3 \\
p_{i}: & 0.1 & k & 0.2 & 2 k & 0.3 & k
\end{array}
$$

(i) Calculate the mean of x
(ii) Variance of x

Sf":

$$
\begin{aligned}
& \because s_{p i}=1 \\
& \therefore 0.6+4 k=1 \\
& k=0.1 \\
& \left.\begin{array}{l:cccccc}
x_{i}^{\prime}: & -2 & -1 & 0 & 1 & 2 & 3 \\
p_{i}^{\prime}: & 0.1 & 0.1 & 0.2 & 0.2 & 0.3 & 0.1 \\
p_{i}^{\prime} & : & -0.2 & -0.1 & 0 & 0.2 & 0.6 \\
p_{i}^{\prime 2}: & 0.4 & 0.3 \\
p_{i} & 0 & 0.2 & 1.2 & 0.9
\end{array} \right\rvert\, \sum p_{i} x_{i}=0.8 \\
& \because E(X)=\Sigma p_{i} x_{i}=0.8 \\
& E\left(x^{2}\right)=\sum p_{i} x_{i}^{2}=2,8 \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-\{E(x)\}^{2} \\
& \sigma^{2}=(2.8)-(0.8)^{2} \\
& \sigma^{2}=2.16
\end{aligned}
$$

Q A random variable x have a following p.d.f.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} x, & 0<x<2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

find (i) $E(x)$
(ii) Variance of x
(iii) S.D. of X
(ii) $E\left(3 x^{2}-2 x\right)$

Sol"
(i) $E(x)=\int_{-\infty}^{\infty} x f(x) d x$

$$
=\int_{0}^{2} x\left(\frac{1}{2} x\right) d x=\left(\frac{x^{3}}{6}\right)_{0}^{2}=\frac{8}{6}=\frac{4}{3}=\bar{x}
$$

(ii)

$$
\begin{aligned}
\sigma^{2}=E\left[\cdot(x-\bar{x})^{2}\right] & =\int_{-\infty}^{\infty}\left(x-\frac{4}{3}\right)^{2} f(x) d x \\
& =\int_{0}^{2}\left(x-\frac{4}{3}\right)^{2} \cdot \frac{x}{2} d x=\frac{2}{9} \\
& =\int_{0}^{2}\left(x^{2}-\frac{8 x}{3}+\frac{16}{9}\right) \frac{x}{2} d x \\
& =\frac{1}{2}\left[\frac{x^{4}}{4}-\frac{8}{3} \cdot \frac{x^{3}}{3}+\frac{16}{9} \frac{x^{2}}{2}\right]_{0}^{2} \\
& =\frac{1}{2}\left[4-\frac{64}{9}+\frac{32}{9}\right]=\frac{2}{9}
\end{aligned}
$$

(iii) standard deviation $=\sigma=\sqrt{\frac{2}{9}}=\frac{\sqrt{2}}{3}$
(iv)

$$
\begin{aligned}
E\left(3 x^{2}-2 x\right) & =\int_{-\infty}^{\infty}\left(3 x^{2}-2 x\right) f(x) d x \\
& =\int_{0}^{2}\left(3 x^{2}-2 x\right)\left(\frac{x}{2}\right) d x=\frac{10}{3}
\end{aligned}
$$

Th: $E(k)=k$
Th: $E(k X)=k E(X)$
Measures of Central Tendency:
(i) mean
(ii) median
(iii) Mode
(i) Mean (Arithmetic mean): $\bar{x}=\frac{\sum x_{i}^{\prime}}{n}$
(ii) Median: The median of a series of data is defined as that value which divides the whole series in to two equal parts
(iii) Mode: The mode is the value of a variate that occurs moot often. ie. the point having maximum frequency.

Moments:
If x be a random variable then $r^{\text {th }}$ moment about any point a is given by

$$
\mu_{r}^{\prime}=E\left[(x-a)^{\varepsilon}\right]=\left\{\begin{array}{l}
\sum_{i} P_{i}\left(x_{i}-a\right)^{r} ; x \text { is discrete } R_{1} V . \\
\int_{-\infty}^{\infty} f(x)(x-a)^{r} d x ; x \text { is conte; } R . V .
\end{array}\right.
$$

(a) Moments about origin:

$$
M_{r}^{\prime}=E\left(x^{r}\right)= \begin{cases}\sum_{i} x_{i}^{r} p_{i} ; & x \text { is discrete RV. } \\ \int_{-\infty}^{\infty} x^{r} f(x) d x ; & x \text { is conte. R. R. }\end{cases}
$$

(b) Moments about mean or Central Moment:

$$
U_{r}=E\left[(x-\bar{x})^{r}\right]=\left\{\begin{array}{l}
\sum_{i}\left(x_{i}-\bar{x}\right)^{r} p_{i} ; \text { X is discrete R.V. } \\
\int_{-\infty}^{0}(x-\bar{x})^{r} f(x) d x ; X \text { is conte. RiV. }
\end{array}\right.
$$

Remark (i)

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{0}^{\prime}=1
\end{aligned}
$$

(ii) First moment $\mu_{1}=\Sigma p i x_{i}-\bar{x} \Sigma p i=\bar{x}-\bar{x}=0$

$$
1_{1}^{\prime}=\bar{x}=E(x)
$$

(iii) Second moment

$$
\begin{aligned}
\mu_{2} & =\sum\left(x_{i}^{\prime}-\bar{x}\right)^{2} p_{i}^{\prime}=\sigma^{2}=\operatorname{variance}^{\prime}(x) \\
\mu_{2} & =\sum x_{i}^{2} p_{i}^{\prime}-2 \sum p_{i} x_{i} \bar{x}+\sum p_{i} \bar{x}^{2} \\
& =\mu_{2}^{\prime}-2 \bar{x} \cdot \bar{x}+\bar{x}^{2} \\
& =\mu_{2}^{\prime}-2 \mu_{1}^{\prime} \mu_{1}^{\prime}+\mu_{1}^{\prime 2} \\
\mu_{2} & =\mu_{2}^{\prime}-\mu_{1}^{\prime 2}
\end{aligned}
$$

(iii) Third moment

$$
\begin{aligned}
& \mu_{3}=\Sigma\left(x_{i}-\bar{x}\right)^{3} p_{i} \\
& \mu_{3}=\mu_{3}^{\prime}-3 \mu_{1}^{\prime} \mu_{2}^{\prime}+2 \mu_{1}^{3}
\end{aligned}
$$

(iv) Fourth moment $\mu_{\mu}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}-3 \mu_{1}^{14}$

Note: If instead of probability mass function we are given the corresponding frequency distaibection then moment about any point is given by

$$
\mu_{i}=\frac{\sum_{i}\left(x_{i}-a\right)^{r} f_{i}}{\sum_{i} f_{i}}
$$

Q The first four moments of a distribution rout the value 5 are $-4,22,-117$ and 560,0 blain the moment about (i) mean and
(ii) origin

Self: $\frac{\text { Moments about } 5 \text { are given }}{\mu_{1}^{\prime \prime}}$

$$
\begin{aligned}
& \mu_{2}^{\prime \prime}=\left[E(x-5)^{2}\right]=22 \\
& u_{3}^{\prime \prime}=\left[E(x-5)^{3}\right]=-117 \\
& \mu_{y}^{\prime \prime}=\left[E(x-5)^{4}\right]=560
\end{aligned}
$$

Moment about mean ie. $(\bar{x}=1)$

$$
\begin{aligned}
\mu_{r}= & \left.E(x-\bar{x})^{r}\right]=\sum_{i}\left(x_{i} \bar{x}\right)^{r} p_{i} \\
\mu_{1} & =0 \\
\because \mu_{2} & =\mu_{2}^{\prime}-\mu_{1}^{\prime 2} \text { or } \cdot \mu_{2}=\mu_{2}^{\prime \prime}-\mu_{1}^{\prime \prime 2} \\
\mu_{2} & =22-(-4)^{2}=22-16=6 \\
\because \mu_{3} & =\mu_{3}^{\prime}-3 \mu_{1}^{\prime} \mu_{2}^{\prime}+2 \mu_{1}^{13} \text { or } \mu_{3}=\mu_{3}^{\prime \prime}-3 \mu_{1}^{\prime \prime} \mu_{2}^{\prime \prime}+2 \mu_{1}^{\prime \prime 3} \\
\mu_{3} & =(-117)-3(-4)(22)+2(-4)^{3} \\
& =-117+264-128 \\
\mu_{3} & =19
\end{aligned}
$$

$$
\begin{aligned}
\because \mu_{4} & =\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}-3 \mu_{1}^{\prime 4} \text { or } \mu_{4}=\mu_{4}^{\prime \prime}-4 \mu_{3}^{\prime \prime} \mu_{1}^{\prime \prime}+6 \mu_{9}^{\prime \prime} \mu_{4}^{\prime \prime 2} R^{\prime \prime} \\
\mu_{4} & =560-4(-117)(-4)+6(22)(-4)^{2}-3(-4)^{4} \\
\mu_{4}^{\prime} & =32
\end{aligned}
$$

Moment about origin:

$$
\begin{aligned}
& \because \mu_{4}^{\prime}=E[x]=\bar{x}=1 \\
& \because \mu_{2}=\mu_{2}^{\prime}-\mu_{1}^{\prime 2} \\
& \mu_{2}^{\prime}=\mu_{2}+\mu_{4}^{\prime 2} \\
& \mu_{2}^{\prime}=6+1=7 \\
& \because \mu_{3}=\mu_{3}^{\prime}-3 \mu_{1}^{\prime} \mu_{2}^{\prime}+2 \mu_{1}^{\prime 3} \\
& \text { or } \mu_{3}^{\prime}=\mu_{3}+3 \mu_{1}^{\prime} \mu_{2}^{\prime}+2 \mu_{1}^{\prime 3} \\
& \mu_{3}^{\prime}=19+3(1)(7)-2(1)^{3} \\
& \mu_{3}^{\prime}=38 \\
& \theta_{0}^{0} \mu_{4}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}-3 \mu_{1}^{14} \\
& \text { or } \mu_{4}^{\prime}=\mu_{4}+4 \mu_{3}^{\prime} \mu_{1}^{\prime}-6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}+3 \mu_{1}^{\prime 4} \\
& \mu_{4}^{\prime}=32+4(38)(1)-6(7)(1)+3(1) . \\
& \mu_{4}^{\prime}=145
\end{aligned}
$$

(from (1).)

Moment Gonerating function: (mgf)
The moment generating function $(m g f)$ of a
random variable x is given by.
provided the right hand side is absolutely convergent for some positive number h such that $-h<t<h$ where t is any real parameter.

Now $M_{X}(t)=E\left(e^{e x}\right)=E\left[1+t x+\frac{t^{2} x^{2}}{2!}+\cdots+\frac{t^{r} x^{r}}{r_{1}}+\cdots\right]$

$$
\begin{aligned}
& =1+t E(x)+\frac{t^{2}}{2!} E\left(x^{2}\right)+\cdots+\frac{t^{r}}{2!} E\left(x^{2}\right) \\
& =1+\mu_{1}^{\prime} t+\mu_{2}^{\prime} \frac{t^{2}}{2!}+\cdots+\mu_{2}^{\prime} \frac{t^{2}}{2!}+\cdots
\end{aligned}
$$

where μ^{\prime} is the roth order moment about origin. Since $M_{X}(t)$ generates moments, hence it is known as moment generating function.

Also

$$
\mu_{v}^{\prime}=\left[\frac{d^{r}}{d t^{r}} M_{x}(t)\right]_{t=0}
$$

Propertius of Moment Generating function:
(i) moment generating function about mean \bar{X}

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t(x-\bar{x})]=E\left[1+t(x-\bar{x})+\frac{t^{2}}{2!}(x-\bar{x})^{2}+\cdots\right]}\right. \\
& =E(1)+t E(x-\bar{x})+\frac{t^{2}}{2!} E\left\{(x-\bar{x})^{2}\right\}+\cdots \\
M_{X}(t) & =1+\mu_{1} t+\mu_{2} \frac{t^{2}}{2!}+\cdots+\mu_{r} \frac{t^{r}}{3!}+\cdots \cdot
\end{aligned}
$$

or $\mu_{r}=\left[\frac{d^{r}}{d t^{r}} M_{x}(t)\right]_{t=0}$
(ii) about anypt: $(x=a)$

$$
M_{X}(t)=E\left[\cdot e^{t(x-a)}\right]=1+t \mu_{1}^{\prime \prime}+\frac{t^{2}}{2!} \mu_{2}^{\prime \prime}+\cdots+\frac{t^{2}}{r_{1}} \mu_{1}^{\prime \prime}+\cdots
$$

(iii) If X and Y are two independent R.V.
then $M_{x+y}(t)=M_{x}(t) M_{y}(t)$
(iv) If $x_{2}=c_{1} x_{1}+c_{2}$, then

$$
M_{x_{2}}(t)=e^{t c_{2}} M_{x_{1}}\left(c_{1} x_{1}\right)
$$

Q bet the random variable x assume the value y_{0}^{\prime} with the probability law $P(X=r)=q^{r-1} p, r=1,2,3, \ldots$ Find the ing of X and hence its mean and vaicance. Reify it by finding the mean from usual definition.
sol":
Mg

$$
\begin{aligned}
o f x=M_{x}(t) & =E\left(e^{t x}\right)=\sum_{r=1}^{\infty} e^{t t} P_{r} \quad \left\lvert\, \begin{array}{l}
\because \text { wc } \\
\text { mean }
\end{array}\right. \\
& =\sum_{i=1}^{\infty} e^{t r} q^{k-1} p \\
& =\frac{p}{q} \sum_{r=1}^{\infty}\left(q e^{t}\right)^{t} \\
& =\frac{p}{q}\left[q e^{t}+\left(q e^{t}\right)^{2}+\left(q e^{t}\right)^{3}+\cdots\right] \\
& =\frac{p}{q} q e^{t}\left[1+q e^{t}+\left(q e^{t}\right)^{2}+\cdots\right] \\
& =p e^{t} \frac{1}{\left(1-q e^{t}\right)}=\frac{p e^{t}}{\left(1-q e^{t}\right)}
\end{aligned}
$$

$$
\text { New mean }=\mu_{4}^{\prime}=\left[\frac{d}{d t} M_{\lambda}(t)\right]_{t}
$$

$=$ pisermoment
about origin

$$
\text { New mean }=\mu_{4}^{\prime}=\left[\frac{d}{d t} \mu_{x}(t)\right]_{t=0}
$$

$$
\begin{aligned}
\mu_{1}^{\prime} & =\left[\frac{d}{d t}\left(M_{\lambda} x^{t}\right)\right]_{t=0} \\
& =p\left[\frac{\left(1-q e^{t}\right) e^{t}-e^{t}\left(-q e^{t}\right)}{\left(1-q e^{t}\right)^{2}}\right]_{t=0}=\left[\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}}\right]_{t=0} \\
1 & =p-\frac{p}{p} \quad[\because p+q=1
\end{aligned}
$$

$$
\mu_{1}^{\prime}=\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{\left.1-q e^{t}\right)^{2}}{p} \quad[\because p+q=1
$$

Variance of $x=-\mu_{2}^{\prime}-\mu_{\mu^{\prime 2}}$

$$
\mu_{2}=\sigma^{2}=\frac{1+q}{p^{3}}-\frac{1}{p^{2}}=\frac{q}{p^{2}}
$$

By usual definition

$$
\begin{aligned}
& \text { usual definition } \\
& E(x)=\bar{x}=\text { mean }=\sum_{r=1}^{\infty} r P(x=r)=\sum_{r=1}^{\infty} k\left(r^{r-1} p\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and. } \\
& \mu_{2}^{\prime}=\left[\frac{d^{2} M_{x}(t)}{d t^{2}}\right]_{t=0}=p\left[\frac{\left(1-e^{t} q\right)^{2} e^{t}-2 e^{t \cdot\left(1-q e^{t}\right)}\left(-q-e^{t}\right)}{\left(1-q e^{t}\right)^{4}}\right]_{t=0} \\
& =p\left[\frac{\left(1-e^{t} q\right) \cdot e^{t}\left(1-q e^{t}+2 q e^{t}\right)}{\left(1-q e^{t}\right)^{4}}\right]_{t=0} \\
& =\left[p e^{t} \frac{\left(1+q e^{t}\right)}{\left(1-q t^{t}\right)^{3}}\right]_{t=0}=\frac{p(1+q)}{(1-q)^{3}}=\frac{p(1+q)}{p^{3}}=\frac{1+q}{p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\bar{X} & =p\left[1+2 q+3 q^{2}+\cdots\right] \\
& =p(1-q)^{-2} \\
& =\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

Q find mean and standard.devication of the exponential distribution.
Soft: If x is a continuous random variable and exponcritially distributed having the following pidif.
where λ is any parameter
$M_{X}(t)=E\left[z^{t}\right]$
$\begin{aligned} \text { Now, M.G,F. of exponential distribution } & =\int_{-\infty}^{\infty} e^{x t} \\ M_{X}(t) & =\int_{-\infty}^{\infty} \lambda e^{-d x} e^{t x} d x\end{aligned}$

$$
\begin{align*}
M_{x}(t) & =\int_{-\infty}^{\infty} \lambda e^{-d x} e^{t x} d x \\
& =\lambda_{i}^{\infty} \delta^{\infty} e^{-(t+1+1) x} d x \\
& =\lambda \quad\left\{\frac{e^{-(\lambda-t)}}{-(\lambda-t)}\right\}_{0}^{0} \\
M_{x}(t) & =\frac{\lambda}{(\lambda-t)} \\
\text { Or } M_{x}(t) & =\frac{1}{\left(1-\frac{t}{\lambda}\right)}=\left(1-\frac{t}{\lambda}\right)^{-1} \\
M_{x}(t) & =1+\frac{t}{\lambda}+\frac{t^{2}}{\lambda^{2}}+\cdots \tag{1}
\end{align*}
$$

By the definition of M, C.F F weave.

$$
\begin{equation*}
M_{x}(t)=1+\mu_{1}^{\prime} \phi t!+\mu_{2}^{\prime} \frac{5 t^{2}}{2!}+\mu_{3}^{\prime} \frac{t^{3}}{3!}+\cdots \cdot \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\begin{aligned}
& \mu_{1}^{\prime}=\frac{1}{\lambda} \\
& \mu_{2}^{\prime}=\frac{2!}{\lambda^{2}} \\
& \mu_{3}^{\prime}=\frac{3!}{\lambda^{3}} \\
& \text { variance }=\mu_{2}=\sigma^{2}=\cdot \mu_{2}^{\prime}-\mu_{1}^{\prime 2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}} \\
& \text { S. } D=\sigma=\frac{1}{\lambda}
\end{aligned}
$$

Correlation Coefficient: Karl Pearson defined the four coefficients based on central moments
(i) β coefficients:

$$
\begin{aligned}
& \beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}} \quad \therefore \quad \mu_{2}=\operatorname{vari} \cdot(x \cdot)=\sigma^{2} \\
& \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}} \text { (called measure of kurtosis.) }
\end{aligned}
$$

Karl Pearson's coefficient of Newness dented by SK_{K}, is given by $S_{k}=\frac{\text { Mean -mode }}{\sigma}$
of mean $=$ modern, sacs $S_{K}=0$, gym. diets * $s_{k}>0$, the spewed dish:

$$
\begin{aligned}
& \gamma_{1}= \pm \pm \sqrt{\beta_{1}} \quad \text { or } \quad r_{1}=\frac{\mu_{3}}{\sigma^{3}} \text { (Called coefficient of skewness) } S_{k} \text { on -ie } \\
& r_{2}=\beta_{2}-3 \text { (Called Coefficient of Kurtosis) }
\end{aligned}
$$

Skewness: skewness is the measure of the shape of the : curve and not of its size. It is the deviation from symmetry. (theconess of x is the third moment of $\begin{gathered}\text { score of } x \text { de } \Delta k_{2 \omega}(x)=E\left[\left(\frac{x-\mu}{\sigma}\right)^{3}\right]\end{gathered}$
Symmetrical distribution: mean $=$ mode $=$ median
 (when-) $)_{1}=0$, then the distribution of x is said to be unskewed)

Symmetrical distribution
Positively skewed Distribution? Me an is greater

If the clistribcition is positively skewed then probability density function has ar long tail to the right.

Negatively Skewed Distribution:

$r_{1}<0$. Mean is less than mode and median ie. Mean < Median < Mode (when $\beta_{1} * g$, then the disterbection of x s said to be negatively skewed)
If the distribution
is negatively skewed
Hen the probability density fellas a lang tale. to
Note: (i) Empirical relationship Mode $=3$ median -2 Mean theft.
(ii) If $\beta_{1}=0$, the curve is symmetrical,

Hence β_{1} can be taken as measure of wkeconess.
Kurtosis: The flatness of the mode is called Kurtosis. β_{2} is taken as the measure of kurtosis.
(i) If $\beta_{2}=3$, then $\gamma_{2}=0$, curve is called mesokurtic:
(ii) If $\beta_{2}>3, \gamma_{2}>0$, curve is called leptokurtio.
(iii) If $\beta_{2}<3, \dot{r}_{2}<0$, curve is called. platy kurtic.

No E: Kurtosis of x is the fourth moment of the standard score Kurt. $(x)=E\left[\left(\frac{x-\mu}{\sigma}\right)^{4}\right]$
Q. Calculate the first four moments about mean for the following distribution and also hence β_{1} and β_{2}.

$$
\begin{array}{cccccccccc}
x: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
y: & 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{array}
$$

Soln: Here mean $=\frac{\sum f_{x x}}{\sum f}=\frac{1024}{256}=4$

x_{i}	f_{i}	$\left(x_{i}-4\right)$	$f_{i}\left(x_{i}-4\right)$	$f_{i}\left(x_{i}-4\right)^{2}$	$f_{i}\left(x_{i}-4\right)^{3}$	$f_{i}\left(x_{i}-4\right)^{4}$
0	1	-4	-4	16	-64	256
1	8	-3	-24	72	-216	648
2	28	-2	-56	112	-224	448
3	56	-1	-56	56	-56	56
4	70	0	0	0	0	0
5	56	1	56	56	56	56
6	28	2	56	112	224	448
7	8	3	24	72	216	648
Total $\frac{8}{36}$	$\frac{1}{256}$	$\frac{4}{0}$	$\frac{4}{0}$	$\frac{16}{512}$	$\frac{64}{0}$	$\frac{256}{2816}$

Hence moments about mean $x=4$ are

$$
\begin{aligned}
& \mu_{4}=\frac{\sum f_{i}\left(x_{i}-4\right)}{\sum f_{i}}=0 ; \mu_{2}=\frac{\sum f_{i}\left(x_{i}-4\right)^{2}}{\sum f_{i}^{\prime}}=\frac{512}{256}=2 \\
& \mu_{3}=\frac{\sum f_{i}\left(x_{i}-4\right)^{3}}{\sum f_{i}}=0 ; \mu_{4}=\frac{\sum f_{i}\left(x_{i}-4\right)^{4}}{\sum f_{i}}=\frac{24816}{256}=11
\end{aligned}
$$

Alae $\beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}{ }^{3}}=0 \quad ; \quad \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{11}{4}=2.75$.
As $\beta_{1}=0$, hence curve is symmetric about mean and $\beta_{2}<3$ hence curve is platykurtic in nature.

Q For a distribution mean is 10 , variance is $16, r_{1}$ is 1 and β_{2} is 4 . Obtain the first four moments about origin. Also comment upon the nature of distribution.

Sol': Given $\cdot \bar{x}=\mu_{1}^{\prime}=10$

$$
\begin{aligned}
& \mu_{2}=16 \\
& r_{1}=1 \\
& \beta_{2}=4
\end{aligned}
$$

Now

$$
\begin{align*}
r_{1} & =\sqrt{\beta_{1}} \\
1 & =\sqrt{\beta_{1}} \text { or } \beta_{1}=1 \\
\therefore \quad \beta_{1} & =\frac{\mu_{3}^{2}}{\mu_{2}^{3}} \\
\text { or } \beta_{1}^{2} & =\frac{\mu_{3}}{\mu_{2}^{3 / 2}} \\
\Rightarrow \quad 1 & =\frac{\mu_{3}}{(16)^{3 / 2}} \text { or } \quad \mu_{3}=(16)^{3 / 2}=64- \tag{2}
\end{align*}
$$

$$
\text { and } \beta_{2}=\frac{\mu_{y}}{\mu_{2}^{2}} \Rightarrow 4=\frac{\mu_{y}}{(16)^{2}}
$$

or $\quad \mu_{4}=1024$ (3)
Hence, we get

$$
\begin{align*}
& \because \mu_{2}=\mu_{2}^{\prime}-\mu_{4}^{\prime 2} \\
& \therefore \mu_{2}^{\prime}=\mu_{2}+\mu_{4}^{\prime 2} \\
& \mu_{2}^{\prime}=16+(10)^{\prime}=116 \tag{4}\\
& \because \mu_{3}=\mu_{3}^{\prime}-3 \mu_{1}^{\prime} \mu_{2}^{\prime}+2 \mu_{1}^{\prime 3} \\
& \text { or } \mu_{3}^{\prime}=\mu_{3}+3 \mu_{1}^{\prime} \mu_{2}^{\prime}-2 \mu_{1}^{\prime 3} \\
& \mu_{3}^{3}=64+3(10)(116)-2(10)^{3} \\
&=64+3480-2000 \\
& \mu_{3}^{\prime}=154^{4}
\end{align*}
$$

Similarly.

$$
\begin{align*}
& \because \mu_{4}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}-3 \mu_{1}^{14} \\
& \mu_{4}^{\prime}=\mu_{4}+4 \mu_{3}^{\prime} \mu_{1}^{\prime}-6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}+3 \mu_{1}^{\prime 4} \\
& \mu_{4}^{\prime}=1024+4(1544)(10)-6(116)(10)^{2}+3(10)^{4} \\
& =1024+61760-69600+30000 \\
& \mu_{4}^{\prime}=23184 \tag{6}
\end{align*}
$$

Nature of Distribution
Here $\beta_{1}=1 \neq 0$ Hence distribution is not symmetric and $\beta_{2}=4>3$ Hence curve is peaked curve ie. distribution is leptoturtic in nature. Chebyohev's in equality: If x is random variable with mean \bar{x} and variance σ^{2}, then

$$
\begin{aligned}
& \quad P[|x-\bar{x}| \geqslant \lambda] \leqslant \frac{\sigma^{2}}{\lambda^{2}} \text { any where } \lambda>0 \\
& \text { or } \quad P\left[|x-\bar{x}| * \lambda \geqslant 1-\frac{\sigma^{2}}{\lambda^{2}}\right.
\end{aligned}
$$

Proof: Let x be a continuous random variable having. $\beta \cdot d . f$. $f(x)$, then by the definition of variance, we have

$$
\begin{aligned}
\mu_{2}=\sigma^{2} & =\int_{-\infty}^{\infty} \cdot(x-\bar{x})^{2} f(x) d x \\
& =\int_{-\infty}^{\bar{x}-\lambda}(x-\bar{x})^{2} f(x) d x+\int_{\bar{x}-\lambda}^{\bar{x}+\lambda}(x-\bar{x})^{2} f(x) d x \\
\sigma^{2} & \geqslant \int_{-\infty}^{\bar{x}-\lambda}(x-\bar{x})^{2} f(x) d x+\int_{\bar{x}+\lambda}^{\infty}(x-\bar{x})^{2} f(x) d x
\end{aligned}
$$

in the first integral

$$
\begin{gathered}
x \leqslant(\bar{x}-\lambda) \\
\varepsilon(x-\bar{x})^{2} \geqslant \lambda^{2}
\end{gathered}
$$

in the second integral

$$
\begin{gathered}
x \geqslant(\bar{x}+\lambda) \\
\text { or }(x-\bar{x})^{2} \geqslant \lambda^{2}
\end{gathered}
$$

using these results in (1), we have

$$
\begin{align*}
& \sigma^{2} \geqslant \int_{-\infty}^{\bar{x}-\lambda} \lambda^{2} f(x) d x+\int_{\bar{x}-\lambda}^{\infty} \lambda^{2} f(x) d x \tag{OQ}\\
& \sigma^{2} \geqslant \lambda^{2}\left[\int_{-\infty}^{\bar{x}-\lambda} f(x) d x+\int^{\infty} f(x) d x\right] \rightarrow \bar{\lambda}^{2} \geqslant[P(x \leqslant \bar{x}-\lambda) \\
& +\{1-P(x \leqslant \bar{x}+1)\}] \\
& \sigma^{2} \geqslant \lambda^{2}[P(x \leqslant \bar{x}-\lambda)+P(x \geqslant \bar{x}+\lambda)]-\frac{\sigma^{2}}{-2} \leqslant[P(x \leqslant \bar{x}+\lambda) \\
& \sigma^{2} \geqslant \lambda^{2}[P(\bar{x}+\lambda \leqslant x \leqslant \bar{x}-\lambda)]\left[\text { or } 1-\sigma^{2} \quad-P(x \leqslant \vec{x}-\lambda)-1\right] \\
& \text { or } \frac{\sigma^{2}}{\lambda^{2}} \geqslant P[|x-\bar{x}| \geqslant \lambda] \quad \frac{-\sigma}{\lambda^{2}} \leqslant P[(\bar{x}-1) \leqslant x \leqslant(\bar{x}+\lambda)] \\
& \frac{\sigma^{2}}{\lambda^{2}} \geqslant P[|x-\bar{x}| \geqslant \lambda] \text { ir } \frac{1-\sigma^{2}}{\lambda^{2}} \leqslant P[|x-\bar{x}|<\lambda], \lambda>0
\end{align*}
$$

or $P[|x-\bar{x}|<\lambda] \geqslant 1-\frac{\sigma^{2}}{\lambda^{2}}, \lambda>0$. Proved,
Q A random variable x has mean $=12$ and variance $\sigma^{2}=9$ and an unknown probability distribution:.

Find $P(6<x<18)$
Sol'i Using chebysher's inequality

$$
\begin{gathered}
P\{|x-\bar{x}| \geqslant \lambda\} \leqslant \frac{\sigma^{2}}{\lambda^{2}}, \lambda>0 \\
\text { or } P\left\{||x-\bar{x}|<\lambda\} \geq 1-\frac{\sigma^{2}}{\lambda^{2}}\right. \\
\text { er } P\{\bar{x}-\lambda \leq x \leq \bar{x}+\lambda\} \geqslant 1-\frac{\sigma^{2}}{\lambda^{2}} \quad ; \bar{x}=12, \sigma^{2}=9 \\
P\{\mid 2-\lambda \leq x \leq 12+\lambda\} \geqslant 1-\frac{9}{\lambda^{2}}
\end{gathered}
$$

Let $\lambda=6$

$$
\begin{aligned}
\Rightarrow p\{6<x<18\} & \geqslant 1-\frac{9}{36} \\
& \geqslant \frac{27}{36} \\
& \geqslant \frac{3}{4}
\end{aligned}
$$

Q. A random variable x has a mean 10 and a variance 4 and unknown probability distribution. Find the value of c such that $\left.P^{\prime}|X-10| \geqslant c\right\} \leqslant 0.04$.

Sell
$C=10^{\circ}$
\because Chebyphev's inequality

$$
P\{|x-\bar{x}| \geqslant \lambda\} \leqslant \frac{\sigma^{2}}{\lambda^{2}}
$$

Given that $p\{|x-10| \geqslant c\} \leqslant 0.04$

$$
\begin{gathered}
\Rightarrow \quad \bar{x}=10 \\
\lambda=C
\end{gathered}
$$

$\frac{\sigma^{2}}{\lambda^{2}}=0.04$. (It is given in the question that $\sigma^{2}=$ var: $=4$)

$$
\text { 5 } \quad \frac{4}{\lambda^{2}}=0,04
$$

$$
\text { or } \lambda=10
$$

$$
\Rightarrow \quad त=C=10
$$

Q
Two die v are thrown once. If x is the rum of the numbers sharing up, prove that $p\{|x-7| \geqslant 3\} \leqslant \frac{35}{54}$. Compare this value write the exact probability.
Sop:

$$
\begin{aligned}
& \begin{array}{lccccccccccc}
x_{i} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\text { bi: } \frac{1}{36} & \frac{2}{36} & \frac{3}{36} & \frac{4}{36} & \frac{5}{36} & \frac{6}{36} & \frac{5}{36} & \frac{4}{36} & \frac{3}{36} & \frac{2}{36} & \frac{1}{36}
\end{array} \\
& \bar{x}=\text { mean }=E(x)=\sum x i f i=7 \\
& \sigma^{2}=\operatorname{var} \cdot(x)=E\left\{(x-\bar{x})^{2}\right\}=E\left(x^{2}\right)-\{E(x)\}^{2} \\
& \sigma^{2}=\Sigma_{x^{2}}{ }^{2}{ }^{2} i-(\bar{x})^{2} \\
& \sigma^{2}=\frac{1974}{36}-49=\frac{1974-1764}{36} \\
& \sigma^{2}=\frac{90}{36}=\frac{35}{6}
\end{aligned}
$$

By Chebyshev's inequality

$$
P\{|x-\bar{x}| \geqslant \lambda\} \leqslant \frac{\sigma^{2}}{\lambda^{2}}
$$

Emparing with $P\{|x-7| \geqslant 3\}$

$$
\bar{x}=7, \quad \lambda=3
$$

then $\frac{\sigma^{2}}{\lambda^{2}}=\frac{35}{6} \times \frac{1}{9}=\frac{35}{54}=0.6481$

$$
\Rightarrow: \quad\{|x-7| \geqslant 3\} \leqslant 0.6481
$$

Actual probability is given by.

$$
\begin{aligned}
P\{|x-7| \geqslant 3\} & =P\{7+3 \leqslant x \leqslant-3+7\} \\
& =P\{10 \leqslant x \leqslant 4\} \\
& =P\{x=2,3,4,10,11,12\} \\
& =\frac{1}{3}=0,33
\end{aligned}
$$

Q A random variable x is exponentially distributed write parameter 1. Use chebyshev's inequality to show that $P\{-1 \leqslant x \leqslant 3\} \geqslant \frac{3}{4}$. Find the actual probability also.
QP IN: \because For exponential distribution

$$
f(x)= \begin{cases}1 e^{-d x}, & 0<x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Here given that parameter $\lambda=1$
\Rightarrow pdf is given by $f(x)= \begin{cases}e^{-x}, & 0<x<0 \\ 0, & \text { otherewsi }\end{cases}$
Now $\bar{x}=$ mean $=E(x)=\int_{-\infty}^{\infty} x f(x) d x$

$$
\begin{gathered}
\bar{x}=\int_{0}^{\infty} x e^{x} d x=1 \\
\sigma^{2}=\operatorname{Var}(x)=E\left\{(x-\bar{x})^{2}\right\}^{=} \int_{-\infty}^{\infty}(x-\bar{x})^{2} f(x) d x
\end{gathered}
$$

Or $\quad \sigma^{2}=E\left(x^{2}\right)-\{E(x)\}^{2}$

$$
\sigma^{2}=\int_{0}^{\infty} x^{2} e^{-x} d x-(\bar{x})^{2}
$$

$$
\begin{aligned}
& \sigma^{2}=2-1=1 \\
& \text { By chebyshev's inequality } \\
& P\left\{\{x-\bar{x} \mid \geqslant \lambda\} \nless \frac{\sigma \sigma}{\lambda^{2}} /\right\} \& \text { or } p\{(\bar{x}-\lambda) \leqslant x<(\bar{x}+\lambda)\} \geqslant 1-\frac{\sigma^{2}}{\lambda^{2}}
\end{aligned}
$$

compacting with P\{ $-1 \leqslant x \leqslant 3\}$,
we howe $y=2$

$$
\begin{aligned}
\Rightarrow & P\{-1 \leqslant x \leqslant 3\} \geqslant 1-\frac{1}{4} \\
& \text { or }\{-1 \leqslant x \leqslant 3\} \geqslant \frac{3}{4}=0,75
\end{aligned}
$$

The actual probability is given by.

$$
\begin{aligned}
P\{-1 \leqslant x \leqslant 3\} & =\int_{-1}^{3} f(x) d x=\int_{0}^{3} e^{-x} d x=1-e^{-3} \\
& =0.9502
\end{aligned}
$$

Normal Distribution:
The most important continuous probability distribution used in statistics is normal distribution. It is a limiting form of the binomial distribution, in which p is not small but $n \rightarrow \infty$.

Definition: A random variable x is said to have a normal distribution with parameters μ (mean) and σ^{2} (variance) if i ts probability density function is given by

$$
p(x)=\cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty
$$

Note: 1 The normal distribution witt mean μ and variance σ^{2} can be denoted by the symbol $N\left(\mu, \sigma^{2}\right)$.
2) The probability between two specified values a \& b is $P(a<x<b)=$ Area cinder the curve $p(x)$ between the specified values $X=a \& x=b$.

Normal Probability curve
The curve is bell-shaffeid and symmetrical about the line $x=\mu$.
mean, median and mode of the distribution coincide
3.) The normal distribution is often called Gaussian -distribution.
4.) Some of the important continuous distributions are Uniform distribution, Gamma distribution, Exponential and normal distribution.
standared form of the normal distribibitions:
The probobilitif demaity fumetisue foe the normat distribation ins standerd form is ginensby

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}, \quad-\infty<z<\infty
$$

where $z=\frac{x-\mu}{\sigma}, z$ is called. the eitandoed, nosmal. eanderru vasiobles
Note is ctandiard form of the nownal distickitiens is fisa firm any parametas.
(ii) For standard normal variales

$$
P(-\infty<z<\infty)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}} d z=1
$$

and $P(z \leqslant 0)=P(z \geqslant 0)=\frac{1}{\sqrt{2 K}} \int_{0}^{10} e^{-\frac{2^{2}}{2}} d z=\frac{1}{2}$

Q If x is $N(3,16)$, then find $P(4 \leqslant x \leqslant \varepsilon)$
Soln:

$$
\begin{aligned}
\mu=3, \quad \sigma^{2}= & 16 \\
z=\frac{x-\mu}{\sigma} \sigma & = \\
P(4 \leq x \leq 8)= & P\left(\frac{4-3}{4} \leq z \leq \frac{8-3}{4}\right) \\
= & P(0.25 \leq z \leq 1.25) \\
= & P(0<z \leqslant 1.25) \\
& -P(0<z \leqslant .25) \\
= & 0.3944-0.0987 \\
& =0.2957
\end{aligned}
$$

Wote :In conti: R.V. probe of x lying in the samall dirtersech $\left(x-\frac{d x}{2}, x+\frac{d y}{2}\right)$ ec $f(x) d x$ ie. $\left.P\left\{x-\frac{d x}{2}<x<x+\frac{d x}{2}\right\}=f x\right) d x$

$$
=\frac{1}{\sqrt{2 \pi} \pi} e^{\frac{1}{2} \frac{z^{2}}{2}} d z=f(z) d z
$$

$$
\frac{d x}{y}=d x
$$

Scanned by CamScanner

Q
The distribution of weekly wages for 500 workers in and Tho . oistri. a factory is approximately normal with the mean and standard deviation of Rs. 75 and Rs ,15. Find the number of workers Who receive brekly wages:
(i) more than Rs 90 . (ii) less than Re. 45.

Row : Given $N=500, \mu=75, \sigma=15$

$$
\because z=\frac{x-\mu}{\sigma}
$$

(j)

$$
\begin{aligned}
P(x>90) & =P\left(z>\frac{90-75}{15}\right) \\
& =P(z>1) \\
& =0.5-P(0<z<1) \\
& =0.5-0.3413 \\
& =0.1587
\end{aligned}
$$

- No. of workers receiving weekly wages more than $90 R_{s}=500 \times 0.1587$

$$
=79,35 \cong 79
$$

(ii)

$$
\begin{aligned}
P(x<45) & =P\left(z<\frac{45-75}{15}\right) \\
& =P(z<-2) \\
& =0.5-P(0<z<2) \\
& =0.5-0.4772 \\
& =0.0228
\end{aligned}
$$

No. of workers receiving weekly wages less. Than $45 \mathrm{R}=500 \times 0.0228$

$$
=11.4 \cong 11
$$

Q Fresco $<x<\infty$, and probability density

$$
f_{x}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1(x-\mu)^{2}}{2 \sigma^{2}}\right]^{\prime \prime}
$$

Show that the total probability is 1
hoof. Total Ruobability is given by

$$
\begin{aligned}
& \text { pRobability is given by } \\
& P(-\infty<x<\infty)=\int_{-\infty}^{\infty} f_{x}(x) d x=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left\{\frac{(x-\mu)\}^{2}}{\sqrt{2} \sigma}\right.} d x
\end{aligned}
$$

$$
\begin{gathered}
\text { taking } \frac{x-\mu}{\sqrt{2} \sigma}=z \\
d x=\sqrt{2} \sigma d z \\
\Rightarrow \quad P=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-z^{2}} d z \\
P=\frac{z}{\sqrt{\pi}} \int_{0}^{\infty} e^{-z^{2}} d z
\end{gathered}
$$

let $z^{2}=u$

$$
2 z d z=d u
$$

$$
\begin{aligned}
P & =\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-u} \frac{d u}{2 \sqrt{u}} \\
& =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-u} u^{-i / 2} d u \\
& =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty}-e^{-u} u^{\frac{1}{2}-1} d u \\
P & =\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}\right)=1 .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\int_{0}^{\infty} e^{-u} e L^{\frac{1}{2}-1}=r\left(\frac{1}{2}\right) . \\
\text { and } r\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{array}\right.
$$

Cumulatime diskibution funsion (cadf) or wimply distribuition fuñlion:
If x is a cortinnous vandom vailable, then $F(x)=P(x \leq x)$ is Calced caf that is $F(x)=P(x \leqslant x)=P(-\infty<x<x)=-\int_{-\infty}^{2} f(x) d x$ where $f(x)$ is prebability densitiy function
The cemulative distribution function $F(x)$ has the followerig impoitant paepectios
(i) $\cdot 0 \leqslant F(x) \leqslant 1,-\infty<x<\infty$
(iii) $F(-\infty)=0 \& F(\infty)=1$
(iv) $f(x)=F^{\prime}(a)$ at ali pe ahere $F(x)$ is dijferentiable

Mcan
and Vaicance:
Valeance: If x is a conlinuous random vasiable and- $f(x)$ is
the polfo of x, then we clefine

$$
\text { mean }=\mu=\int_{R} x \cdot f(x) d x=E(X)
$$

$$
\text { If } R=[a, b]
$$

$$
\left.\begin{array}{rl}
\text { Aun mean.: } & \int_{a}^{b} x-f(x) d x \\
\text { Veriance }=\sigma^{2} & =\int_{R}(x-\mu)^{2}-f(x) d x=E\left\{(x-\mu)^{2}\right\} \\
\sigma^{2} & =-\int_{R} x^{2} f(x) d x-\mu^{2} \\
T R=[a, b]
\end{array}\right\}
$$

eg Find the mean and variance of the tandom variable x whase density function, f is defined by

$$
f(x)= \begin{cases}0, & \text { if } x<0 \\ 4 x\left(1-x^{2}\right)^{\prime}, & \text { if } 0 \leqslant x \leqslant 1 \\ 0 & \text { if } 1>1\end{cases}
$$

$\mathrm{ACOH}^{\mathrm{C}}$

$$
\begin{aligned}
\mu=E(x) & =\int_{-\infty}^{0} x f(x) d x=\int_{0}^{1} 4 x^{2}\left(1-x^{2}\right) d x=\frac{8}{15} \\
\text { Variance } & =\sigma^{2}=\int_{-\infty}^{0} x^{2} f(x) d x-\mu^{2} \\
\sigma^{2} & =\int_{0}^{0} 4 x^{3}\left(1-x^{2}\right) d x-\frac{64}{225} \\
\sigma^{2} & =\frac{1}{3}-\frac{64}{225}=\frac{11}{225}
\end{aligned}
$$

eg 2 x is a continuous random variable witch pdf ginewby

$$
-f(x)=\left\{\begin{array}{cc}
2 x^{3}, & 0 \leqslant x \leqslant 1 \\
2(2-x)^{3}, & 1 \leqslant x \leqslant 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

find the standard divation and mean for the random variable x.
Sol

$$
\begin{aligned}
\text { Mean }=\mu & =\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x\left(2 x^{3}\right) d x+\int_{1}^{2} 2 x(2-x)^{3} d x \\
& =1 \\
\text { Variance } & =\sigma^{2}=\int_{-\infty}^{0} x^{2} f(a) d x-\mu^{2} \\
\sigma^{2} & =\left[\int_{0}^{1} x^{2}\left(2 x^{3}\right) d x+\int_{2}^{2} x^{2}(2-x)^{3} d x\right]-1 \\
\sigma^{2} & =\frac{16}{15}-1=\frac{1}{15}
\end{aligned}
$$

Standard deviation $=\sqrt{\text { Variance }}$

$$
\sigma=\sqrt{\frac{1}{15}}=0.258
$$

$\sigma_{1}>\sigma_{2}$
$\sigma_{1}>\sigma_{2}$
Normal probability curve $\sigma_{1}>\sigma_{2}$.
standardised normal curve

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}},-\infty<z<\infty
$$

$$
x=\mu-\sigma \text { to } x=\mu+\sigma
$$

$$
\text { ie. } z=-1 \text { te } z=1
$$

$$
\text { s } P(\mu-\sigma<x<\mu+\sigma)
$$

$$
=P(-1<z<1)=68.26 \%
$$

$$
\cdots P(\mu-2 \sigma<x<\mu+2 \sigma)
$$

$$
=P(-2<z<q)=95.44 \%
$$

$$
{ }^{+} p(\mu-3,<x<\mu+3 \sigma)
$$

$$
=P(-3<z<3)=99.73 \%
$$

Fitting of Normal Distribution: In order to fit a normal distribution to a given frequency distribution $x i$ and $f i$, $i=1,2, \ldots, n$.

We find $\mu=\frac{\sum f_{i x_{e}}}{\sum f_{i}}$ and $\sigma^{2}=\frac{\sum f_{i x_{i}}}{\sum f_{i}}-\left(\frac{\sum f_{i} x_{i}^{\prime}}{\sum f_{i}}\right)^{2}$
from the given data. Hence the normal curve fitted to the given data is given by.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} ;-\infty<x<\infty
$$

Q Fit a normal curve to the following frequency distribution:

| $x: 4$ | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y: 1$ | 7 | 15 | 22 | 35 | 43 | 38 | 20 | 13 | 5 | 1 |

St" We form the following table

Hence the normal curve to be fitted is:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
$$

with $\mu=13.85$ and $\sigma=3.83$

Lecture -3

Poisson's distribution: Poisson distribution is a limiting case of the binomial distribution under

- the follousing conditions.
1.) n, the number of trials is idem indefinitely large, we. $n \rightarrow \infty$
2.) p, the probability of success for each trial is indefinitely mall, ie. $p \rightarrow 0$
3.) $n p=\lambda$, (ray) is finite positive real number.

$$
\Rightarrow \quad p=\frac{\lambda}{n}
$$

The probability of or success in a series of n independent trials is

$$
\begin{aligned}
P(r) & ={ }^{n} c_{r} p^{r} q^{n-r} \\
& =\frac{n!}{r_{!}(n-r)!} \cdot p^{r}(1-\beta)^{n-r} \\
& =\frac{n(n-1) \cdots(n-r+1)}{r!}\left(\frac{1}{n}\right)^{r} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{r}} \\
& =\frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots \cdot\left\{1-\frac{(r-1)}{n}\right\} \lambda^{r u}}{r!\left(1-\frac{\lambda}{n}\right)^{n}} \frac{\left(1-\frac{\lambda}{n}\right)^{r}}{r!} \\
\lim _{n \rightarrow \infty} P(r) & =\frac{\lambda^{r} e^{-\lambda}}{r!}, r=0,1, \cdots \quad\left\{\because \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}\right\} .
\end{aligned}
$$

This limiting form of Binomial atiabribution with above probability is called Poisson's distribution.
Note 1.) λ is known as the parameter of the anstribulian.
2.) $e=2.7183$
3.) $\sum_{r=0}^{\infty} P(x=r)=\sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^{r}}{x!}=e^{-\lambda}\left[1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\cdots\right]=e^{-\lambda} e^{\lambda}=1$

Sepmilisen: dandon virable x is raid to fellow a Recsow distribition if it assumes only non negaitime vines andies probibility mass funelian is ginew by.

$$
P(x=d)=\left\{\begin{array}{l}
\frac{e^{d} d^{2}}{k!}, x=0,1,2, d>0 \\
0, \text { opesurice }
\end{array}\right.
$$

Nete: mis distibution is uned to discribe the behaviour of rale enents wuth as the nember of acciclents on road, nembles of proiting mishats wi a beoketo.
Q. suppece on an average 1 . heuse in 1,000 in a certain distrit has a fie during a yar. If there are 2,000 houses in that distrit, what is the frobability shat exactly 5 howes wilb have a fire during the year?
siff: $\quad n=2000, p=\frac{1}{1000}$

$$
d=n p=2000 \times \frac{1}{1000}=2
$$

Required probability that exartly 5 holures will have a fiu during the year $=P(5)$

$$
\begin{aligned}
& =\frac{e^{\lambda} \lambda^{5}}{5!} \\
& =\frac{e^{-2} 2^{5}}{5!} \\
& =\frac{135 \times 32}{120} \\
& =.036
\end{aligned}
$$

Mean and variance of the Piosson distribution:
for the Poisson distribution

$$
\begin{aligned}
P(r) & =\frac{\lambda^{r}-\lambda}{r!} \\
E(x)=\text { mean } & =\mu=\sum_{r=0}^{\infty} r P(r) \\
& =\sum_{r=0}^{\infty} r \frac{\lambda^{r} \vec{e}^{\lambda}}{r!} \\
& =e^{-\lambda} \sum_{r=1}^{\infty} \frac{\lambda^{r}}{(r-1)!} \\
& =e^{-\lambda}\left[\cdot \lambda+\frac{\lambda^{2}}{1!}+\frac{\lambda^{3}}{2!}+\cdots\right] \\
& =\lambda e^{-\lambda}\left[1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\cdots\right] \\
& =\lambda e^{-\lambda} \cdot e^{\lambda} \\
& =\lambda
\end{aligned}
$$

$$
\begin{aligned}
\text { Variance }=\sigma^{2} & =E\left(x^{2}\right)-[E(x)\}^{2} \\
& =E\left(x^{2}\right)-\lambda^{2} \\
& =\sum_{i=0}^{\infty} r^{2} P(x=r)-\lambda^{2} \\
& =\sum_{i=0}^{\infty} r^{2} \frac{\lambda^{r}-\lambda}{x!}-\lambda^{2} \\
& =e^{-\lambda}\left(\frac{\lambda}{1!}+\frac{2^{2} \lambda^{2}}{2!}+\frac{3^{2} \lambda^{3}}{3!}+\cdots\right)-\lambda^{2} \\
& =\lambda e^{-\lambda}\left(1+\frac{2 \lambda}{1!}+\frac{3 \lambda^{2}}{2!}+\cdots\right)-\lambda^{2} \\
& =\lambda e^{-\lambda}\left[\left(1+\frac{\lambda}{!!}+\frac{\lambda^{2}}{2!}+\cdots\right)+\left(\frac{\lambda}{1!}+\frac{2 \lambda^{2}}{2!}+\cdots\right)\right]-\lambda^{2} \\
& =\lambda e^{-\lambda}\left[e^{\lambda}+\lambda\left(1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+--\right)\right]-\lambda^{2} \\
& =\lambda e^{-\lambda}\left\{e^{\lambda}+\lambda e^{\lambda}\right\}-\lambda^{2} \\
& =\lambda e^{-\lambda} \cdot e^{\lambda}(1+\lambda)-\lambda^{2} \\
& =\lambda
\end{aligned}
$$

Hence, standard deviation $\sigma=\sqrt{\operatorname{var}(x)}=\sqrt{\lambda}$

Fitting a Poisson Distribution: when a Poisson distribution is to be fitted to observe data, the following procedure is adopted.
1.) Compute the mean \bar{X} and take it equal to the mean of the fitted (Poisson) distribution.

$$
\bar{x}=\lambda
$$

2.) Obtain the probabilities. $P(X=r)=\frac{e^{\lambda} \lambda^{t}}{x!}, r=0,1,2 \ldots$.
3) The expected of theoretical frequencies according to Poisson distribution can be calculated as

$$
f(r)=N \cdot P(x=r)
$$

Where N is the total obarued frequency.
Q. Data was collected over a period of 10 years, showing number of deaths from horse kicks in each of the 200 army. Epeps. The distribution of deaths was as follows.

No. of deaths:	0	1	2	3	4	Total.
Frequency:	109	65	22	3	1	$200=N=$ Efi

Fit a Poisson distribution to the data and calculation the theoretical frequencies.
sell.

$X \quad P(x=x \cdot)=\frac{e^{-\lambda} d^{x}}{x!}$

$$
e^{-61} \frac{(.61)^{0}}{0!}=15432
$$

$$
\vec{e}^{-161} \frac{(.61)^{\prime}}{1!}=\cdot 3313
$$

2

3

$$
e^{-161} \frac{(161)^{2}}{2!}=1101
$$

$$
e^{-161} \frac{(.61)^{3}}{3!}=.021
$$

4

$$
e^{-161} \frac{(.61)^{4}}{4!}=1003 \quad 200 \times 1003=163 \approx 1 .
$$

Recurrence formula for the Poisson Distribution-:

$$
\left.\begin{array}{rl}
& \because P(r)
\end{array}\right) \frac{e^{-\lambda} \lambda^{r}}{r!}, ~ P(r+1)=\frac{e^{-\lambda} \lambda^{r+1}}{(s+1)!}, ~ P(r) . ~ P(r+1)=\frac{\lambda}{(k+1)} \cdot P(r)
$$

Q
If the variance of the Poisson distribution is 2 , find the probabilities for $r=1,2,3,4$. from the recurrence relation of the Poisson distribution.

Sol 4 : Here $\lambda=2$

$$
\begin{aligned}
& \therefore P(r+1)=\frac{\lambda}{(L+1)} P\left((2)=\frac{2}{(r+1)} P((r) .\right. \\
& \begin{array}{l}
\text { which is the recursion } \\
\text { recce }
\end{array} \\
& P(1)=2 \cdot P(0)=2 \cdot e^{-2}=2 \times 1353=12706 \quad \quad \because P(r)=\frac{e^{-1} \cdot d^{r}}{r_{1}} \\
& P(2)=\frac{2}{2} P(1)=12706 \\
& P(3)=\frac{2}{3} P(2)=1804 \\
& P(4)=\frac{1}{2} P(3)=10902 .
\end{aligned}
$$

Q The frequency of accidents per shift in a factory. is given in the following table
Accidents Per shift: $0 \quad 1 \quad 2 \quad 3 \quad 4$
Frequency $\quad: 192 \quad 100 \quad 24 \quad 3 \quad 1$
Calculate the mean number of accidents per shifter. find corresponding Poisson distribution.
Sols: mean number of accidents per shift $=\frac{\sum x_{i} f_{i}^{\prime}}{\Sigma f_{i}}$

$$
\lambda=\frac{100+2 \times 24+3 \times 3+4}{320}=0.503
$$

Theoretical frequency distribution will be as follows

X	$P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$	Theoretical frequency. $N X P(X)$
0	0.6047	193.5
1	0.3042	97.3
2	0.0765	24.5
3	0.0128	4.1
4	0.0016	0.5

Poisson distribution:
The Moment generating function about origin is

$$
\begin{aligned}
& M_{x}(t)=E\left(e^{t x}\right)=\sum_{r} e^{t} x^{r} P(r)=\sum_{r=0}^{\infty} e^{t r} e^{-\lambda} \frac{\lambda^{r}}{r!} . \\
&=\sum_{r=0}^{\infty} e^{-\lambda} \frac{\left(\lambda e^{t}\right)^{r}}{r!} . \\
&=e^{\lambda} e^{\lambda e^{t}} \\
& M_{x}(t)=e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

Moments about origin:

$$
\begin{aligned}
& \mu_{t}^{\prime}=\left[\frac{d^{t} M_{x}(t)}{d t^{t}}\right]_{t=0} \\
& \mu_{1}^{\prime}=\text { mean }=\left[\frac{d}{d t} e^{\lambda\left(e^{t}-1\right)}\right]_{t=0} \\
& =\left[\lambda e^{t} e^{x\left(e^{t}-1\right)}\right]_{t=0} \\
& \mu_{1}^{\prime}=\lambda=\bar{x}=\text { mean } \\
& \mu_{2}^{\prime}=\left[\frac{d^{2} M}{d t^{2}}\right]_{t=0}=\lambda\left[e^{t} e^{\left.x e^{t}-1\right)}+\lambda e^{2 t} e^{\lambda\left(e^{t}-1\right)}\right]_{t=0}=\lambda(1+\lambda) \\
& \mu_{2}^{\prime}=\lambda^{2}+\lambda \\
& \mu_{3}^{\prime}=\left[\frac{d^{3} M_{x}(t)}{d t^{3}}\right]_{t=0} \\
& \mu_{3}^{\prime}=\lambda^{3}+3 \lambda^{2}+\lambda \\
& \mu_{4}^{\prime}=\left[\frac{d^{4} M_{x}(t)}{d t^{4}}\right]_{t=0} \\
& \mu_{y}^{\prime}=\lambda^{4}+6 \lambda^{3}+7 \lambda^{2}+\lambda
\end{aligned}
$$

Central moments:

$$
\begin{aligned}
& \mu_{1}=0 \\
& \mu_{2}=\mu_{2}^{\prime}-\mu_{4}^{\prime 2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda \\
& \mu_{2}=\lambda \\
& \mu_{3}=\mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu_{1}^{\prime}+2 \mu_{1}^{3} \\
& \mu_{3}=\lambda
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{4}=\mu_{1}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{2}-3 \mu_{1}^{\prime 4} \\
& \mu_{1}=3 \lambda^{2}+\lambda
\end{aligned}
$$

Moment Concreting function about \bar{x} (mean):

$$
\begin{aligned}
M_{x}(t) \text { about mean } & =E\left[e^{t(x-\bar{x})}\right] \\
& =E\left[e^{t(x-\lambda)}\right] \\
& =e^{-\lambda t} E\left[e^{t x}\right] \\
& =e^{-\lambda t} M_{x}(t) \text { about origin } \\
& =e^{-\lambda t} e^{\lambda\left(e^{t}-1\right)}=e^{\lambda\left(e^{t}-1-\lambda\right)} \\
M_{x}(t) & =e^{\lambda\left(e^{t}-1-t\right)}
\end{aligned}
$$

Moments about mean can be calculated by MGF about \bar{X}

$$
\mu_{\mu}=\left[\frac{d}{d t} M_{x}(t) \text { (about mean) }\right]_{t=0}=0
$$

and do on.
Recurrence Relation for the central moments of Poisson Distribution we have $r^{\text {th }}$ moment about mean

$$
\begin{align*}
\mu_{r} & =E\left\{(x-\bar{x})^{r}\right\}=\sum_{i} P_{i}\left(x_{i}-\bar{x}\right)^{r} \\
& =\sum_{r=0}^{\infty}(x-\lambda)^{r} \cdot \frac{e^{\lambda} \lambda^{x}}{x!}-1 \tag{1}
\end{align*}
$$

Differentiate (1) cor to $\dot{\lambda}$, we get,

$$
\begin{aligned}
\frac{d \mu f r}{d \lambda} & =\sum_{x=0}^{\infty}(-r)(x-\lambda)^{r-1} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}+\sum_{x=0}^{\infty} \frac{(x-\lambda)^{r}}{1!}\left(-e^{-1} \lambda^{x}+x \lambda^{r-1} e^{-\lambda}\right) \\
& =(-r) \sum_{x=0}^{\infty}(x-\lambda)^{r-1} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}+\sum_{x=0}^{\infty} \frac{(x-\lambda)^{r}}{x!} \cdot e^{-\lambda} \cdot \lambda^{2}\left(-1+\frac{x}{\lambda}\right) \\
& =-r \sum_{x=0}^{\infty}(x-\lambda)^{r-1} P(x)+\frac{1}{\lambda} \sum_{x=0}^{\infty}(x-1)^{r+1} P(x) \\
\frac{d \mu_{r}}{d \lambda} & =-r \mu_{r-1}+\frac{1}{\lambda} \mu_{r+1} \\
\mu_{r+1} & =r \lambda \mu_{r-1}+\lambda \frac{d \mu_{r}}{d \lambda}
\end{aligned}
$$

Karl pearson's coefficient of Poisson distribution:

$$
\begin{aligned}
& \beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=\frac{\lambda^{2}}{\lambda^{3}}=\frac{1}{\lambda} \\
& \gamma_{1}=\sqrt{\beta_{1}}=\frac{1}{\sqrt{\lambda}} \\
& \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{3 \lambda^{2}+\lambda}{\lambda^{2}}=3+\frac{1}{\lambda} \\
& \mu_{2}=\beta_{2}-3=\frac{1}{\lambda}
\end{aligned}
$$

Distribution Function of Poisson Distribution:

$$
\begin{aligned}
& F(x)=P(x \leqslant x)=\sum_{i=0}^{x} P(x=i) \\
& \text { or } F(x)=\sum_{r=0}^{x} P(x=r) \\
& F(x)=\sum_{r=0}^{x} e^{-\lambda} \frac{\lambda^{r}}{r!}
\end{aligned}
$$

Probability Generating function of Poisson Distribution:

$$
\begin{aligned}
G_{x}(z) & =\sum_{r=0}^{\infty} \cdot e^{-\lambda} \frac{\lambda^{\varepsilon}}{\varepsilon!} z^{r} \\
& =e^{-\lambda} \sum_{r=0}^{\infty} \frac{(\lambda z)^{r}}{\varepsilon!} \\
G_{x}(z) & =e^{-\lambda} e^{\lambda z}=e^{\lambda(z-1)}
\end{aligned}
$$

Mode of Poisson Distribution:
value of r for which $P(X=r)$ is maximum.
Now $P(r)>P(r-1)$ and $P(r)>P(r+1)$.

$$
\begin{align*}
& \text { Now } \frac{P(r)}{P(r-1)}>1 \\
& \Rightarrow \frac{\frac{e^{-\lambda} r^{r}}{r_{1}}}{e^{-\lambda} \frac{r^{r-1}}{(r-1)!}}>1 \Rightarrow \frac{1}{r}>1 \text { or } \lambda>r-11 \tag{1}\\
& \text { and } \frac{P(r)}{P(r+1)}>1 \Rightarrow \frac{(r+1)}{\lambda}>1 \text { or }(r+1)>\lambda . \tag{2}\\
& \text { or } r>(\lambda-1)
\end{align*}
$$

From (1) and (2)

$$
\quad A<r<\lambda
$$

Tutorial sheet
Q1. In a certain factory tivining out razor blades, the probability of a blade to be defective is 0.01 , The Blades are sold in packet of 10 . Use Poisson's distribution to find probabilities of a packet wilt
(i) No defective
(ii) Non blade.
(II) One blade (defective)
(iii) Two defective blades
find the number, of such packets in a Consignment of 10,000 packets.
Sol" we have

$$
\begin{aligned}
& n=10, p=0.01 \\
& \lambda=n p \\
& \Rightarrow \lambda=0.1
\end{aligned}
$$

(i) $P(x=0)=\frac{e^{-\lambda} \lambda^{0}}{01}=e^{-0.1}=0.905$
(ii) $P(x=1)=\frac{e^{-1} \lambda^{1}}{11}=e^{-0.1}(0.1)=0.0905$
(iii) $P(x=2)=\frac{!e^{-\lambda \lambda^{2}}}{2!}=\frac{e^{-0.1}(0.01)}{2}=0.00452$

$$
\begin{aligned}
\text { No. of packete with odefeitive blades } & =10,000 \times 0.905 \\
& =9050
\end{aligned}
$$

$$
\begin{aligned}
\text { No. of packets wilt idefective Blade } & =10,000 \times 0.0905 \\
& =905
\end{aligned}
$$

$$
\begin{aligned}
\text { No. of packets wilt } 2 \text { defective blades } & =10,000 \times 0.00452 \\
& =45
\end{aligned}
$$

Q. 2 Records show that the probability is 0.00005 that a car will have a flat tyre while crossing a certain bridge. Use Poisson distribution to find probabilities that among 10,000 cars crossing this bridge,
(i) exactly two will have a flat tyre.
(ii) at most two will Rave a flat tyre.

Sop" Let random variable x denote number of cars having flat tyres, which is a Poisson variate.

Here $n=10,000, p=0.00005$
Hence mean $=n p=0.5=\lambda$
(i) $P(x=2)=\frac{e^{-\lambda} \lambda^{2}}{2!}=\frac{e^{-0.5}(0.5)^{2}}{2!}=\frac{(0.6065)(25)}{2}=0.0758$
(ii)

$$
\begin{aligned}
P(x \leqslant 2) & =P(0)+P(1)+P(2) \\
& =e^{-0.5}\left[1+0.5+\frac{(0.5)^{2}}{2}\right] \\
& =(0.6065)(1.625)=0.98556
\end{aligned}
$$

Q3 In a Poisson distribution if $3 P(x=3)=4 P(x=4)$. Find $P(x=7)$
Sol $\quad 3 P(x=3)=4 P(x=4)$

$$
\begin{aligned}
& \frac{3 e^{-\lambda} \lambda^{3}}{3!}=4 \frac{e^{-\lambda} \lambda^{4}}{4!} \\
& \text { or } \cdot \lambda=3 \\
\therefore & P(x=7)=\frac{e^{-3} 3^{7}}{7!}=\frac{(0.04979)(2187)}{5040}=0.0216
\end{aligned}
$$

Q4 Evaluate the probabilitics at $\mu=10$ and $\sigma=5$
(i) $P(x<15)$
(ii) $P(x \geqslant 15)$
(iii) $P(10 \leqslant x \leqslant 15)$

Sol ω Here $\mu=10$ and $\sigma=5$
at $x=15$

$$
\begin{aligned}
z=\frac{x-\mu}{\sigma} & =\frac{15-10}{5}=1 \\
\text { (i) } \Rightarrow P(x<15) & =P(z<1) \\
& =0.5+P(0<z<1) \\
& =0.5+0.3413 \\
& =0.8413
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(x \geqslant 15) & =P(z \geqslant 1) \\
& =1-P(z<1) \\
& =1-0.8413 \\
& =0.1587
\end{aligned}
$$

Tutorial sheet
(iii)

$$
\begin{aligned}
P(10<x \leqslant 15) & =P(0 \leqslant z \leqslant 1) \\
& =0.3413
\end{aligned}
$$

Q If X is normally distributed then find
(i) $P(z \leqslant 1.26)$
(ii) $P(2 \geqslant 1.6)$
(iii) $P(0,2 \leqslant z \leqslant 1,4)$

SAl" (i)

$$
\begin{aligned}
p(z \leqslant 1.26) & =0.5+p(0 \leqslant z \leqslant 1.26) \\
& =0.5+0.3962 \\
& =0.8962
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(z \geqslant 1.6) & =0.5-P(0<z<1.6) \\
& =0.5-0.4452 \\
& =0.0548
\end{aligned}
$$

(iii)

$$
\begin{aligned}
p(0.2 \leqslant z \leqslant 1,4) & =p(0 \leqslant z \leqslant 1.4)-p(0 \leqslant z \leqslant 0.2) \\
& =0.4192-0.0793 \\
& =0.3399
\end{aligned}
$$

Q6. If x is uniformly distributed with mean 1 and variance $\frac{4}{3}$. Find $P(x<0)$
Loll: \because mean $=\frac{a+b}{2}$ and variance $=\frac{(b-a)^{2}}{12}$. For uniform or $\quad 1=\frac{a+b}{2}$ and $\frac{4}{3}=\frac{(b-a)^{2}}{12}$ distribution]

$$
\begin{array}{ll}
\Rightarrow & a+b=2 \\
\& & (b-a)=4
\end{array}
$$

on solving, we have
$a=-1, b=3 \quad$ [ar must have $a<b$]
Hence pdf of x is given by

$$
\begin{aligned}
& f(x)=\left\{\begin{array} { l }
{ \frac { 1 } { 4 } , - 1 < x < 3 } \\
{ 0 , \text { otherwise } }
\end{array} \quad \left[\because f(x)=\left\{\begin{array}{r}
\frac{1}{b-a}, a<x<b \\
0 ; \text { otherwise }
\end{array}\right] \frac{4}{\text { Distribution }}\right.\right. \\
& \text { Hence } P(x<0)=\int_{-1}^{0} \frac{1}{4} d x=\frac{1}{4}
\end{aligned}
$$

Q7 If the mean of the poisson distribution is 4 , find

$$
P(\lambda-2 \sigma<x<\lambda+2 \sigma)
$$

Sol. For an Poisson distribution variance $=\sigma^{2}=\lambda$

$$
\begin{aligned}
& \text { mean }=\mu=\lambda=4 \\
& \Rightarrow \sigma=2 \\
& P(x=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}=\frac{e^{-4} 4^{x}}{x!} \\
& P(\lambda-2 \sigma<x<\lambda+2 \sigma)=P(0<x<8) \\
& =\sum_{x=1}^{7} P(x=x) \\
& =\sum_{x=1}^{7} \frac{e^{-4} 4^{x}}{x!} \\
& =0.9306
\end{aligned}
$$

Q. 8 Fit a Poisson distribution to the following data
$\begin{array}{llccccc}\text { Number of dcathe }(x): & 0 & 1 & 2 & 3 & 4 \\ \text { Frequency } & (f): & 122 & 60 & 15 & 2 & 1\end{array}$
Sol" man $\frac{\sum f^{\prime \prime} x^{\prime}}{\sum \delta_{i}}=0.5$, for a Poisson distribution, mean $=\lambda=0.5$

X	Theoretical Frequencies
$N \times P(t)=200 \times \frac{e^{-\lambda} \lambda^{2}}{r!}$	
0	$121,31 \approx 121$
1	$60.65 \approx 61$
2	$15.16 \approx 15$
3	$2.53 \approx 3$
4	$0.32 \approx 0$

O In a binomial distribution, the sum and product of the mean and variance are $\frac{25}{3}$ and $\frac{50}{3}$ respectively, Determine the ristribuiliow.

Sol For the binomial olistribition,

$$
\begin{align*}
& n p+n p q=\frac{25}{3} \\
& \text { or } n p(1+q)=\frac{25}{3} \tag{1}
\end{align*}
$$

and $n p(n p q)=\frac{50}{3}$
or $n^{2} p^{2} q=\frac{50}{3}$-(2)
From (1) and (2),

$$
\begin{aligned}
& \frac{n^{2} p^{2}(1+q)^{2}}{n^{2} p^{2} q}=\frac{625}{q} \times \frac{3}{50} \\
& \frac{1+q^{2}+2 q}{q}=\frac{25}{6} \\
& \text { or } 6 q^{2}-13 q+6=0 \\
& \text { or } \quad(2 q-3)(3 q-2)=0 \\
& \text { or } \quad q=\frac{3}{2} \text { or } \frac{2}{3}
\end{aligned}
$$

$\because q$ can not be greater than 1,

$$
\begin{aligned}
& \therefore \quad q=\frac{2}{3} \\
& \Rightarrow p=\frac{1}{3} \\
& \text { From (1) } \quad n=15
\end{aligned}
$$

Hence, the binomial diskibution is,

$$
P(x=x)={ }^{15}\left(x\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{15-x}, x=0,1,2 \ldots 15\right.
$$

Q1. If the random variable x takes the values $1,2,3$ and 4 ouch that $2 P(x=1)=3 P(x=2)=P(x=3)=5 P(x=4)$
find the probability distribution and distribution function

Sep: Assume $P(x=4)=K$ thew
by definition of porn

$$
\begin{gathered}
\sum p i=1 \\
\Rightarrow\left[\frac{5}{2}+\frac{5}{3}+5+1\right] k=1 \\
\text { or } \frac{61}{6} k=1
\end{gathered}
$$

$$
\text { or } \quad k=\frac{6}{61}
$$

Hence required probability distribution is,

$$
\begin{array}{ccccc}
x: & 1 & 2 & 3 & 4 \\
p\left(x_{i}\right): & \frac{15}{61} & \frac{10}{61} & \frac{30}{61} & \frac{6}{61} \\
F(x): & \frac{15}{61} & \frac{25}{61} & \frac{55}{61} & 1 \text { (Qislaibetion function) }
\end{array}
$$

$$
\text { or } F(x)= \begin{cases}\frac{15}{16} ; & x \leq 1 \\ \frac{25}{61} ; & x \leq 2 \\ \frac{55}{61} ; & x \leqslant 3 \\ 1 ; & x \leq 4\end{cases}
$$

Hence the required probability distribution is

$$
\begin{array}{cccc}
x: & 0 & 1 & 2 \\
P(x): & \frac{105}{221} & \frac{96}{221} & \frac{20}{221}
\end{array}
$$

Q3 The probability distribution of a random variable x is give by

xi:	0	1	2
$p i$	$3 c^{3}$	$4 c-10 c^{2}$	$5 c-1$

where $c>0$
Find (i) c,
(ii) $P(x<2)$;
(iii) $P(1<x \leqslant 2)$

SHh:

$$
\begin{aligned}
& \because \quad \sum p i=1 \\
& \Rightarrow \quad 3 c^{3}+4 c-10 c^{2}+5 c-1=1 \\
& \quad 3 c^{3}-10 c^{2}+9 c-2=0 . \\
& \text { or } \quad(c-2)\left(8 c^{2}-4 c+1\right)=0 \\
& \text { or } \quad c=1,2, y_{3} . \\
& \text { But } \because \quad \text { ospis1 }
\end{aligned}
$$

\therefore the values $C=1$ and $c=2$ are not acceptable, Hence $c=\frac{1}{3}$
(ii) $P(x<2)=1-P(x=2)=1-(5 c-1)=\frac{1}{3}$
(iii) $P(1<x \leqslant 2)=P(x=2)=5 c-1=\frac{2}{3}$.
(34) A random variable has the following probability $\left.\left\lvert\, \frac{P(M)}{n}\right.\right)=\frac{P(A \cap W)}{P(A)}$ distribution.

$x:$	0	1	2	3	4	5	6	7
$p(x):$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

(i) Find k
(ii) Evaluate $P(x<6), P(x \geqslant 6), P(0<x<5)$.
(iii) Determine distribution function of X
(iv) If $P(X \leqslant c)>\frac{1}{2}$ find the minimum value of c.
(v) find $P\left(\frac{1.5<x<4.5}{x>2}\right)$

Sol ${ }^{\text {N }}$ (i)

$$
\begin{aligned}
& \because \sum p i=1 \\
& \Rightarrow 10 k^{2}+9 k-1=0 \\
& k=-1, \frac{1}{10}
\end{aligned}
$$

$k=-1$ is not possible as it makes $p(x)<0$ which is impossible, asabeve given is a probability distribution.

Hence $k=\frac{1}{10}$
(ii)

$$
\begin{aligned}
& P(x<6)=1-P(x \geqslant 6) \\
& =1-[P(x=6)+P(x=7)] \\
& =1-\left(9 k^{2}+k\right)=1-\frac{1}{10}-\frac{9}{100}=1-\frac{19}{100}=\frac{81}{100} \\
& P(x \geqslant 6)=1-P(x<6) \\
& =1-\frac{81}{100}=\frac{19}{100} \\
& P(0<x<5)=P(x=1)+P(x=2)+P(x=3)+P(x=4) \\
& =8 k=\frac{8}{10}=\frac{4}{5}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& F(3)=P(x \leqslant 3)=0.5 \\
& F(4)=P(x \leqslant 4)=0.8>\frac{1}{2} \\
& F(5)=P(x \leqslant 5)=.81>\frac{1}{2}, \text { and so on }
\end{aligned}
$$

Hence the minimum value of c for which

$$
\begin{aligned}
& P(x \leqslant c)>\frac{1}{2} \text { is } 4 \\
& \therefore x=4
\end{aligned}
$$

(v)

$$
\begin{aligned}
P\left(\frac{1.5<x<4,5}{x>2}\right) & =\frac{P[(1.5<x<4,5) \cap(x>2)]}{P(x>2)} \\
& =\frac{P(2<x<4.5)}{1-P(x \leqslant 2)}=\frac{P(3)+P(4)}{1-[P(0)+P(1)+P 2)]} \\
& =\frac{\frac{2}{10}+\frac{3}{10}}{1-\left[0+\frac{1}{10}+\frac{2}{10}\right]}=\frac{\frac{5}{10}}{1-\frac{3}{10}}=\frac{5 / 10}{17 / 10}=\frac{5}{7}
\end{aligned}
$$

Q5 Let x be a continuous random variable with pidif.

$$
f(x)=\left\{\begin{array}{cc}
a x, & 0 \leqslant x \leqslant 1 \\
a, & 1 \leqslant x \leqslant 2 \\
-a x+3 a, & 2 \leqslant x \leqslant 3 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(i) Determine the constant a
(ii) Find $P(x \leq 1,5)$
(iii) Determine the cdf and hence find $P(X \leqslant 2,5)$

Sol ${ }^{\prime N}$
(l) As $f(a)$ is given to be a polf, hence

$$
\begin{aligned}
& \int_{0}^{\infty} f(x) d x=1 \\
& \Rightarrow \int_{0}^{1} a x d x+\int_{1}^{2} a d x+\int_{2}^{3}(-a x+3 a) d x=1 \\
& \Rightarrow \quad \frac{a}{2}+a+\left(-\frac{a}{2} 5\right)+3 a=1 \\
& 4 a-2 a=1 \\
& 2 a=1 \quad \text { or } a=\frac{1}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(x \leq 1,5) & =\int_{0}^{1,5} f(x) d x \\
& =\int_{0}^{1} a x d x+\int_{1}^{1.5} a d x=\frac{a}{2}+(0,5) a= \\
& =\frac{1}{4}+\frac{105}{2} \\
& =\frac{1}{4}+\frac{1}{4}=\frac{2}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

(iii) For $x<0, F(x)=0$

For $o \leqslant x \leqslant 1 ; F(x)=\int_{0}^{x} f(x) d x=\int_{0}^{x} a x d x=\frac{a}{2} x^{2}=\frac{x^{2}}{4}$
For $1 \leq x \leqslant 2 ; F(x)=\int_{0}^{1} f(x) d x+\int_{1}^{x} f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{0} a x d x+\int_{1}^{x} a d x \\
& =\frac{a}{2}+a(x-1)=\frac{1}{4}+\frac{(x-1)}{2}
\end{aligned}
$$

$$
F(x)=\frac{x}{2}-\frac{1}{4}
$$

For $2 \leq x \leq 3 ; F(x)=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{x} f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{1} a x d x+\int_{1}^{2} a d x+\int_{2}^{x}(-a x+3 a) d x \\
& =\frac{a}{2}+a+\left(-\frac{a}{2}\right)\left(x^{2}-4\right)+3 a(x-2) \\
& =\frac{1}{4}+\frac{1}{2}-\frac{1}{4}\left(x^{2}-4\right)+\frac{3}{2}(x-2)
\end{aligned}
$$

$$
F(x)=-\frac{5}{4}+\frac{3}{2} x-\frac{x^{2}}{4}
$$

For $x \geqslant 3, \quad F(x)=\int_{0}^{\infty} f(x) d x=1$
and

$$
\begin{aligned}
& P(x \leq 2,5)=F(215)=\frac{-5}{4}+\frac{3}{2}(215)-\frac{(215)^{2}}{4}=1.25+3.75 \quad \begin{array}{ll}
\text { (c. } & F(x)=1.5625
\end{array} \quad \begin{array}{ll}
\frac{-5}{4}+\frac{3}{2} x-\frac{x^{2}}{4} ; & 2 \leq x \leq 3 . \\
1 ; & x \geqslant 3
\end{array} \\
& =3.75+2.8125=0.9375
\end{aligned}
$$

Q1 The Joint Probability mass function of (x, y) is given by

$$
p(x, y)=K(2 x+3 y), x=0,1,2 ; y=1,2,3 \text { find }
$$

(i) K
(ii) Marginal probability distribution of X
(iii) Marginal probability distribution of y.
(iv) Conditional distribution of x given $y=1$
(V) Conditional distribution of y given $x=2$
(V'vithe probability distribution of $x>x y$
Sol ": The joint probabity otestribution of (x, y) can be represented in tabular form as:-

x	1	2	3	Total
0	3 K	6 K	9 K	18 K
1	5 K	-8 K	11 K	24 K
2	7 K	10 K	18 K	30 K
Total	15 K	24 K	33 K	72 K

(i) As above given is a poi, hance

$$
\begin{gathered}
\sum_{i=0}^{2} \sum_{j=1}^{3} p\left(x_{i}, y_{j}\right)=1 \\
72 k=1 \\
k=\frac{1}{72}
\end{gathered}
$$

(ii) Marginal probabitety distribution of x is given by

X	$p_{i}^{\prime t}$
0	18172
1	$24 / 72$
2	30172

$$
p_{i}^{i}=p\left(x_{i}\right)=\sum_{j} p\left(x_{i}, y_{j}\right)
$$

(iii) Marginal probability distribution of Y

y	178
1	$15 / 72$
2	$24 / 72$
3	$33 / 72$

$$
y_{y}^{v}=\sum_{i} p\left(x_{i}, y_{0}^{\prime}\right)
$$

(iV) Conditional distribution of x give $y=1$ is

$$
\begin{aligned}
P\left(\frac{x=x_{1}^{\prime}}{Y=1}\right)=\frac{P\left(x_{i}, 1\right)}{P(Y=1)}=\frac{P\left(x_{i}^{\prime}, 1\right)}{p_{k y}^{2}} \text { where } h_{x+y}^{\prime \prime} & =\frac{1.5}{972}(\text { at } Y=1) \\
& =15 \mathrm{k}
\end{aligned}
$$

x	$P\left(\frac{x+x_{i}}{Y=1}\right)$
0	$3 K / / 5 K^{-\frac{1}{5}}$
1	$\frac{5 K}{1-K}=Y_{3}$
2	$\frac{7 K}{15 K}=\frac{7}{15}$

(V) Conditional distriputiow of y given $x=2$

$$
P\left(\frac{y=y_{j}^{\prime}}{x=2}\right)=\frac{p\left(x=2, y_{j}\right)}{p(x=2)}=\frac{p_{i j}}{p_{i}^{*}} \quad \text { where } \quad p_{i}^{*}=P(x=2)=\sum_{j} p_{i j}=\frac{30}{72}=30 \mathrm{~K}
$$

y	$p\left(\frac{Y=y_{0}^{\prime}}{x=2}\right)$
1	$\frac{7 K}{30 K}=\frac{7}{30}$
2	$\frac{10 K}{30 K}=\frac{10}{30}$
3	$\frac{13 K}{30 K}=\frac{13}{30}$

Q The joint pdf of the random variable (x, y) is given by

$$
f(x, y)=k x y e^{-\left(x^{2}+y^{2}\right)}, \quad x>0, y>0
$$

Find ' k ' and prove also that X and Y are independent.'
Sol: \because Given function is a $p d f$

$$
\therefore \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

Or $k \int_{0}^{\infty} \int_{0}^{\infty} x y e^{-x^{2}} e^{-y^{2}} d x d y=1$
or $k \int_{0}^{\infty} x e^{-x^{2}}\left(\frac{e^{-} y^{2}}{-2}\right)_{0}^{\infty} d x=1$

$$
\begin{aligned}
& \frac{k}{2} \int_{0}^{\infty} x e^{-x^{2}} d x=1 \\
& \text { or } \quad \frac{k}{4}=1 \Rightarrow R=4
\end{aligned}
$$

Marginal density of X

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{\infty} 4 x y e^{-x^{2}} e^{-y^{2}} d y \\
& =4 x e^{-x^{2}}\left(\frac{e^{-y^{2}}}{-2}\right)_{0}^{\infty} \\
f_{X}(x) & =2 x e^{-x^{2}}, x>0
\end{aligned}
$$

Marginal density of Y

$$
\begin{aligned}
f_{y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{\infty} \cdot 4 x y e^{-x^{2}} e^{-y^{2}} d x \\
& =4 y e^{-y^{2}}\left(\frac{e^{-x^{2}}}{-2}\right)_{0}^{\infty} \\
f_{y}(y) & =2 y e^{-y^{2}}, \quad y>0 \\
\text { Now } \quad f_{x}(x) f_{y}(y) & =4 x y e^{-\left(x^{2}+y^{2}\right)} \\
& =f(x, y), \quad x>0, y>0
\end{aligned}
$$

Hence X and Y are independent R. V.
Q3 Let x be a random variable with the following probability - distribution.

$$
\begin{array}{cccc}
x & \text { distribution : } & -3 & 6 \\
p(x=x) & : & \frac{1}{6} & \frac{1}{2} \\
\hline
\end{array}
$$

Find $E(x), E\left(x^{2}\right), E(2 x+1)^{2}$
SH ln

$$
\begin{aligned}
& E(x)=\sum_{i} x_{i} p_{i}=-\frac{1}{2}+3+3=\frac{11}{2} \\
& \begin{aligned}
E\left(x^{2}\right)=\sum_{i} x_{i}^{2} p_{i} & =\frac{3}{2}+18+27=\frac{93}{2} \\
E(2 x+1)^{2} & =E\left(4 x^{2}+4 x+1\right)=4 E\left(x^{2}\right)+4 E(x)+1 \\
& =4\left(\frac{93}{2}\right)+4\left(\frac{11}{2}\right)+1=186+22+1=209
\end{aligned}
\end{aligned}
$$

Q4 A bag contains 2 one rupee coin and 3,50 paise coins. A person is allowed to draw two coins indiscriminately. Find the expected value of the draw.

Sol': Let random variable X denote the amount drawn un rupees. The pmf of $R \cdot V . X$ is

$$
\begin{array}{ccc}
x: & 1 & 1.50 \\
P(x): & \frac{3 c_{2}}{5 c_{2}}=\frac{3}{10} & \frac{2 G_{\times 3}}{5 c_{2}}=\frac{6}{10} \quad \frac{2 c_{2}}{5 c_{2}}=\frac{1}{10} \\
\text { Hence } E(x)= & 1 \times \frac{3}{10}+(1.50) \frac{6}{10}+2 \times \frac{1}{10}=\frac{14}{10}=1.40 \mathrm{Rs}
\end{array}
$$

Mathematical Expectation and
Theoretical distributions

Random Variable: A random variable X is a function $X: S \rightarrow R$ that assigns areal number $X(s)$. to each $D \in S$ (Sample space), corresponding to a random experiment E.
(1) If we toss tho coins together, we may. consider the random variable X which is number of heads.

$$
\begin{aligned}
& S=\{H H, H T, T H, T T\} \\
& X(H H)=2 \\
& X(H T)=1 \\
& X(T H)=1 \\
& X(T T)=0
\end{aligned}
$$

Note: Random variables are generally denoted by capital.
letters X, Y, Z etc.
eg(2) A single fair die e is rolled and the random variable. X represents the number that huriss $u \beta$. Hence X can take values $1,2,3,4,5,6$.

Cg.(3) Two balls are drawn in Ruccesiow rirtrout replacement from on urn containing 4 white and 3 green balls. X is the number of white balls, the values x of the random variable X are:

Sample space	x
$W W$	2
$W G$	1
$G W$	1
$G G$	0

We obreme that a ronclom variable is a variable whose value is determined by the outcome of. a random experimut.

Note：Countably infinite：＂A If a set consists of points which can be arranged in to a simple sequence $s_{1}, s_{2} \ldots$ otherwise it is $k_{\text {no wen }}$ as uncountable．

$$
\begin{aligned}
\text { eg. Set of } & \begin{aligned}
\text { Integers } & =\{0,1,2,3 \ldots\} \text { cocentasly infinite } \\
= & \{\ldots,-2,-1,0,1,2,3 \ldots \ldots-\} \\
& \text { countably infinite }
\end{aligned}
\end{aligned}
$$

Ste Real no．$=\beta$ uncountable

Discrete Random variable：A discrete random，variable has either finite or countably infinite
eg．Let X be a random variable which denotes the number of heads in two successive toss of a fair aim． Sample spare $=\{H H, H T, T H, F T\}$ ．

$$
X(H H)=2, \quad X(H T)=X(T H)=1, X(T T)=0 .
$$

（Note：Sample space \rightarrow finite or countably infinite Then associated． random variable will be discrete．and s－is uncountable ar coitinuas． then raseciated random variable with sericeous． may be discrete．eg．$S=\{s:$ height of individuals in alarge groups $\}$ and let random variable x denote height in inches rounded to nearest whole number than ceecan have $X(s)=59$ inches．ie．X is a discrete random variable．）
Note：Important discrete distributions are uniform distribution，sinemial distrebectic Continuous．Random，Variable Regain Binomial dist，，Hyper geometric diet，Poissondist． Continuous．Random Variable：which can take infinite number
of values in an interval．
eg．timpratire，current，voltage tee．The height of a group of individuals．
Not：Some random variable is niter a discrete nor a continuous 敒noon as mixed

Discrete Probability Distribution of a Random variable:
Let x be a random variable with possible values $x i$ and associated the $p\left(x_{i}\right) ; i=1,2 \ldots, n$. Then the ret witt elements having the ordered pains. $\left(x_{i}, j\left(x_{i}\right)\right)$ forms a probakiety distribution of a random variable x, where $p\left(x_{i}\right)$ has to satisfy the following conditions. 1
(a) $p\left(x_{i}\right) \geqslant 0$, Xxi $_{i}$

$$
\text { (b) } \sum_{i=1}^{n} p\left(x_{i}\right)=p\left(x_{1}\right)+p\left(x_{2}\right)+\cdots+p\left(x_{n}\right)=1
$$

is called the 'discrete probability distribuilionfor X.
ic.

$$
\left.\begin{array}{ccccc}
x_{i} & : & x_{1} & x_{2} & x_{3} \ldots \ldots
\end{array}\right)
$$

eg. When tossing a coin and denting random variable X as the number of heads obtained, the probability distrifection is:

$$
\begin{array}{lll}
X=x: & 0 \\
P(x): & 1 \\
y_{2} & y_{2}
\end{array} \quad\{\text { sample space }=(H, T) .
$$

Note: Here $p i$ is said to be probability mass function ($p n f$).
eg (1.) Probability mas function

Probability Distribution of a continuous Random variable:
In case of continuous random variable, instead of finding the probability at a particular value of x we find the probability of x in a small interval.

We define the continuous probability distribution

$$
\text { of } x \text { by } f(x) \text { ie. } P\left(x-\frac{d x}{2}<x<x+\frac{d x}{2}\right)=\frac{8}{y} f(x) d x
$$

The continuous curve $y=f(x)$ is known as probability ane.
Probability Density function: The function $f(x)$ for a continuous random variable X is said to be probability density function ($p . d, f$.) provided it satisfies the following conditions.
(1.) $f(x) \geqslant 0$; $-\infty<x<\infty$
2) $\int_{-\infty}^{\infty} f(x) d x=1$

$$
P(a \leqslant x \leqslant b)=\int_{a}^{b} f(x) d x
$$

Note:

$$
\left.\left.\begin{array}{rl}
P(a \leqslant x \leqslant b) & =P(a \leqslant x<b)
\end{array}\right) P(a<x \leqslant b)=P(a<x<b)\right)=P(x=a)=P(a \leqslant x \leqslant a)=\int_{a}^{a} f(x) d x=0 \quad l
$$

eg. The diameter of an electric cable, say X is assumed to be a continuous random variable with $f d f=f(x)=6 x(1-x)_{\text {J }}$ $0 \leqslant x \leqslant 1$

Sol ny: $\quad f(x)>0 \cdot \forall 0 \leqslant x \leqslant 1$

$$
\int_{0}^{1} f(x) d x=6\left[\frac{x^{2}}{2}+-\frac{x^{3}}{3}\right]_{0}^{1}=1
$$

Mathematical Expectation: The expectation of a random variable x is defined as

$$
\bar{X}=E(x)=\left\{\begin{array}{lc}
\sum_{i} x_{i} p_{i} & \text { if } x \text { is discrete Random variable } \\
\text { with poof pi } \\
\oint_{-\infty}^{\infty} x f(x) d x & \text { if } x \text { is continuous RV with } \\
\text { off } f(x)
\end{array}\right.
$$

Distribution function (Discrete Random. Vaicable):

* The distribution function $F(x)$ of the discrete random variable x, is defined as

$$
F(x)=P(X \leq x)=\sum_{i=1}^{n} p\left(x_{i}\right) \text { where } x_{1} \leq x, x_{2} \leq x, x_{3} \leq x \ldots x_{n} \leq x
$$

$F(x)$ is also known as cummulative distribution function ie. $\operatorname{cd} f$

Graph of distribution function
Properties of distribution function
(i) domain of distribution function is $(-\infty, \infty)$ and range is $[0,1]$
(ii) $F(x)$ treated as a step function.
(iii) If $x_{1} \geqslant x_{2}$ then $F\left(x_{1}\right) \geqslant F\left(x_{2}\right)$
(v) $P\left(x_{1} \leqslant x \leqslant x_{2}\right)=P\left(x \leqslant x_{2}\right)-P\left(x \leqslant x_{1}\right)$

$$
\begin{aligned}
& =P\left(X \leq x_{2}\right)-P\left(X \leq x_{1}\right) \\
& =F\left(x_{2}\right)-F\left(x_{1}\right)=\sum_{i=1} P\left(X=x_{i}\right)
\end{aligned}
$$

(v) $F(-\infty)=0$ and $F(\infty)=1$
(Vi) F is constant in the interval $\left(x_{k}, x_{k+1}\right)$, it takes a jump of size $\cdot\left\{P\left(x=x_{k+1}\right)-P\left(x=x_{k}\right)\right\}$ at x_{k+1}
(vii) $F(x)=F\left(x_{k}\right) \quad \forall \quad x_{k} \leqslant x<x_{k+1}$ and $F\left(x_{k+1}\right)=F\left(x_{k}\right)+P\left(X=x_{k+1}\right)$

Q In a supply of 10 similar T.V.s by a company. 4 are kncion to be defective. A college purchases 3 TVs from this company. Find the probability distribution for the number of defective TVs purchased and distribution function.

Sell,: If the random variable x denote the number of defective TVs then X Can take the values $0,1,2,3$, therefore

$$
\begin{array}{ll}
P(0)=P(x=0)=\frac{4 C_{0}{ }^{6} C_{3}}{{ }^{0} C_{3}}=\frac{20}{120}=\frac{1}{6} & ; F(x=0)=\frac{1}{6} \\
F(1)=P(x=1)=\frac{4 C^{6} C_{2}}{10 C_{3}}=\frac{60}{120}=\frac{1}{2} & ; F(x=1)=\frac{1}{6}+\frac{1}{2}=\frac{2}{3} \\
P(2)=P(x=2)=\frac{4 C_{2}{ }^{6} C_{3}}{10 C_{3}}=\frac{36}{120}=\frac{3}{10} & ; F(x=2)=\frac{1}{6}+\frac{1}{2}+\frac{3}{10}=\frac{29}{30} \\
P(3)=P(x=3)=\frac{4 C_{3}{ }^{6} C_{0}}{1{ }^{10} 3}=\frac{4}{120}=\frac{1}{30} & ; F(x=3)=\frac{1}{6}+\frac{1}{2}+\frac{3}{10}+\frac{1}{30}=1 .
\end{array}
$$

The probability distribution $p(x)$ of X and the distribution function $F(x)$ are given by.

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 3 \\
b(x): & y_{6} & y_{2} & 3 / 10 & y_{30} \\
F(x): & y_{6} & 2 / 3 & 29 / 30 & 1
\end{array}
$$

eq. Consider experiment of threes tosses of a coin and consider the random variable X as the number of heads.
Find Probability distribution and distribution function
Sol:" Sample space for this experiment.

$$
\begin{aligned}
& S=\{H H H, T T T, H H T, H T T, H T H, T H T, T H H\}, T T, H\} \\
& \begin{array}{rcccc}
x_{i} & 0 & 1 & 2 & 3 \\
p\left(x_{3} ;\right. & y_{8} & 3 / 8 & 3 / 8 & y_{8}
\end{array} \\
& F(x)=\left\{\begin{array}{cc}
P(x=0)=1 / 8 & ; \text { when } x=0 \\
P(x=0)+P(x=1)=4 / 8 ; & x \leqslant 1 \\
P(x=0)+P(x=1)+P(x=2)=7 / 8 ; & x \leqslant 2 \\
P(0)+P(x=1)+P(x=2)+P(x=3)=1 ; & x \leqslant 3
\end{array}\right.
\end{aligned}
$$

Distribution function (Continuous Random Variable):
Let x be a continuous random variable having probability density function $f(x)$, then $F_{X}(x)$ will be a continulous distribution function of x if

$$
F_{x}(x)=P(x \leqslant x)=\int_{-\infty}^{x} f(x) d x
$$

distribution function is also Known as cummulative distribution function.
Properties of continuous Distribution function:
(i) $0 \leqslant F_{x}(x) \leqslant 1 ;-\infty<x<\infty$
(ii)

$$
\begin{aligned}
& F_{x}(-\infty)=\lim _{x \rightarrow-\infty} F(x)=\int_{-\infty}^{-\infty} f(x) d x=0 \\
& F_{x}(\infty)=\lim _{x \rightarrow \infty} F(x)=\int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P\left(x_{1} \leqslant x \leqslant x_{2}\right) & =P\left(x \leqslant x_{2}\right)-P\left(x \leqslant x_{1}\right) \\
& =F\left(x_{2}\right)-F\left(x_{1}\right) .
\end{aligned}
$$

similarly.

$$
\begin{aligned}
P\left(x_{1}<x<x_{2}\right) & =P\left(x_{1}<x \leqslant x_{2}\right)=P\left(x_{1} \leqslant x<x_{2}\right) \\
& =\int_{1}^{x_{2}} f(x) d x
\end{aligned}
$$

(iv) $P(x=a)=\int_{a}^{a} f(x) d x=0$
(y) $\frac{\cdot d}{d x} F_{x}(x)=f(x)$ or $F(x)=\int f(x) d x$

Q consider the function

$$
f(x)= \begin{cases}c ; & a \leqslant x \leqslant b \\ 0 ; & \text { elsewhere }\end{cases}
$$

(a) For what value i of $c, f(x)$ is a pidifi
(b) Find the distribution function of X

Sol (a) $f(x)$ cull be a pidif. if

$$
\begin{aligned}
& f_{-\infty}^{a} f(x) d x=1 \\
\Rightarrow & \int_{a}^{b} f(x) d x=1 \\
\Rightarrow & \int_{a}^{b} c d x=1 \Rightarrow c(b-a)=1 \\
\Rightarrow & c=\frac{1}{(b-a)}
\end{aligned}
$$

(b) The disteiciation function

$$
\begin{aligned}
& F_{x}(x)=\int_{-\infty}^{x x^{2}} f(a) d x=\int_{a}^{x a} \frac{d x}{(-a)} \\
& =\left\{\begin{array}{cc}
0 ; & x<a \\
\frac{x-a}{(b-a)} ; & a \leqslant x<b \\
1 ; & x \geqslant b
\end{array}\right. \\
& \left(\because \text { for } x \geqslant b \quad F(x)=\int_{0}^{\infty} f(x) d x=1\right)
\end{aligned}
$$

Q The distribution function of the random variable X is given by.

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 ; & x<2 \\
\alpha(x-2) ; & 2 \leq x<6 \\
1 ; & x \geqslant 6
\end{array}\right.
$$

(i) Find $\$ \alpha$
(ii) $\mathrm{P}(x>4)$
(iii) $P(3 \leqslant x \leq 5)$
$\xrightarrow[\text { sol" }]{\text { (1) }}$
(1)

$$
\begin{aligned}
& \quad F_{x}(6)=1 \\
& \alpha(6-2)=1 \\
& \Rightarrow \alpha=\frac{1}{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(x>4) & =1-P[x \leqslant 4] \\
& =1-F_{x}(4)=1-\frac{1}{4}(4-2)=\frac{1}{2}
\end{aligned}
$$

(iii) $P[3 \leqslant x \leqslant 5]=F_{x}(5)-F_{\bar{x}}(3)=\frac{1}{4}[(5-2)-(3-2)]=\frac{1}{2}$.

$$
\text { ie } \quad 1 \leqslant x \leqslant 3
$$

Q Find polf of a random variable x whose coff is given by $F(x)=\left\{\begin{array}{lc}0, & x<0 \\ x, & 0 \leqslant x \leqslant 1 \\ 1, & x>1\end{array}\right.$
Sol $f(x)=\frac{d}{d x} F(x)= \begin{cases}1 & , 0<x<1 \\ 0 & \text { otherwise }\end{cases}$
As $F(x)$ is not differentiable at $x=0$ and $x=1$ hence we can define $f(x)=0$ for $x=0$ and $x=1$.
Q (i) Is the function, defined as follows, a density function?

$$
f(x)=\left\{\begin{array}{cc}
e^{-x}, & x \geqslant 0 \\
0, & x<0
\end{array}\right.
$$

(ii) If s so, determines the probability, that the variate having this density will fall in the interval $(1,2)$.
(iii) Also find the culmmulative probability function $F(2)$.

Soft: (is) Clearly, $f(x) \geqslant 0$ for every x in $(1,2)$ and

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} \frac{0}{e} x d x=1
$$

Hence the function $f(x)$ Satisfies the requirements

- for a density function.
(ii) Required Probability $=\int_{1}^{2} f(x) d x=\int_{1}^{2} e^{-x} d x=e^{-1}-e^{-2}$

$$
=0.368-0.135=0.233
$$

(iii)

$$
\begin{aligned}
F(2)=\int_{-\infty}^{2} f(x) d x & =\int_{0}^{2} e^{-x} d x=1-e^{2}=1-0.135 \\
& =0.865
\end{aligned}
$$

Q show that

$$
F(x)=\left\{\begin{array}{cc}
0 ; & x<-a \\
\frac{1}{2} \cdot\left(\frac{x}{a}+1\right) ; & -a \leqslant x \leqslant a \\
i ; & x>a
\end{array}\right.
$$

is a distribution function.
Sol": $F(x)$ will be distribution function if
(i) $F(-\infty)=0$, (ii) $F(\infty)=1$
(iii) $\frac{d}{d x}[F(x)]=f(x) \geqslant 0$ where $\int_{-\infty}^{\infty} f(x) d x=1$, are satisfied ie. $f(x)$ must be pidifi
$\because F(x)=0$ when $x<a$
and $F(x)=1$ when $x>a$
So conditions (i) and (i) are satisfied
Again $\frac{d}{d x}[F(x)]=f(x)=\left\{\begin{array}{cc}1 / 2 a & \text { 五, }-a<x \leqslant a \\ 0 & \text { 米, otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} f(x) d x=\int_{-a}^{a} \frac{1}{2 a} d x=1$
titus condition (iii) is also satisfied. Hence $F(x)$ is distribution function.

Bivariate Random variable: Let S be the sample space associated with the random experiment E. Then the function $f: s \rightarrow R^{2}$ where $f(s)=(x, y)$, where $s \in S$ is said to be a Two dimensional random vaicable.
(i) If X and Y are discrete random variable then (X, Y) is called discrete bivariate random variable.
(ii) If x and Y are continuous random variable then (X, Y) is called a continuous bivariale rand om variable.
(iii) If one of x and y is discrete and the other is continuous then (X, Y) is called a mixed bivariate random variable.

Discrete Bivariaté Random. Variable:
(I) Joint Probability Mass Function:

$$
P_{X Y}(x, y)=P_{X Y}\left(X=x i, Y=y_{j}\right)=P_{i j} \text {, where }
$$

(i) $P_{i j} \geqslant 0, f i, j$
(ii) $\sum_{i} \sum_{j} p_{i j}=1$
(2) Joint Distribution Function (Cumulative Distribution function)
(cdf): $\cdot F_{X Y}(x, y)=P\{X \leqslant x, y \leqslant y\}$

$$
=\sum_{x \leqslant x} \sum_{y \leqslant y} P(x=x, y=y)
$$

or $F_{X Y}(x, y)=\sum_{i=-\infty}^{x} \sum_{j=-\infty}^{y} P(x=i, y=j)$
(3) Propertius of Joint Distribution function:.
(i) $0 \leqslant F_{X Y}(x, y) \leqslant 1$
(ii) $F_{x y}(-\infty,-\infty)=0$
(iii) $\quad F_{x y}(\infty, \infty)=1$
(iv) $\quad F_{X Y}(-\infty, y)=F_{X Y}(X,-\infty)=0$
(V) $\cdot P\left(x_{1} \leqslant x \leqslant x_{2}, y \leqslant y\right)=F_{X Y}\left(x_{2} ; y\right)-F_{X y}\left(x_{1}, y\right)$
(V) $P\left(X \leqslant x, y \leqslant y \leqslant y_{2}\right)=F_{x y}\left(x, y_{2}\right)-F_{x y}(x, y)$
(II) $P\left(x_{x} \leqslant x \leqslant x_{2}, y_{1} \leqslant y \leqslant y_{2}\right)=F_{x y}\left(x_{2}, y_{2}\right)-F_{x y}\left(x_{1}, y_{2}\right)-\left\{F_{x y}\left(x_{2}, y_{1}\right)-F_{x y}\left(x_{1}, y_{y}\right)\right\}$

Continuous sivariate R.V.:
(1) Joint Probability density femition and june distribution function:

$$
F_{X y}(x, y)=\frac{j^{2}}{j x \partial y} F_{X Y}(x, y)
$$

where $F_{\bar{X} Y}(x, y)$ is the join distibution-function defence as

$$
F_{X Y}(x, y)=P\left\{^{\prime} x \leqslant x, y \leqslant y\right\}=\int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) d x d y
$$

and $f x y$ is joint probability density function if
(a) $f_{x y}(x, y) \geqslant 0,-\infty<x<\infty,-\infty<y<0$.
(b) $\int_{-\infty}^{0} \int_{-\infty}^{0} f_{x y}(x, y) d x d y=1$
(Discrete)
Marginal Probability Disticbution: When we ce concerned with mole than once Random variable, the pmf/probability distribution of a single variable is referred to as marginal pmifl probability.

If we consider tiev-dimencional random variable (X, Y) then, the marginal probability fernetion of X is defined as

$$
P(x=x i)=\sum_{j x} p_{i j}=p_{i 1}+p_{i 2}+\cdots+p_{i n}+\cdots=p_{i}^{*}
$$

and the collection of poise $\left\{x i, p_{i}\right\} i=1,2 \ldots, m \ldots$ is called the marginal probability dutribution of X.
Similarly $\left\{y_{j}, k_{j} j_{j=1}=1,2, n_{1}\right.$... is called the marginal probability distribution of Y.
Conditional Probability Distribution: Consecider two dimensional discrete R.V. (X, Y) The conditional probability function of X, given $Y=y_{j}$ is given by.

$$
P\left\{\frac{x=x_{i}^{\prime}}{y_{=y_{j}}}\right\}=\frac{P\left\{x=x_{i}, y=y_{i}\right\}}{P\left\{y=y_{j}\right\}}=\frac{\text { pi }}{1}
$$

and $\left\{x_{j}, \frac{b_{i} y}{h b_{f}}\right\}, i=1,2 \ldots m, \ldots$ is called the conditional probability dietaibetian of X, given $Y=y_{j}$

Similarly, the conditional probability function of $Y, \frac{R, 2,3}{R, V}$ given $x=x_{i}$ is given by

$$
P\left\{\frac{Y=y_{j}}{x=x_{i}}\right\}=\frac{P^{\prime}\left\{x=x_{i}, y=y_{j}\right\}}{P\left\{x=x_{i}\right\}}=\frac{p_{i j}}{p_{i}^{*}}
$$

and $\left\{y_{f^{\prime}}, \frac{b \dot{j}^{\prime}}{b_{i}^{*}}\right\}$ is called the conditional probability. where $j=1,2, n_{1} \ldots$ distribution of Y given $X=x_{i}$.
Independent Rand variables (Discrete) (x, y) be two dimensional random variable such that

$$
\begin{aligned}
& P\left\{\frac{X=x_{i}^{\prime}}{Y=y_{j}^{\prime}}\right\}=P\left\{x=x_{i}\right\} \\
& \text { ie. } \frac{B_{i j}^{\prime}}{y_{i}^{*}}=p_{i}^{*}
\end{aligned}
$$

ie. $p_{i j}=p_{i}^{*} \cdot p_{* r}^{*} f i$ and j, then X and Y are said to beeindependent random variables.

Q The joint distribution function of a random variable (x, y) is given by. $F_{X Y}(x, y)=\left\{\begin{array}{c}\left(1-e^{-a x}\right)\left(1-e^{-b y}\right) ; x, y \geqslant 0, a, b>0 \\ 0 \quad \text {; otherwise }\end{array}\right.$
Find (i) Marginal distribution function of X and Y
(ii) $P(x \leqslant 2, y \leqslant 2)$ and $P(x \leqslant 1)$.

Also show that X and Y are independent
Sol By the definition of marginal distribution function
(i) $\quad F_{x}(x)=F_{X Y}(x, \infty)$
and $F_{y}(y)=F_{x y}(0, y)$

$$
\begin{aligned}
& \therefore F_{X}(x)=F_{X Y}(x, \infty)=\left\{\begin{array}{cc}
\left(1-e^{-a x}\right) ; & x \geqslant 0 . \\
0 ; & \text { otherwise. }
\end{array}\right. \\
& F_{Y}(y)=F_{X Y}(\infty, y)=\left\{\begin{array}{cl}
\left(1-e^{-b y}\right) & ; y \geqslant 0 . \\
0 & ; \text { otherviee }
\end{array}\right.
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \because F_{x y}(x, y)=P(x \leqslant x, y \leqslant y) \\
& \therefore P(x \leqslant 2, y \leqslant 2)=F_{x y}(2,2)=\left(1-e^{-2 a}\right)\left(1-e^{-2 b}\right)
\end{aligned}
$$

also $P(x \leqslant 1)=F_{x}(1)=\left(1-e^{-1}\right)$
Again two random variable x and y are independent if $F_{x y}(x, y)=F_{x}(x) F_{y}(y)$ wing the two results of (i) we get the required result.

Q The joint probability moss function of (x, y) is given by.

Set Q The joint probability distribution of random variable (x, y) is given by $P_{x y}\left(x_{i}, y_{j}\right)=\frac{1}{27}\left(x_{i}+2 y_{j}\right)$ where x and y can assume only the integer values $0,1,2$, .
(i) Find the marginal distribution of x and Y.
(ii) Are X and Y independent?
(iii) find the conditional distribection of Y for $X=2$.

Sol As (x, y) is a bivariate random variable. Then in tabular form $P_{x y}=\frac{1}{27}\left(x_{i}+2 y_{j}\right)$ can be represent as follows.

	2	.7	2	Total
x_{4}	0	$2 / 27$	$4 / 27$	$6 / 27$
x_{2}	1	$1 / 27$	$3 / 27$	$5 / 27$
$9 / 27$				
2	$2 / 27$	$4 / 27$	$6 / 27$	$12 / 27$
Total	$3 / 27$	$9 / 27$	$15 / 27$	1

(i) The marginal probability mass function of X

$$
\begin{aligned}
P_{x}\left(x_{i}\right) & =\sum_{j} P_{x y}\left(x_{i}, y_{j}\right) \\
& =\sum_{j=0}^{V_{2}} P_{x y}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

$x=i$	$P_{x}\left(x_{i}\right)$
0	$6 / 27$
1	$g / 27$
2	$12 / 27$
Total	1

Again marginal distribution mass function for Y is

$$
P_{y}\left(y_{j}\right)=\sum_{i} P_{x y}\left(x_{i}, y_{j}\right)
$$

$\psi=j$	$P_{y}\left(x_{j}\right)$
0	$3 / 27$
1	$9 / 27$
2	$15 / 27$
Total	1

(ii) Two random variable x and y are called independent - if, $P_{x y}\left(x_{i}, y_{j}\right)=P_{x}\left(x_{i}\right) P_{y}\left(y_{j}\right)$

But from the table it is clear

$$
\begin{aligned}
& \quad P_{x}(x=0)=\frac{6}{27} \text { and } P_{y}(y=0)=\frac{3}{27} \\
& \therefore \quad P_{x}(x=0) P_{y}(y=0)=\frac{6}{27} \times \frac{3}{27}=\frac{2}{81} \neq 0=P_{x y}(x=0, y=0)
\end{aligned}
$$

Hence two variables are not independent.
(iii) Conditional distribution of y given $x=2$ is

$$
P_{y}\left\{\frac{y=y_{j}^{\prime}}{x=x_{i}}\right\}=\frac{P_{x y}\left(x_{i}, y_{j}\right)}{P_{x}\left(x_{i}\right)}
$$

where

$$
\begin{aligned}
P_{x}(x=2) & =\sum_{j} P\left(x=2, y_{j}^{\prime}\right) \\
& =\frac{2}{27}+\frac{4}{27}+\frac{6}{27}=\frac{12}{27}
\end{aligned}
$$

$y=1$	$p\left(\frac{y_{i} i}{x_{i}}\right)$
0	$\frac{2 / 27}{12 / 27}=\frac{1}{6}$
1	$\frac{4 / 27}{12 / 27}=\frac{1}{3}$
2	$\frac{6 / 27}{12 / 27}=\frac{1}{2}$

Q Two balls are selected at random from a box containing toot red, there white and four blue balls. Tet (x, y) bel a bivariable random- variable where x and Y denote the number of red and white balls chosen.
(i) Find joint probability mass function of (x, y).
(ii) Find marginal probability mass function of x and y.
(iii) Conditional distribution of x given $y=1$.
(IV) Are X and Y independent $R . V$.

Sol: According to problem X and Y denotes the number of red and white balls chosen. So X and Y taken values $0,1,2$ subject to the condition $x+Y \geqslant 0$. Total number of balls $=9$

So the number of ways of drawing two balls from the beg are

$$
{ }^{9} C_{2}=\frac{9.8}{2.1}=36
$$

\therefore The various probabilities are

$$
\begin{aligned}
& P_{x y}(0,0)=\frac{3 C_{0} \times 2 C_{0} \times{ }^{4} C_{2}}{36}=\frac{1}{6} \quad ; \quad P_{X y}(1,2)=0 \\
& P_{x y}(0,1)=\frac{{ }^{2} c_{0} \times 3 G_{x} \times 4 c_{y}}{36}=\frac{1}{3} \quad ; \quad P_{x y}(2,1)=0 \\
& P_{x y}(0,2)=\frac{2 c_{0} \times 3 c_{2} \times 4 c_{0}}{36}=\frac{1}{12} ; f_{X Y}(2,2)=0 \\
& P_{X Y}(1,0)=\frac{2 G \times 3 C_{0} x^{4 G}}{36}=\frac{2}{9} \\
& P_{X Y}(1,1)=\frac{2 G \times 3 G \times 4 C_{0}}{36}=\frac{1}{6} \\
& P_{X \dot{Y}(2,0)}=\frac{2 C_{2} x^{3} C_{0} \times 4 C_{0}}{36}=\frac{1}{36}
\end{aligned}
$$

x	0	1	2	Total
0	$1 / 6$	$1 / 3$	y_{12}	$7 / 12$
1	$2 / 9$	$1 / 6$	0	$7 / 18$
2	$1 / 36$	0	0	$8 / 36$
Total	$15 / 36$	$1 / 2$	$1 / 12$	1

(ii) Now the marginal distribution of x.

$$
\begin{aligned}
& P_{x}\left(x_{i}\right)=\sum_{j=0}^{2} P_{x y}\left(x_{i}, y_{j}\right) \\
& P_{y}\left(y_{j}\right)=\sum_{i=0}^{2} P_{x y}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

$x=i$	$P_{x}^{\prime}\left(x_{i}\right)$
0	$7 / 2$
1	$7 / 18$
2	$1 / 36$

$y=j$	$P_{x}\left(y_{j}\right)$
0	$45 / 36$
1	y_{2}
2	y_{12}

(iii) Conditional distribution of x given $y=1$

$$
\text { P. }\left\{\frac{x=x_{i}^{\prime}}{y=y_{j}^{\prime}}\right\}=\frac{P_{x y}\left(x_{i}, y_{j}\right)}{P_{y}\left(y_{j}\right)}
$$

(iv) Two variables x and y are called independent if

$$
P_{x y}\left(x_{i}, y_{j}\right)=P_{x}\left(x_{i}\right) P_{y}\left(y_{j}\right)
$$

From the table $P_{x}(0)=\frac{7}{12}$ and $P_{y}(0)=\frac{15}{36}$

$$
\therefore P_{x}(0) P_{y}(0)=\frac{7}{12} \times \frac{15}{16}=\frac{35}{144} \neq \frac{1}{6}=P_{x y}(0,0)
$$

Hence two variables are not independent.
(contr.)
Marginal ilensity: Let (x, y) be a two dimensional Continuous random variable. Then.
marginal density of x is $f_{x}(x)=\int_{-\infty}^{\infty} f(x, y) d y$ marginal density of y is $f_{y}(y)=\int_{-\infty}^{\infty} f(x, y) d x$.

Note: $P(a \leqslant x \leqslant b)=P(a \leqslant x \leqslant b,-\infty<y<\infty)$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b}\left[\int_{-\infty}^{\infty} f(x, y) d y\right] d x \\
& =\int_{a}^{b} f_{X}(x) d x \\
P(x \leqslant Y \leqslant d) & \left.=\int_{\mathcal{c}}^{d} f_{Y}(y) d y\right)
\end{aligned}
$$

(conte.)
Conditional density: Let (x, y) be a two dimensional continuous random variable. Then the conditional density of x given Y denoted by $f\left(\frac{x}{y}\right)$ is given by.

$$
f\left(\frac{x}{y}\right)=\frac{f(x, y)}{f_{\boldsymbol{y}}(y)}
$$

Similarly, the conditional density of y given x, is given by

$$
f\left(\frac{y}{x}\right)=\frac{f(x, y)}{f x(x)}
$$

Independent Contincious Random Variables:
$\operatorname{Let}(x, y)$ be a two -dimensional cortinucus sand om variable then X and Y are said to be endependout ranolom variable if

$$
f(x, y)=f_{X}(x) \quad f_{y}(y)
$$

Q. Assume that the lifetime X and the brightness Y of a light bulb are king modeled as continuous random variables with joint pdf giver by

$$
f(x, y)=\lambda_{1} \lambda_{2} e^{-\left(d_{1} x+\lambda_{2} y\right)}, 0<x<\infty, 0<y<\infty
$$

Find the joint distribution function -
Soft : The joint distribution function is given by.

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) d x d y \\
& =\int_{0}^{y}\left[\int_{0}^{x} \lambda_{1} \lambda_{2} e^{-\left(\lambda_{1} x+\lambda_{2} y\right)} d x\right] d y \\
& =\lambda_{1} \lambda_{2} \int_{0}^{y} e^{-\lambda_{2} y}\left(\frac{e^{-\lambda_{1} x}}{-\lambda_{1}}\right)_{0}^{x} d y \\
& =\lambda_{2}\left(1-e^{-\lambda_{1} x}\right) \cdot\left(\frac{e^{-\lambda_{2} y}}{-\lambda_{2}}\right)_{0}^{y} \\
& =\left(1-e^{-\lambda_{1} x}\right)\left(1-e^{\left.-\lambda_{2} y\right)} ; \quad 0<x<0, \quad 0<y<\infty\right.
\end{aligned}
$$

Q The joint probability density function of a bivariate Random variable (x, y) is given by

$$
f_{x y}(x, y)= \begin{cases}\lambda(x+y) ; & 0<x<3,0<y<3 \\ 0 ; & \text { otherwise }\end{cases}
$$

where d is a constant
(i) Find the value of λ
(ii) Find the marginal probability density function of x and y.
(iii) Are X and Y independent?

Sol" By the definition of joint probability density function
(i)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1 \\
& \Rightarrow \lambda \int_{0}^{3} \int_{0}^{3}(x+y) d x d y=1 \\
& \lambda \int_{0}^{3}\left(\frac{x^{2}}{2}+x y\right)_{0}^{3} d y=1 \\
& \Rightarrow \lambda \cdot \int_{0}^{3}\left(\frac{9}{2}+3 y\right) d y=1 \\
& \Rightarrow \lambda\left(\frac{9}{2} y+\frac{3}{2} y^{2}\right)_{0}^{3}=1 \\
& \Rightarrow \lambda\left[\frac{27}{2}+\frac{27}{2}\right]=1 \\
& \Rightarrow \lambda=\frac{1}{27}
\end{aligned}
$$

(ii) Again by the definition of marginal probability density function of X given $Y=y$.

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X Y}(x, y) d y \\
& =\frac{1}{27} \int_{0}^{3}(x+y) d y \\
& =\frac{1}{27}\left[x y+\frac{y^{2}}{2}\right]_{0}^{3}=\frac{1}{27}\left[3 x+\frac{9}{2}\right] \\
\Rightarrow \quad f_{X}(x) & =\left\{\begin{array}{cc}
\frac{1}{54}(6 x+9) ; & 0<x<3 \\
0 ; & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Similarly the marginal probability density function of y given $x=x$

$$
\begin{aligned}
f_{y}(y) & =\int_{-\infty}^{\infty} f_{x y}(x, y) d x \\
& =\frac{1}{27} \int_{0}^{3}(x+y) d x \\
f_{y}(y) & = \begin{cases}\frac{1}{5 y}(6 y+9) ; & 0<y<3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(iii) It is clear from the ginew function and from the case.(ii) $f_{X Y}(x, y) \neq f_{X}(x) f_{y}(y)$
Hence X and Y are not independent random variable j
Q. The joint pdf of the random variable (x, y) is given by.

$$
f(x, y)=k x y e^{-\left(x^{2}+y^{2}\right)}, \quad x>0, y>0 .
$$

Find ' k ' and prove also that X and y are independent.
Oft: By the definition of joint probability density function

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=k \int_{0}^{\infty} \int_{0}^{\infty} x y e^{-\left(x^{2}+y^{2}\right)} d x d y=1 \\
& \Rightarrow k \int_{0}^{\infty} y e^{-y^{2}}\left\{\int_{0}^{\infty} x e^{-x^{2}} d x\right\} d y=1 \\
& \Rightarrow k \int_{0}^{\infty} y e^{-y^{2}}\left(\frac{-e^{-x^{2}}}{2}\right)_{0}^{\infty} d y=1 \\
& \Rightarrow \frac{k}{2} \int_{0}^{\infty} y e^{-y^{2}} \cdot d y=1 \\
& \Rightarrow \frac{k}{4}\left(-e^{-y^{2}}\right)_{0}^{\infty}=1 \\
& \Rightarrow k=4
\end{aligned}
$$

$$
\begin{aligned}
\text { Marginal density of } x & =f_{x}(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{\infty} 4 x y e^{-\left(x^{2}+y^{2}\right)} d y \\
& =4 x e^{-x^{2}}\left[\frac{-e^{-y^{2}}}{2}\right]_{0}^{\infty} \\
& =2 x e^{-x^{2}}, x>0 .
\end{aligned}
$$

$$
\begin{aligned}
\text { Marginal density of } y & =f_{y}(y)=\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{\infty} 4 x y e^{-\left(x^{2}+y^{2}\right)} d x \\
& =2 y e^{-y^{2}}, \quad y>0
\end{aligned}
$$

Now $f_{X}(x) f_{Y}(y)=4 x y e^{-\left(x^{2}+y^{2}\right)}=f(x, y), x>_{0}, y>0$.
Hence X and Y are independent random. variables:

Q Giver. the foin findabilitiy density $f(x, y)=\left\{\begin{array}{l}\frac{2}{3}(x+2 y) ; 0<x<1,0<y<1 \\ 0 ; \text { elsewhere }\end{array}\right.$
Fined i) Marginal density of x and Y
(ii) Condiliound density of x given $y \in y$ and use it to $\operatorname{emluale} \quad P\left\{\frac{x \leqslant y_{2}}{y=y_{22}}\right\}$.
Ql": (b) Marginal density of x

$$
\begin{aligned}
f^{f}(x) & =\int_{-0}^{\infty} f(x, y) d y \\
& =\int_{0}^{1} \frac{2}{3}(x+2 y) d y=\frac{2}{3} \cdot\left(x y+\frac{2}{2} y^{2}\right)_{0}^{1} \\
& =\frac{2}{3}(x+1) \quad ; \quad 0<x<1
\end{aligned}
$$

similarly.
Marginal density of Y

$$
\begin{aligned}
f_{y}(y) & =\int_{-\infty}^{1} f^{0}(x, y) d x \\
& =\int_{0}^{1} \frac{2}{3}(x+2 y) d x=\frac{2}{3} \quad\left(\frac{x^{2}}{2}+2 x y\right)_{0}^{1} \\
f_{Y}(y) & =\frac{2}{3}\left(\frac{1}{2}+2 y\right)=\frac{1}{3}(1+4 y) ; 0<y<1
\end{aligned}
$$

(ii) Conditional denvily of x given $y=y$ is

$$
f\left(\frac{x}{y}\right)=\frac{f(x, y)}{f y(y)}=\frac{\frac{2}{3}(x+2 y)}{\frac{1}{3}(1+4 y)}=\frac{2(x+2 y)}{(1+4 y)}, 0<x<1
$$

Hence, $\quad P\left[\frac{x \leq 1 / 2}{y=\frac{1}{2}}\right]=\cdot \int_{0}^{1 / 2} f\left(\frac{x}{y=\frac{1}{2}}\right) d x$

$$
\begin{aligned}
& =\int_{0}^{1 / 2} \frac{22}{3}(x+1) d x=\frac{2}{3}\left[\frac{(2+1)^{2}}{2}\right]_{0}^{1 / 2} \\
& =\frac{1}{3}\left[\frac{9}{4}-1\right]=\frac{1}{3} \times \frac{5}{4}=\frac{5}{12}
\end{aligned}
$$

Exponential Distribution:"
A random variable. X is said to have an exponential. distribution if its p.dif is given by

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} ; & x \geqslant 0 \\
0 ; & \text { elsewhere }
\end{array}\right.
$$

where λ is a parameter and $\lambda>0$,
clearly $\int_{-\infty}^{\infty} f(x) d x=\lambda \int_{0}^{\infty} e^{-\lambda} d x=1$
Distribution Function of exponential Distribution:

$$
\begin{aligned}
F(x) & =P(x \leqslant x)=\int_{0}^{x} f(x) d x \\
& =\int_{0}^{x} \cdot \lambda e^{-\lambda x} d x=\left(-e^{-\lambda x}\right)_{0}^{x} \\
F(x) & =\left(1-e^{-\lambda x}\right), \quad x \geqslant 0
\end{aligned}
$$

Moments, Moment Crenerating Function, mean and Variance:

$$
\begin{aligned}
M_{x}(t)=E\left(e^{t x}\right) & =\int_{0}^{\infty} e^{t x} \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{(\lambda-t) x} d x \\
& =\lambda\left[\frac{e^{-(\lambda-t) x}}{-(\lambda-t)}\right]_{0}^{\infty} \\
M_{x}(t)=E\left(e^{t x}\right) & =\frac{\lambda}{(\lambda-t)} \text {, where } \lambda>t
\end{aligned}
$$

Also the moment about origin are given as:

$$
\begin{aligned}
\mu_{r}^{\prime}=E\left(x^{r}\right) & =\int_{0}^{\infty} x^{r} \lambda e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{2}} \int_{0}^{\infty} y^{r} e^{-y} d y \\
& =\frac{1}{\lambda^{r}} \int_{0}^{\infty} e^{-y} y^{(r+1)-1} d y \\
\mu_{2}^{\prime}=E\left(x^{r}\right) & =\frac{1}{\lambda^{r}} \Gamma(r+1)=\frac{r!}{\lambda^{2}}
\end{aligned}
$$

Hence mean $\mu_{1}^{\prime}=\frac{1}{\lambda}$

$$
\begin{aligned}
\sigma^{2}= & \text { Variance }=\mu_{2}^{\prime}-\mu_{1}^{\prime 2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}} \\
& \text { standard deviation }=\sigma=\frac{1}{\lambda}
\end{aligned}
$$

Memoryless Property of Exponential oistribcition:
I X is exponentially distributed, then

$$
\begin{aligned}
& P\left(\frac{X>x_{1}+t}{X>t}\right)=P\left(X>x_{1}\right) \quad \forall x_{1}, t>0 \\
\because \quad & P(X \leqslant x)=\left(1-e^{-\lambda x}\right) \\
\text { or } \quad & P(X>x)=e^{-\lambda x}
\end{aligned}
$$

Now $\quad P\left(\frac{x>x_{1}+t}{x>t}\right)=\frac{P\left(x>x_{1}+t \cap x>t\right)}{P(x>t)}$

$$
\begin{aligned}
& =\frac{P\left\{x>\left(x_{1}+t\right)\right\}}{P\{x>t\}}=\frac{e^{-\lambda\left(x_{1}+t\right)}}{e^{-\lambda t}} \\
P\left(\frac{x>x_{1}+t}{x>t}\right) & =P\left(x>x_{1}\right)
\end{aligned}
$$

The converse of above result is also thew. Hence, if $P\left(\frac{x>x_{1}+t}{x>t}\right)=P\left(x>x_{1}\right)$ then x follows exponential distribution.

Q The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda=\frac{1}{2}$.
(i) What is the probability that the repair time exceeds 2 hrs?
(ii) What is the conditional probability that a repair takes at least 10 hours given that its duration. exceeds 9 hours?
Self: Here X represents time (in hours) required to repair a machine, then its pol f is given as

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} e^{-x / 2} & ; x \geqslant 0 \\
0 ; & \text { otherwise }
\end{array}\right.
$$

(i) $P(x>2$ hrs $)=\int_{2}^{\infty} f(x) d x=\frac{1}{2} \int_{2}^{\infty} e^{-x / 2} d x=\frac{1}{e}=0.3679$
(11$)$

$$
\begin{aligned}
P(x \geqslant 10 / x>9) & =P(x>1)=\int_{1}^{\infty} f(x) d x=\frac{1}{2} \int_{1}^{\infty} e^{-x / 2} d x \\
& =0.6065
\end{aligned}
$$

Rectangular or Uniform Distribution:
A continuous random variable X is said to follow a Continuous uniform distribution over an interval (a, b), if its p.dif is given by.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{(b-a)} ; & a<x<b \\
0 ; & \text { elsewhere }
\end{array}\right.
$$

Here x is known as uniform variate with. parameters a and b.

(Curve of Rectangular distribution)
Distribution function of Rectangular Distribution:

$$
\begin{aligned}
F(x)=P(x \leqslant x) & =\int_{a}^{x} f(x) d x \\
& =\int_{a}^{x} \frac{1}{(b-a)} d x=\frac{x-a}{b-a} \\
F(x) & =\frac{x-a}{(b-a)} \cdot \text { for } a \leqslant x \leqslant b
\end{aligned}
$$

Moment Generating Function, Moments, mean and Variance:

$$
\begin{aligned}
& M_{x}(t)=E\left(e^{t x}\right)=\int_{\infty}^{\infty} e^{t x} f(x) d x=\int_{a}^{b} \frac{e^{t x}}{(b-a)} d x \\
& M_{x}(t)=\frac{e^{b t}-e^{a t}}{t(b-a)} M G F
\end{aligned}
$$

$$
\begin{aligned}
& \text { Moments about origin } \\
& \mu_{r}^{\prime}=E\left(x^{r}\right)=\int_{-\infty}^{\infty} x^{r} f(x) d x=\frac{1}{b-a} \int_{a}^{b} x^{r} d x \\
& =\frac{1}{(b-a)} \cdot\left(\frac{b^{r+1}-a^{r+1}}{r+1}\right) \\
& \mu_{1}^{\prime}=\text { mean }=\frac{a+b}{2}
\end{aligned}
$$

$$
\frac{2 \cdot}{0 \cdot D}
$$

$$
\begin{aligned}
& \quad \mu_{2}^{\prime}=\frac{b^{3}-a^{3}}{3(b-a)^{3}}=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)^{3}}=\frac{b^{2}+a b+a^{2}}{3} \\
& \therefore \text { Variance }=\sigma^{2}=\mu_{2}^{\prime}-\mu_{1}^{\prime 2}=\mu_{2} \\
& \sigma^{2}=\frac{(b-a)^{2}}{12} \\
& \text { standard Deviation }=\sigma=\frac{b-a}{2 \sqrt{3}}
\end{aligned}
$$

Q.6 If x is uniformly distributed with mean 1 and variance $\frac{4}{3}$. Find $P(x<0)$
Son: \because mean $=\frac{a+b}{2}$ and variance $=\frac{(b-a)^{2}}{12}$. For uniform

$$
\begin{aligned}
\text { or } \quad 1 & =\frac{a+b}{2} \quad \text { and } \quad \frac{4}{3}=\frac{(b-a)^{2}}{12} \\
\Rightarrow \quad a+b & =2 \\
\& \quad(b-a) & =4
\end{aligned}
$$

on solving, we have

$$
a=-1, b=3 \quad \text { [ur must have } a<b \text {] }
$$

Hence pdf of x is given by

$$
\begin{aligned}
& f(x)=\left\{\begin{array} { l l }
{ \frac { 1 } { 4 } , } & { - 1 < x < 3 } \\
{ 0 , } & { \text { otherwise } }
\end{array} \quad \left[\because f(x)=\left\{\begin{array}{ll}
\frac{1}{b-a}, & a<x<b \\
0 ; & \text { otherwise }
\end{array}\right] \frac{4}{\text { Distribution }}\right.\right. \\
& \text { Hence } P(x<0)=\int_{-1}^{0} \frac{1}{4} d x=\frac{1}{4} \\
& \text { Dninin... Ainta,il..tinuin is } 4 \text { hind }
\end{aligned}
$$

Probability Distribution
some discrete probability distributions are
a) Binomial Distribution
b) Poises Distribution

Berromial Distribution
A random variable x in any experiment is said to follow Binomial distribution if its poo is

$$
P(x=r)=P(r)={ }^{n} c_{\gamma} p^{r} q^{n-r} \quad r=0,1,2 \ldots n
$$

where experiment is repeated n temis. Each trial is independent and has only turd outcomes success (P). failure $(q) . \quad(q=1-p)$

Mean and Variance of binomial Distribution
Mean $\begin{aligned} & =\mu_{1}^{\prime} \\ & =\varepsilon(x)=\sum_{\gamma=0}^{n} x_{r} p(X=r)=\sum_{r=0}^{n} x_{r} p(r)\end{aligned}$

$$
\begin{align*}
& =\sum_{\gamma=0}^{p} \gamma n_{c_{r}} p^{r} q^{n-\gamma} \\
& =0+1{ }^{n} c_{1} p q^{n-1}+2 n_{c_{2}} p^{2} q^{n-2}+3 n c_{3} p^{3} q^{n-3}+\cdots \\
& \left.+n p^{n}\right] \\
& =n p q^{n-1}+\frac{2 n(n-1)}{2} p^{2} q^{n-2}+\frac{n(n-1)(n-2)}{(2} p^{3} q^{n-3}+\cdots+n p^{n-} \\
& =n p[q^{n-1}+\gamma(n-1) p q^{n-2} \underbrace{\left.\frac{\gamma(n-1)(n-2)}{(2} p^{2} q^{n-3}+\cdots+p^{n-1}\right]} \\
& =n p \sum_{\gamma=0}^{n-1}{ }^{n-1} c_{\gamma} p^{r} q^{(n-1)-\gamma}=n p(p+q)^{n-1} \\
& =n p \quad(p+q=1) \quad
\end{align*}
$$

To find
Variance we caleculath μ_{2} '

$$
\Rightarrow n(n-1) p^{2}\left[q^{n-2}+(n-2) p q^{n-3}+\frac{(n-2)(n-3)}{L^{2}} p^{2} q^{n-4}+\cdots+p^{n-2}\right]
$$

$$
=n(n-1) p^{2} \sum_{r=0}^{n-2}{ }_{c}^{n-2} c_{r} p^{\gamma} q^{n-2}+n p+n p
$$

$$
=n(n-1) p^{2}[q+p]^{n-2}+n p
$$

$$
=n(n-1) p^{2} \cdot(1)^{n-2}+n p
$$

$$
\begin{aligned}
& =n(n-1) p[(n-1) p+1]=n p(n p+1-p)=n p(n p+2) \\
& =n p+n^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Variance }=E\left(x^{2}\right)-[E(x)]^{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =n^{2} p^{2}+n p q-(n p)^{2}=n p q
\end{aligned}
$$

Variancl $=n p q$
Standard deviation $=\sqrt{v a r}=\sqrt{n p q}$.

$$
\begin{aligned}
& \mu_{2}^{\prime}=E\left(x^{2}\right)=\sum_{\gamma=0}^{n} r^{2} c_{r p} r^{r} q^{n-x} \\
& =\sum_{r=0}^{n}\left[r^{2}-r+r\right]^{n} c_{r} p^{r} q^{n-r} \\
& =\sum_{r=0}^{n}[r(r-1)+r]^{n} c_{r} p^{r} q^{n-r} \\
& =\sum_{r=0}^{n} r(r-1)^{n} c_{r} p^{r} q^{n-r}+\sum_{r=0}^{n} r^{n} c_{r} p^{r} q^{n-r} \\
& =\left[A(n-1)=2(2-1)^{n} c_{2} p^{2} q^{n-2}+3(3-1)^{n} c_{3} p^{3} q^{n-3} \ldots+n(n-1)^{n} c_{n} p^{n} q^{0}\right. \\
& \Rightarrow 2 \frac{n(n-1)}{2} p^{2} q^{n-2}+3 \cdot 2 \frac{n(n-1)(n-2)}{3} p^{3} q^{+-3}+\cdots . \sum_{\gamma=0}^{n} r^{n} c_{r} p^{2} q^{n-r} \\
& +n(n-1) p^{n} q^{0}+\sum_{r=0}^{n} r p(x=r) \text { (useng (1)) }
\end{aligned}
$$

Moments and Moment Generating Function $M_{x}(t)$
The moment generating function about the origins is

$$
\begin{aligned}
M_{x}(t) & =E\left[c^{t x}\right]=\sum_{r=0}^{n} e^{t \underline{x}_{r} n} c_{r} p^{r} q^{n-r}=\sum_{r=0}^{n} e^{x t} p(r) \\
= & \sum_{r=0}^{n} n c_{r}\left(p e^{t}\right)^{r} q^{n-r}=\sum_{r=0}^{n} e^{x t n}=\sum_{r=0}^{n} n e_{r}^{n}\left(p e^{t}\right)^{r} q^{n-x} \\
M_{x}(r)= & =\left(p e^{t}+q\right)^{n}
\end{aligned}
$$

Now moments about origin

$$
\begin{aligned}
& \mu_{1}^{\prime}= {\left[\frac{d}{d t} M_{x}(t)\right]_{t=0}=\left[n p e^{t}\left(q+p e^{t}\right)^{n-1}\right]_{t=0} } \\
&=n p(q+p)=n p \\
& \mu_{2}^{\prime}= {\left[\frac{d^{2}}{d t^{2}} M_{x}(t)\right]=\frac{d}{d t}\left[\frac{d}{d t} M_{x}(t)\right]_{t=0} } \\
&=\frac{d}{d t}\left[n p e^{t}\left(q+p e^{t}\right)^{n-1}\right]_{t=0} \\
&=n p\left[e^{t}\left(q+p e^{t}\right)^{n-1}+(n-1) e^{2 t} p\left(q+p e^{t}\right)^{n-2}\right]_{t=0} \\
&=n p\left[(q+p)^{n-1}+(n-1) p(q+p)^{n-2}\right] \\
&=n p[1+p(n-1)] \\
&=n p[1+n p-p]=n p[n p+q]=n^{2} p+n p q \\
& \mu_{3}^{\prime}= {\left[\frac{d^{3}}{d t^{3}} M_{x}(t)\right]=n p \frac{d}{d t}\left[e^{t}\left(q+p e^{t}\right)^{n-1}+(n-1) e^{2 t} p\left(q+p e^{n-2}\right)\right] } \\
&=n p\left[e^{t}\left(q+p e^{t}\right)^{n-1}+e^{t}(n-1) p e^{t}\left(q+p e^{t}\right)^{n-2}+2(n-1) p e^{2 t}\left(q+p e^{t}\right)^{n-2}\right. \\
&\left.+(n-1) e^{3 t} p(n-2) p\left(q+p e^{t}\right)^{n-3}\right]_{t=0}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{xp}\left[(q+p)^{n-1}+(n-1) p(p+q)^{n-2}+2(n-1) p(q+p)^{n-2}+(n-1)(n-2) p^{2}(q+p)^{3-1}\right] \\
& =n+q=1 \\
& =n p\left[1+(n-1) p+(n-1) p+(n-1)(n-2) p^{2}\right] \\
& =n p\left[1+3(n-1) p+(n-1)(n-2) p^{2}\right] \\
& =r p+3 n(n-1) p^{2}+n(n-1)(n-2) p^{3}
\end{aligned}
$$

Similarly $\mu_{4}{ }^{\prime}=\left[\frac{d^{4}}{d t^{4}} M_{x}(t)\right]$

$$
=n(n-1)(n-2)(n-3) p^{4}+6 n(n-1)(n-2) p^{3}+7 n(n-1) p^{2}+n p
$$

Central Moments of Binomial distribution
Here we use the interruleatios between μ_{r} and $\mu_{r}{ }^{\prime}$

$$
\begin{aligned}
\mu_{1}= & 0 \\
\mu_{2}= & \mu_{2}^{\prime}-\mu_{1}^{\prime 2}=n^{2} p^{2}-n p^{2}= \\
& n^{2} p^{2}+n p q-n^{2} p^{2}=n p q \\
\mu_{3}= & \mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu_{1}^{\prime}+2 \mu_{1}^{\prime 3} \\
= & n p+3 n(n-1) p^{2}+n(n-1)(n-2) p^{3}-3\left(n^{2} p^{2}+n p q\right)(n p) \\
& +2 n^{3} p^{3} \\
= & n p\left[1+3(n-1) p^{2}+(n-1)(n-2) p^{2}-3\left(n^{2} p^{2}+n p q\right)+2 n^{2} p^{2}\right] \\
= & n p\left[1+3 n p-3 p+\left(n^{2}-3 n+2\right) p^{2}-n^{2} p^{2}-3 n p q\right] \\
= & n p\left[1-3 p+2 p^{2}+3 n p-3 n p^{2}-3 n p q\right] \\
= & n p\left[1-3 p+2 p^{2}+3 n p(1-p)-3 n p q\right] \\
= & n p\left[1-3 p+2 p^{2}+3 n p q-3 n p q\right] \\
= & n p\left[1-3 p+2 p^{2}\right]=n p(2 p-1)(p-1)=n p(1-p)(1-2 p) \\
= & n p q(1-2 p)=n p q(1-p-p)=n p q(q-p)
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{4}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{4}^{\prime 2}-3 \mu_{1}^{\prime 4} \\
&=n(n-1)(n-2)(n-3) p^{4}+6 n(n-1)(n-2) p^{3}+7 n(n-1) p^{2}+n p \\
&-4\left[n p+3 n(n-1) p^{2}+n(n-1)(n-2) p^{3}\right] n p+6\left(n^{2} p^{2}+n p q\right)\left(n^{2} p^{2}\right) \\
&-3 n^{4} p^{4} \\
&= n p q[1+3(n-2) p q]
\end{aligned}
$$

Karl Pearson's β and Y cofficients for Binomial distributins

$$
\begin{aligned}
& \beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=\frac{[n p q(q-p)]^{2}}{n^{3} p^{3} q^{3}}=\frac{n p q(q-p)^{2}}{n p q}=\frac{(1-2 p)^{2}}{n p q} \\
& y_{1}=\sqrt{\beta},=\frac{1-2 p}{\sqrt{n p q}} \\
& \beta=\frac{\mu_{4}}{\mu_{2}{ }^{2}}=\frac{n p q[1+3(n-2) p q]}{n^{2} p^{2} q^{2}}=\frac{1+3(n-2) p q}{n p q} \\
& =\frac{1-6 p q+3 n p q}{n p q}=3+\frac{1-6 p q}{n p q} \\
& y_{2}=\beta_{2}-3=\frac{1-6 p q}{n p q}
\end{aligned}
$$

Prokability Geverating Function of Binomial Distributimi

$$
\begin{aligned}
c_{x}(z) & =\sum_{i=0}^{n} p_{i} z^{i} \quad \text { as } i=\gamma \\
& =\sum_{\gamma=0}^{n}{ }^{n} c_{\gamma} p^{r} q^{n-\gamma} z^{\gamma}=\sum_{\gamma=0}^{n}{ }^{n} c_{\gamma}(p z)^{\gamma} q^{n-\gamma} \\
& =(q+p z)^{n}
\end{aligned}
$$

Recurrence Relation for the Central Moments
By definitions

$$
\begin{aligned}
& \text { definition } \\
& \mu_{r}=E\left[(x-\mu)^{\gamma}\right]=\sum_{x=0}^{n}(x-n p)^{\gamma} P(x) \\
& \mu_{r}=\sum_{x=0}^{n}(x-n p)^{\gamma n} c_{x} p^{x} q^{n-x} \\
&=\sum_{x=0}^{n}(x-n p)^{r n} c_{x} p^{x}(1-p)^{n-x}
\end{aligned}
$$

diff. war. te 'p' we get

$$
\begin{aligned}
& \frac{d \mu r}{d p}=\sum_{x=0}^{n} n_{x} c_{x}\left[-n r(x-n p)^{r-1} p^{x}(1-p)^{n-x}\right. \\
+ & \left.(x-n p)^{r-1}\left\{x p^{x-1}(1-p)^{n-x}-p^{x}(n-x)(1-p)^{n-x-1}\right\}\right] \\
= & \sum_{x=0}^{n} n^{n} c_{x}(-n r)(x-n p)^{r-1} p^{x}(1-p)^{n-x}+\sum_{x=0}^{x}(x-n p)^{r-n} c_{x} \\
& p^{x} q^{n-x}\left\{\frac{x}{p}-\frac{n-x}{q}\right\} \\
= & -n r \sum_{x=0}^{n}(x-n p)^{r-1} p(x)+\sum_{x=0}^{n}(x-n p)^{r} p(x)\left[\frac{x q-n p+p^{x}}{p q}\right] \\
= & (-n r) \mu_{r-1}+\frac{1}{p q} \sum_{x=0}^{n}(x-n p)^{r} p(x)[x(p+q)-n p] \\
= & (-n r) \mu_{r-1}+\frac{1}{p q} \sum_{x=0}^{n}(x-n p)^{r} p(x)(\because-n+q) \\
= & (-n r) \mu_{r-1}+\frac{1}{p q} \sum_{x=0}^{n}(x-n p)^{r+1} p(x) \\
\frac{d \mu_{r}}{d p}= & (-n r) \mu_{r-1}+\frac{1}{p q} \mu_{r+1}
\end{aligned}
$$

$$
\mu_{\gamma+1}=p q\left[n \gamma \mu_{\gamma-1}+\frac{d \mu_{\gamma}}{d p}\right]
$$

which is known on Recurrence relation for the central moments of Binomial distribution.
By putting $r=1,2,3 \ldots$... can find μ_{2}, μ_{5} and μ_{4} and so on.

Mode of Binomial diatti button
Mode is the value of x for which $P(x)$ is maximum. Let $X=r$ be the modal value.

$$
\Rightarrow P(X=\gamma)>P(X=\gamma-1) \quad \& P(X=\gamma)>P(X=\gamma+1)
$$

Now

$$
\frac{P(X=r)}{P(X=\gamma+1)}=\frac{{ }^{n} c_{r} p^{\gamma} q^{n-r}}{{ }^{n} c_{\gamma+1} p^{r+1} q^{n-(r+1)}}=\frac{(r+1) q}{(n-r) p}
$$

Since $P(x=r)>P(x=\gamma+1) \Rightarrow \frac{P(x=\gamma)}{P(x=\gamma+1}>1$

$$
\begin{align*}
& \Rightarrow \frac{(r+1) q}{(n-r) p}>1 \Rightarrow n p-q r<q r+q \\
& \Rightarrow n p-q<q r+p r \\
& n p-q<(p+q) r \\
& n p-q<\gamma \\
& n p-(1-p)<\gamma \Rightarrow n p-1+p<\gamma \Rightarrow(n+1) p-1<\gamma \\
& \frac{p(x=\gamma)}{p(x=\gamma-1)}=\frac{{ }^{n} c_{\gamma} p^{\gamma} q^{n-r}}{{ }^{n} c_{\gamma-1} p^{\gamma-1} q^{n-\gamma+1}}=\frac{(n-\gamma+1) p}{\gamma q}
\end{align*}
$$

Since $P(X=\gamma)>P(X=\gamma-1) \Rightarrow \frac{P(x=\gamma)}{P(x=\gamma-1)}>1$

$$
\begin{align*}
& (n-r+1) p>q \gamma \Rightarrow(n+1) p>q \gamma+p r \\
& \Rightarrow n p+p>(-p+q) r \Rightarrow(n+1) p>r
\end{align*}
$$

from (1) \& (2)

$$
\text { Ap-q }[(n+1) p-1]<r<(n+1) p
$$

Fitting of Binomial distribution
We have $\frac{p(\gamma+1)}{p(\gamma)}=\frac{{ }^{n} c_{r+1} p^{\gamma+1} q^{n-(\gamma+1)}}{{ }^{n} c_{\gamma} p^{r} q^{n-r}}=\frac{L n}{\langle\gamma+1} \angle n-(\gamma+1) \frac{L n-r L r p}{L^{n}} \frac{L^{n}}{q}$

$$
\begin{gathered}
=\frac{(n-r) p}{(r+1) q} \\
\Rightarrow P(r+1)=\frac{(n-r) p}{(r+1) q} P(r)
\end{gathered}
$$

Fitting a bimomial distribution means to find the theoreteced frequencies for a given frequency. distribution.

Mean of Binomial distribution $(n p)=\frac{\sum_{i} x_{i} f_{i}}{N}$
8. 1 If during a war one out of 9 ships could not arrive safely. Find the probability that exactly 3 out of a convey of 6 would arrini safely.
Sol Let P (success)
q (failure)

$$
q=19 \quad p=\frac{8}{9}
$$

probability of 3 arrive safely out of 6

$$
{ }^{6} c_{3} p^{3} q^{3}=\frac{(6}{\angle 3}\left(\frac{8}{9}\right)^{3}\left(\frac{1}{9}\right)^{3}=\frac{10240}{96}
$$

0.2 If 10% of pens manufactured by the company are defective, find the probability that a box of 12 pens contain
(i) Exactly ter defectri pes
(ii) Attest the defective pens
(iii) No defective pen

Sol Let X denote no of defective pens
Here $n=12 \quad p=\frac{10}{100}=0.1, q=1-p=1-0.1=0.9$

$$
P(x=\gamma)={ }^{n} c_{\gamma} p^{\gamma} q^{n-\gamma}
$$

(i) $P(x=2)={ }^{12} c_{2}(0.1)^{2}(0.9)^{10}=0.2301$
(i)

$$
\begin{aligned}
P(x \geqslant 2) & =1-[P(0)+P(1)] \\
& =1-\left[{ }^{12} c_{0}(0.1)^{0}(0.7)^{12}+{ }^{12} c_{1}(0.1)^{\prime}(0.9)^{11}\right] \\
& =1-[0.2824+0.3766] \\
& =1-0.659 \\
& =0.341
\end{aligned}
$$

(iii) $P(X=0)={ }^{12} \mathrm{C}_{0}(0.1)^{0}(0.9)^{12}=0.2824$
Q. 3 An ivocgular six faced dice is thrown and the probability that it gives five even numbers in 10 throne is tuuci the probability that it gives four even numbers in to thous. How many times in 10,000 sets of 10 throws each, would you expect the get no even number.
sol^{n} Let $X=n \theta$. of times an even $n o$ is obtained Let $p=$ get an even $n \theta$. $n=10$.

$$
p(x=\gamma)={ }^{n} c_{\gamma} p^{\gamma} q^{n-\gamma}
$$

Gurein $P(x=5)=2 P(x=4)$

$$
\begin{gathered}
{ }^{10} c_{5} p^{5} q^{5}=2^{10} c_{4} p^{4} q^{6} \\
252 p=(210) 2 q \Rightarrow 3 p=5 q \\
\Rightarrow 3 p=5(1-p) \\
\Rightarrow 8 p=5 \Rightarrow p=518, q=3 / 8 \\
P(X=\gamma)={ }^{10} c_{\gamma}\left(\frac{5}{8}\right)^{\gamma}\left(\frac{3}{8}\right)^{10-\gamma} \\
P(X=0)=\left(\frac{3}{8}\right)^{10}=0.00005
\end{gathered}
$$

Q. 4 probability that a man aged 60 would be alive till 70 yrs of age is 0.65 . Find the probability that afleast 7 out of 10 such men would be akin 70 till 70 years of age.

Sol" $x=n o$. of men aged 60 and would be alive till 70 yrs.

$$
\begin{aligned}
& n=10, p=0.65, \quad q=1-p=0.35 \\
& P(x=r)={ }^{n} c_{\gamma} p^{r} q^{n-r} \\
& P(x \geqslant 7)=p(7)+p(8)+p(q)+p(10) \\
& ={ }^{10} c_{7}(0.65)^{7}(0.35)^{3}+{ }^{10} c_{8}(0.65)^{8}(0.35)^{2}+{ }^{10} c_{9}(0.65)^{9}(0.35) \\
& \quad+{ }^{10} c_{10}(0.65)^{10} \\
& = \\
& 120(0.00210)+45(0.00390)+10(0.00725)+0.01346 \\
& = \\
& 0.252+0.1755+0.0725+0.01346=0.513
\end{aligned}
$$

Q. 5 The following dea geives the no of seeds germinating out of 10 on damp fetter paper for so sets of seeds. Fit a Binomial distribatis tie this data.

$$
\begin{array}{llllllll}
\text { No of secs }(x): & 0 & 1 & 2 & 3 & 4 & 5 & 6 \text { and above } \\
\text { No. of sets }(f): & 6 & 20 & 28 & 12 & 8 & 6 & 0
\end{array}
$$

$\lambda \operatorname{Sol}^{n}$ Here $n=10, \sum f_{i}=80$

$$
\begin{aligned}
& \text { Mean }=\frac{\sum f_{i} x_{i}}{f_{i}}=\frac{174}{80}=2.175=n p \text { (mean) } \\
& n=10 \Rightarrow p=\frac{2.175}{10}=0.2175 \quad q=1-p=0.7825
\end{aligned}
$$

Hence the binomial distribution to be approximated for this

$$
\begin{aligned}
\text { data } & =N(p+q)^{\sqrt{a}} \\
& =80(0.7825+0.2175)^{10}
\end{aligned}
$$

$$
\begin{aligned}
& P(r)={ }^{n} c_{r} p^{r} q^{n-r} \\
& P(0)=q^{10}=(0.7825)^{10}=0.08607
\end{aligned}
$$

$$
f(r)=M P(r)=80 P(r)
$$

$$
\cong 6.9
$$

$$
\cong 19.1
$$

$2 \quad P(2)={ }^{10} c_{2}(0.2175)^{2}(0.7825)^{8}=0.2992$

$$
\cong 23.9
$$

$3 \quad P(3)={ }^{10} c_{3}(0.2175)^{3}(0.7825)^{7}=0.2218$

$$
\cong \quad 17.7
$$

$4 \quad P(4)={ }^{10} c_{4}(0.2175)^{4}(0.7825)^{6}=0.1079$
$\cong 8.6$
$5 \quad P(5)={ }^{10}{ }_{c_{5}}(0.2175)^{5}(0.7825)^{5}=0.0359$
$\cong 2.9$
$6 \quad P(6)={ }^{10} c_{6}(0.2175)^{6}(0.7825)^{4}=0.6083$
$\cong 0.8$
$7 \quad P(7)={ }^{10} c_{7}(0.475)^{7}(0.7825)^{3}=0.0013$
8 and above
negligible

$$
\cong 0
$$

Q. 6 Out of 800 famines with 4 children each, how many family would be expected to have (i) 2 Boys and 2 girls (ii) atleast 1 boy (iii) at most 2 girls \& (ii) children of both sex. Assume equal probabilities for boys and girl.
sol Let $X=$ number of girls.

$$
n=4 . N=800, p=q=1 / 2 \quad p(x=r)={ }^{n} c_{r} p^{r} q^{n-r}
$$

(i)
(ii) NO. of families having 2 boys and 2 gib $=800 \times \frac{3}{8}=380$
(ii) Let $X=$ no. of boys.

$$
\begin{aligned}
& x=0,1,2,3 \\
& P(x \geq 1)=1-P(x<1)=1-P(x=0) \\
& 1-4 \operatorname{cop}_{0} p^{0} q^{4}=1-\left(\frac{1}{2}\right)^{4}=\frac{15}{16}
\end{aligned}
$$

Total no. of families having atleast one bay $=\frac{15}{16} \times 800=750$

$$
\begin{aligned}
& P(2 \text { bogs } \& 2 \text { girls })=P(x=2)=4 c_{2} p^{2} q^{2} \\
& { }^{4} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}=6 \times\left(\frac{1}{2}\right)^{4}=\frac{3}{8}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { At most } & 2 \text { girl }=P(X \leqslant 2) \\
& =P(X=0)+P(X=1)+P(X=2) \\
& =4 c_{0}\left(\frac{1}{2}\right)^{4}+4 c_{1}\left(\frac{1}{2}\right)^{4}+4 c_{2}\left(\frac{1}{2}\right)^{4} \\
& =\left(\frac{1}{2}\right)^{4}[4+1+6]=\frac{11}{16}
\end{aligned}
$$

No. of families having at most 2 girls $=\frac{800 \times 11}{16}=550$
(iv) P (Children of both sexes) $=1-P$ (all children are of same sex)

$$
\begin{aligned}
& =1-[P\{\text { all are boys }\}+P\{\text { all are girls }\}] \\
& =1-\left\{P(x=q+P(x=4)\}=1-\left\{{ }^{4} c_{0} p^{0} q^{4}+{ }^{4} c_{4} p^{4} q^{0}\right\}\right. \\
& =1-\left[\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}\right]=1-\frac{2}{16}=1-\frac{1}{8}=\frac{7}{8}
\end{aligned}
$$

No of families having children of both sexed $=800 \times \frac{7}{8}=780$
Q 7 Find the parameters of the binomial distributed whose mean is 10 and variance 6 .
Eon Let $X \sim B(n, p)$

$$
\begin{gathered}
\text { Mean }=n p=10 \quad \text { Variance }=n p q=6 \\
q=\frac{6}{10}=\frac{3}{5}, p=1-q=1-\frac{3}{5}=\frac{2}{5} \\
n p=10 \Rightarrow n \frac{2}{5}=10 \Rightarrow n=25 \\
n=25, p=0.4, q=0.6
\end{gathered}
$$

Q. 8 In how many throws of a dice the probability of throwing 6 atteast once is just greater than 0.5 .
Sol" Let $X=$ number of times $6 \hat{b}$ obtained

$$
p=(\text { getting } 6)=\frac{1}{6}=p \Rightarrow q=\frac{5}{6}
$$

$$
\left.\begin{array}{c}
P(x=r)={ }^{n} c_{r} p^{r} q^{n-r} \quad r=0,1,2 \cdots n \\
\text { Given } p(x \geqslant 1)>0.5 \\
1-p(x=0)>0.5 \Rightarrow n(x=0)<0.5 \\
n_{0} p_{0} p^{0} q^{n}<0.5 \\
\left(\frac{5}{6}\right)^{n}<0.5 \Rightarrow n(-0.0792)<(-0.30103) \\
n(0.0792)>(0.50103) \\
n>0.30103 \\
n
\end{array}\right)
$$

Hence minimum no of required thorous $=4$.
Q. 8 \& coin are tossed simultaneously 256 times. Number of heads observed at each throw are recorded and the results are giver below. Find the expected frequency and a fit a binomial distribution. What are the theoretical values of the mean and standard deviation. Abs calculate mean qudndani deviation of the observed frequencies

$$
\text { No. of Heads } x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 c
$$

No of tines $f 2630 \quad 526756 \quad 32101 \sqrt{\sum 256}$
col" Obswened Mean $=\mu_{\text {ass }}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{1040}{256}=4.0625$

$$
E\left(x^{2}\right)=\frac{\sum f_{i} x_{i}^{2}}{\sum f_{i}}=\frac{4772}{256}=18.6406
$$

observed variance $\sigma_{\text {os }}^{2}=f\left(x^{2}\right)-[E(x)]^{2}$

$$
=18 \cdot 6406-16.5039=2 \cdot 1367
$$

observed stand. deviation $=\sigma=1.4617$

Here $n=8$ (no of coins) $p=1 / 2$ (head) $q=1 / 2$
Theoretical mean $=n_{p}=S \times \frac{1}{2}=4$
Theoretical stand deviation $=\sqrt{n p q}=\sqrt{8 \times \frac{1}{2}} \times \frac{1}{2}=\sqrt{2}$

$$
=1.414
$$

Expected frequencies

$$
\begin{aligned}
& n=8 \quad n p=\frac{4.0625}{} \simeq \Rightarrow=0.5078 \text { then } q=1-p \\
& =0.4922
\end{aligned}
$$

Expected frequencies are given by expesion of
$=N(p+q)^{n}$

$$
\begin{aligned}
&=N(p+q)^{n} \\
& 256(0.4922+0.5078)^{8}
\end{aligned}
$$

Q. 9 For a special security in a certain protected ares, it was decided to put three lighting bulbs on each pole. If each bulb has a probability p of burning out in the first 100 hours of service, calculate the probability that atleast one of then is still good after 100 hows. If $p=0.3$, how many bulbs will be needed on each pole to ensure 99% safety so that at least one is good after 100 hours.
sol.
$X=$ the no. of bulbs that do not been out in first 100 hours.

Hent $P($ success $)=1-p, \quad P($ failure $)=p$ $\eta=3$

$$
\begin{aligned}
\text { Required probability }=P(x \geqslant 1)= & 1-P(x=0) \\
& 1-{ }^{3} c_{0}(1-p)^{0} P^{3}=1-p^{3} \\
= & -(0.3)^{3}=0.973
\end{aligned}
$$

Now it $p=0.3$, Let $n o$. of bulbs on each pole be n to ensure 99% saftey so that atlecast one is good after 100 hours.

$$
\text { ours. } \begin{aligned}
& p(x \geq 1)=1-p(x=0) \\
&=1-n_{0}(1-p)^{0} p^{n} \\
&=0.99 \\
& \Rightarrow(0.3)^{n}=0.99 \\
& \Rightarrow 1-0.99=(0.3)^{n} \Rightarrow n \log 0.3=\log 0.01 \\
& \Rightarrow n=\frac{2}{0.5229}=3.8 \cong 4 .
\end{aligned}
$$

Q 10. The sum of mean and variance of a Binomial distribution is 15 and the sum of their squares is 117 . Determine the distribution.
Sols Let $n \& P$ be the parameters of distribution

$$
\begin{array}{ll}
\text { Mean }=n p, & \text { variance }=n p q \\
n p+n p q=4715 \tag{2}\\
n p(1+q)=15
\end{array} \Rightarrow \begin{gathered}
\text { on squaring } \\
n^{2} p^{2}(1+q)^{2}=225
\end{gathered}
$$

and $n^{2} p^{2}+n^{2} p^{2} q^{2}=117 \Rightarrow n^{2} p^{2}\left(1+q^{2}\right)=117$
from (1) \& (2)

$$
\begin{aligned}
& \frac{(1+q)^{2}}{1+q^{2}}=\frac{225}{117} \Rightarrow \frac{q^{2}+2 q+1}{1+q^{2}}=\frac{225}{117} \\
& 1+\frac{2 q}{1+q^{2}}=\frac{225}{117} \Rightarrow \frac{2 q}{1+q^{2}}=\frac{12}{13} \\
& \frac{1+q^{2}}{2 q}=\frac{13}{12} \Rightarrow \frac{1+q^{2}+2 q}{1+q^{2}-2 q}=\frac{13+12}{13-12} \quad \text { (by c\&D Rule) } \\
& \frac{(1+q)^{2}}{(1-q)^{2}}=\frac{25}{1} \Rightarrow \frac{1+q}{1-q}=5 \Rightarrow 6 q=4 \\
& p=1-q=\frac{1}{3}
\end{aligned} \quad \begin{aligned}
& q=2 / 3
\end{aligned}
$$

$$
\begin{gathered}
n p+n p q=15 \Rightarrow \frac{5 n}{q}=15 \quad \text { (putting } p=\frac{1}{3}, q=\frac{2}{3} \text {) } \\
n=27
\end{gathered}
$$

Hence the required distribution is

$$
P(x=r)={ }^{27} c_{r}\left(\frac{1}{3}\right)^{r}\left(\frac{2}{3}\right)^{27-r} \quad r=0,1,2 \ldots
$$

Q. II A Binomial variate satisfies the condition $9 P(x=y)$ $=P(x=2)$. If $n=6$ find p, \vec{x} and r.

Sol $\quad 9 P(X=4)=P(X=2)$

$$
\begin{aligned}
& { }^{9}{ }^{6} c_{4} p^{4}(1-p)^{2}={ }^{6} c_{2} p^{2}(1-p)^{4} \\
& 9 p^{2}=(1-p)^{2} \Rightarrow 9 p^{2}=1+p^{2}-2 p \\
& 8 p^{2}+2 p-1=0 \\
& (4 p-1)(2 p+1)=0 \Rightarrow p=1 / 4, p=-1 / 2
\end{aligned}
$$

$p=-1 / 2$ is not possible so $p=1 / 4$

$$
\begin{aligned}
& \text { Mean }=n p=6 \times \frac{1}{4}=\frac{3}{2} \\
& \sigma=\sqrt{m p q}=\sqrt{6 \cdot \frac{1}{4}} \cdot \frac{3}{4}=\sqrt{1.125}=1.0607
\end{aligned}
$$

Lecture -3

Poisson's distribution: Poisson distribution is a limiting case of the binomial distribution under

- the follousing conditions.
1.) n, the number of trials is idem indefinitely large, we. $n \rightarrow \infty$
2.) p, the probability of success for each trial is indefinitely mall, ie. $p \rightarrow 0$
3.) $n p=\lambda$, (ray) is finite positive real number.

$$
\Rightarrow \quad p=\frac{\lambda}{n}
$$

The probability of or success in a series of n independent trials is

$$
\begin{aligned}
P(r) & ={ }^{n} c_{r} p^{r} q^{n-r} \\
& =\frac{n!}{r_{!}(n-r)!} \cdot p^{r}(1-\beta)^{n-r} \\
& =\frac{n(n-1) \cdots(n-r+1)}{r!}\left(\frac{1}{n}\right)^{r} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{r}} \\
& =\frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots \cdot\left\{1-\frac{(r-1)}{n}\right\} \lambda^{r u}}{r!\left(1-\frac{\lambda}{n}\right)^{n}} \frac{\left(1-\frac{\lambda}{n}\right)^{r}}{r!} \\
\lim _{n \rightarrow \infty} P(r) & =\frac{\lambda^{r} e^{-\lambda}}{r!}, r=0,1, \cdots \quad\left\{\because \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}\right\} .
\end{aligned}
$$

This limiting form of Binomial atiabribution with above probability is called Poisson's distribution.
Note 1.) λ is known as the parameter of the anstribulian.
2.) $e=2.7183$
3.) $\sum_{r=0}^{\infty} P(x=r)=\sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^{r}}{x!}=e^{-\lambda}\left[1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\cdots\right]=e^{-\lambda} e^{\lambda}=1$

Sepmilisen: dandon virable x is raid to fellow a Recsow distribition if it assumes only non negaitime vines andies probibility mass funelian is ginew by.

$$
P(x=d)=\left\{\begin{array}{l}
\frac{e^{d} d^{2}}{k!}, x=0,1,2, d>0 \\
0, \text { opesurice }
\end{array}\right.
$$

Nete: mis distibution is uned to discribe the behaviour of rale enents wuth as the nember of acciclents on road, nembles of proiting mishats wi a beoketo.
Q. suppece on an average 1 . heuse in 1,000 in a certain distrit has a fie during a yar. If there are 2,000 houses in that distrit, what is the frobability shat exactly 5 howes wilb have a fire during the year?
siff: $\quad n=2000, p=\frac{1}{1000}$

$$
d=n p=2000 \times \frac{1}{1000}=2
$$

Required probability that exartly 5 holures will have a fiu during the year $=P(5)$

$$
\begin{aligned}
& =\frac{e^{\lambda} \lambda^{5}}{5!} \\
& =\frac{e^{-2} 2^{5}}{5!} \\
& =\frac{135 \times 32}{120} \\
& =.036
\end{aligned}
$$

Mean and variance of the Piosson distribution:
for the Poisson distribution

$$
\begin{aligned}
P(r) & =\frac{\lambda^{r}-\lambda}{r!} \\
E(x)=\text { mean } & =\mu=\sum_{r=0}^{\infty} r P(r) \\
& =\sum_{r=0}^{\infty} r \frac{\lambda^{r} \vec{e}^{\lambda}}{r!} \\
& =e^{-\lambda} \sum_{r=1}^{\infty} \frac{\lambda^{r}}{(r-1)!} \\
& =e^{-\lambda}\left[\cdot \lambda+\frac{\lambda^{2}}{1!}+\frac{\lambda^{3}}{2!}+\cdots\right] \\
& =\lambda e^{-\lambda}\left[1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\cdots\right] \\
& =\lambda e^{-\lambda} \cdot e^{\lambda} \\
& =\lambda
\end{aligned}
$$

$$
\begin{aligned}
\text { Variance }=\sigma^{2} & =E\left(x^{2}\right)-[E(x)\}^{2} \\
& =E\left(x^{2}\right)-\lambda^{2} \\
& =\sum_{i=0}^{\infty} r^{2} P(x=r)-\lambda^{2} \\
& =\sum_{i=0}^{\infty} r^{2} \frac{\lambda^{r}-\lambda}{x!}-\lambda^{2} \\
& =e^{-\lambda}\left(\frac{\lambda}{1!}+\frac{2^{2} \lambda^{2}}{2!}+\frac{3^{2} \lambda^{3}}{3!}+\cdots\right)-\lambda^{2} \\
& =\lambda e^{-\lambda}\left(1+\frac{2 \lambda}{1!}+\frac{3 \lambda^{2}}{2!}+\cdots\right)-\lambda^{2} \\
& =\lambda e^{-\lambda}\left[\left(1+\frac{\lambda}{!!}+\frac{\lambda^{2}}{2!}+\cdots\right)+\left(\frac{\lambda}{1!}+\frac{2 \lambda^{2}}{2!}+\cdots\right)\right]-\lambda^{2} \\
& =\lambda e^{-\lambda}\left[e^{\lambda}+\lambda\left(1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+--\right)\right]-\lambda^{2} \\
& =\lambda e^{-\lambda}\left\{e^{\lambda}+\lambda e^{\lambda}\right\}-\lambda^{2} \\
& =\lambda e^{-\lambda} \cdot e^{\lambda}(1+\lambda)-\lambda^{2} \\
& =\lambda
\end{aligned}
$$

Hence, standard deviation $\sigma=\sqrt{\operatorname{var}(x)}=\sqrt{\lambda}$

Fitting a Poisson Distribution: when a Poisson distribution is to be fitted to observe data, the following procedure is adopted.
1.) Compute the mean \bar{X} and take it equal to the mean of the fitted (Poisson) distribution.

$$
\bar{x}=\lambda
$$

2.) Obtain the probabilities. $P(X=r)=\frac{e^{\lambda} \lambda^{t}}{x!}, r=0,1,2 \ldots$.
3) The expected of theoretical frequencies according to Poisson distribution can be calculated as

$$
f(r)=N \cdot P(x=r)
$$

Where N is the total obarued frequency.
Q. Data was collected over a period of 10 years, showing number of deaths from horse kicks in each of the 200 army. Epeps. The distribution of deaths was as follows.

No. of deaths:	0	1	2	3	4	Total.
Frequency:	109	65	22	3	1	$200=N=$ Efi

Fit a Poisson distribution to the data and calculation the theoretical frequencies.
sell.

$X \quad P(x=x \cdot)=\frac{e^{-\lambda} d^{x}}{x!}$

$$
e^{-61} \frac{(.61)^{0}}{0!}=15432
$$

$$
\vec{e}^{-161} \frac{(.61)^{\prime}}{1!}=\cdot 3313
$$

2

3

$$
e^{-161} \frac{(161)^{2}}{2!}=1101
$$

$$
e^{-161} \frac{(.61)^{3}}{3!}=.021
$$

4

$$
e^{-161} \frac{(.61)^{4}}{4!}=1003 \quad 200 \times 1003=163 \approx 1 .
$$

Recurrence formula for the Poisson Distribution-:

$$
\left.\begin{array}{rl}
& \because P(r)
\end{array}\right) \frac{e^{-\lambda} \lambda^{r}}{r!}, ~ P(r+1)=\frac{e^{-\lambda} \lambda^{r+1}}{(s+1)!}, ~ P(r) . ~ P(r+1)=\frac{\lambda}{(k+1)} \cdot P(r)
$$

Q
If the variance of the Poisson distribution is 2 , find the probabilities for $r=1,2,3,4$. from the recurrence relation of the Poisson distribution.

Sol 4 : Here $\lambda=2$

$$
\begin{aligned}
& \therefore P(r+1)=\frac{\lambda}{(L+1)} P\left((2)=\frac{2}{(r+1)} P((r) .\right. \\
& \begin{array}{l}
\text { which is the recursion } \\
\text { recce }
\end{array} \\
& P(1)=2 \cdot P(0)=2 \cdot e^{-2}=2 \times 1353=12706 \quad \quad \because P(r)=\frac{e^{-1} \cdot d^{r}}{r_{1}} \\
& P(2)=\frac{2}{2} P(1)=12706 \\
& P(3)=\frac{2}{3} P(2)=1804 \\
& P(4)=\frac{1}{2} P(3)=10902 .
\end{aligned}
$$

Q The frequency of accidents per shift in a factory. is given in the following table
Accidents Per shift: $0 \quad 1 \quad 2 \quad 3 \quad 4$
Frequency $\quad: 192 \quad 100 \quad 24 \quad 3 \quad 1$
Calculate the mean number of accidents per shifter. find corresponding Poisson distribution.
Sols: mean number of accidents per shift $=\frac{\sum x_{i} f_{i}^{\prime}}{\Sigma f_{i}}$

$$
\lambda=\frac{100+2 \times 24+3 \times 3+4}{320}=0.503
$$

Theoretical frequency distribution will be as follows

X	$P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$	Theoretical frequency. $N X P(X)$
0	0.6047	193.5
1	0.3042	97.3
2	0.0765	24.5
3	0.0128	4.1
4	0.0016	0.5

Poisson distribution:
The Moment generating function about origin is

$$
\begin{aligned}
& M_{x}(t)=E\left(e^{t x}\right)=\sum_{r} e^{t} x^{r} P(r)=\sum_{r=0}^{\infty} e^{t r} e^{-\lambda} \frac{\lambda^{r}}{r!} . \\
&=\sum_{r=0}^{\infty} e^{-\lambda} \frac{\left(\lambda e^{t}\right)^{r}}{r!} . \\
&=e^{\lambda} e^{\lambda e^{t}} \\
& M_{x}(t)=e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

Moments about origin:

$$
\begin{aligned}
& \mu_{t}^{\prime}=\left[\frac{d^{t} M_{x}(t)}{d t^{t}}\right]_{t=0} \\
& \mu_{1}^{\prime}=\text { mean }=\left[\frac{d}{d t} e^{\lambda\left(e^{t}-1\right)}\right]_{t=0} \\
& =\left[\lambda e^{t} e^{x\left(e^{t}-1\right)}\right]_{t=0} \\
& \mu_{1}^{\prime}=\lambda=\bar{x}=\text { mean } \\
& \mu_{2}^{\prime}=\left[\frac{d^{2} M}{d t^{2}}\right]_{t=0}=\lambda\left[e^{t} e^{\left.x e^{t}-1\right)}+\lambda e^{2 t} e^{\lambda\left(e^{t}-1\right)}\right]_{t=0}=\lambda(1+\lambda) \\
& \mu_{2}^{\prime}=\lambda^{2}+\lambda \\
& \mu_{3}^{\prime}=\left[\frac{d^{3} M_{x}(t)}{d t^{3}}\right]_{t=0} \\
& \mu_{3}^{\prime}=\lambda^{3}+3 \lambda^{2}+\lambda \\
& \mu_{4}^{\prime}=\left[\frac{d^{4} M_{x}(t)}{d t^{4}}\right]_{t=0} \\
& \mu_{y}^{\prime}=\lambda^{4}+6 \lambda^{3}+7 \lambda^{2}+\lambda
\end{aligned}
$$

Central moments:

$$
\begin{aligned}
& \mu_{1}=0 \\
& \mu_{2}=\mu_{2}^{\prime}-\mu_{4}^{\prime 2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda \\
& \mu_{2}=\lambda \\
& \mu_{3}=\mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu_{1}^{\prime}+2 \mu_{1}^{3} \\
& \mu_{3}=\lambda
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{4}=\mu_{1}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{2}-3 \mu_{1}^{\prime 4} \\
& \mu_{1}=3 \lambda^{2}+\lambda
\end{aligned}
$$

Moment Concreting function about \bar{x} (mean):

$$
\begin{aligned}
M_{x}(t) \text { about mean } & =E\left[e^{t(x-\bar{x})}\right] \\
& =E\left[e^{t(x-\lambda)}\right] \\
& =e^{-\lambda t} E\left[e^{t x}\right] \\
& =e^{-\lambda t} M_{x}(t) \text { about origin } \\
& =e^{-\lambda t} e^{\lambda\left(e^{t}-1\right)}=e^{\lambda\left(e^{t}-1-\lambda\right)} \\
M_{x}(t) & =e^{\lambda\left(e^{t}-1-t\right)}
\end{aligned}
$$

Moments about mean can be calculated by MGF about \bar{X}

$$
\mu_{\mu}=\left[\frac{d}{d t} M_{x}(t) \text { (about mean) }\right]_{t=0}=0
$$

and do on.
Recurrence Relation for the central moments of Poisson Distribution we have $r^{\text {th }}$ moment about mean

$$
\begin{align*}
\mu_{r} & =E\left\{(x-\bar{x})^{r}\right\}=\sum_{i} P_{i}\left(x_{i}-\bar{x}\right)^{r} \\
& =\sum_{r=0}^{\infty}(x-\lambda)^{r} \cdot \frac{e^{\lambda} \lambda^{x}}{x!}-1 \tag{1}
\end{align*}
$$

Differentiate (1) cor to $\dot{\lambda}$, we get,

$$
\begin{aligned}
\frac{d \mu f r}{d \lambda} & =\sum_{x=0}^{\infty}(-r)(x-\lambda)^{r-1} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}+\sum_{x=0}^{\infty} \frac{(x-\lambda)^{r}}{1!}\left(-e^{-1} \lambda^{x}+x \lambda^{r-1} e^{-\lambda}\right) \\
& =(-r) \sum_{x=0}^{\infty}(x-\lambda)^{r-1} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}+\sum_{x=0}^{\infty} \frac{(x-\lambda)^{r}}{x!} \cdot e^{-\lambda} \cdot \lambda^{2}\left(-1+\frac{x}{\lambda}\right) \\
& =-r \sum_{x=0}^{\infty}(x-\lambda)^{r-1} P(x)+\frac{1}{\lambda} \sum_{x=0}^{\infty}(x-1)^{r+1} P(x) \\
\frac{d \mu_{r}}{d \lambda} & =-r \mu_{r-1}+\frac{1}{\lambda} \mu_{r+1} \\
\mu_{r+1} & =r \lambda \mu_{r-1}+\lambda \frac{d \mu_{r}}{d \lambda}
\end{aligned}
$$

Karl pearson's coefficient of Poisson distribution:

$$
\begin{aligned}
& \beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=\frac{\lambda^{2}}{\lambda^{3}}=\frac{1}{\lambda} \\
& \gamma_{1}=\sqrt{\beta_{1}}=\frac{1}{\sqrt{\lambda}} \\
& \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{3 \lambda^{2}+\lambda}{\lambda^{2}}=3+\frac{1}{\lambda} \\
& \mu_{2}=\beta_{2}-3=\frac{1}{\lambda}
\end{aligned}
$$

Distribution Function of Poisson Distribution:

$$
\begin{aligned}
& F(x)=P(x \leqslant x)=\sum_{i=0}^{x} P(x=i) \\
& \text { or } F(x)=\sum_{r=0}^{x} P(x=r) \\
& F(x)=\sum_{r=0}^{x} e^{-\lambda} \frac{\lambda^{r}}{r!}
\end{aligned}
$$

Probability Generating function of Poisson Distribution:

$$
\begin{aligned}
G_{x}(z) & =\sum_{r=0}^{\infty} \cdot e^{-\lambda} \frac{\lambda^{\varepsilon}}{\varepsilon!} z^{r} \\
& =e^{-\lambda} \sum_{r=0}^{\infty} \frac{(\lambda z)^{r}}{\varepsilon!} \\
G_{x}(z) & =e^{-\lambda} e^{\lambda z}=e^{\lambda(z-1)}
\end{aligned}
$$

Mode of Poisson Distribution:
value of r for which $P(X=r)$ is maximum.
Now $P(r)>P(r-1)$ and $P(r)>P(r+1)$.

$$
\begin{align*}
& \text { Now } \frac{P(r)}{P(r-1)}>1 \\
& \Rightarrow \frac{\frac{e^{-\lambda} r^{r}}{r_{1}}}{e^{-\lambda} \frac{r^{r-1}}{(r-1)!}}>1 \Rightarrow \frac{1}{r}>1 \text { or } \lambda>r-11 \tag{1}\\
& \text { and } \frac{P(r)}{P(r+1)}>1 \Rightarrow \frac{(r+1)}{\lambda}>1 \text { or }(r+1)>\lambda . \tag{2}\\
& \text { or } r>(\lambda-1)
\end{align*}
$$

From (1) and (2)

$$
\quad A<r<\lambda
$$

Curve Fitting
In Applied Mathematics, many terrines it is required to express a given data (obtained from observation) in the form of a low connecting the variables involved. such a law interred by scheme is known as empirical law.
Several equations of different types can be obtained he express the given date appreximatily. The process of finding such an eq' of best fit' is known as curvefitting. The best method of avenue fitting is least square method.
Fitting a straight, line
Here we use principle of least squares which states that the sum of squares of errors of estimation should be minimum.
If we want to fit a straight line $y=a+6 x$ lo the data given with n pts. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$ thew

$$
S=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}
$$

Normal en are $\frac{\partial S}{\partial a}=0 \quad \frac{\partial S}{\partial b}=0$

$$
\begin{aligned}
& \Rightarrow-2 \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)=0 \\
& \text { and }-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-a-b x_{i}\right)=0
\end{aligned}
$$

or $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}{ }^{2}$

Fitting a Parabola
we have to fit a parabola $y=a+b x+c x^{2}$ to the data of given n pts. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$

$$
S=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}-c x_{i}^{2}\right)^{2}
$$

Normal ens are $\frac{\partial S}{\partial a}=0, \frac{\partial S}{\partial b}=0, \frac{\partial S}{\partial C}=0$ which gives on simplification.

$$
\begin{aligned}
& \sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}+c \sum_{i=1}^{n} x_{i}{ }^{2} \\
& \sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}{ }^{2}+c \sum_{i=1}^{n} x_{i}{ }^{3} \\
& \sum_{i=1}^{n} x_{i}{ }^{2} y_{i}=a \sum_{i=1}^{n} x_{i}{ }^{2}+b \sum_{i=1}^{n} x_{i}{ }^{3}+c \sum_{i=1}^{n} x_{i}{ }^{4}
\end{aligned}
$$

Further by simplifying these simultaneous eqns we get values of a, b and c and required values of parabola.

Q-1 Fit a straight line to the following date

$$
\begin{array}{ccccccc}
x & 1 & 2 & 3 & 4 & 6 & 8 \\
y & 2.4 & 3 & 3.6 & 4 & 5 & 6
\end{array}
$$

Sol' Let the line to be fitted is $y=a+b x$
By the principle of least square the normal ens are.

$$
\sum y=n a+b \sum x, \quad \sum x y=a \sum x+b \sum x^{2}
$$

x	y	x^{2}	$x y$
1	2.4	1	2.4
2	3	4	6.0
3	3.6	9	10.8
4	4	16	16.0
6	5	36	30.0
8	6	64	48.0

$$
\begin{aligned}
& \Sigma x=24 \\
& \Sigma y=24 \\
& \Sigma x^{2}=130 \\
& \Sigma x y=113.2
\end{aligned}
$$

substituting these values in en we get

$$
\begin{aligned}
24 & =6 a+24 b \\
113.2 & =24 a+130 b \\
\Rightarrow b & =\frac{172}{34}=0.506, a=4.1 .976 \\
y & =1.976+0.506 x
\end{aligned}
$$

Q. 2 Find the least square fit of the form $y=a_{0}+a_{1} r^{2}$ to the following date

x	-1	0	1	2
y	2	5	3	0

set^{n} put $x^{2}=x$ wee have $y=$
The nounal eqns re e

$$
\begin{gathered}
\text { normal ens are } \\
\Sigma y=4 a+a_{1} \Sigma x, \quad \sum y=a_{0} \Sigma x+a_{1} \sum x^{2} \\
x, \quad x y
\end{gathered}
$$

x	y	x	x^{2}	$x y$
-1	2	1	1	2
0	5	0	0	0
1	3	1	1	3
2	0	$\sum y_{n}=\frac{4}{10}$	16	
$\Rightarrow e^{n}=\frac{16}{b e c o m} 25$	$E x^{2}=18$	$\sum x y=5$		

$$
10=4 a_{0}+6 a_{1} \quad, \quad 5=6 a_{0}+18 a_{1}
$$

On solving $a_{0}=4.167, \quad a_{1}=-1.111$
Hence the curve of best fit is

$$
\begin{aligned}
& \text { Ie curve of best fit s } \\
& y=4.167-1.111 x \text { or } 4.167-1.11 x^{2}
\end{aligned}
$$

Q. 3 Find the boot values of x, y and z satisfyeng the 412 following eq"s.

$$
\begin{gathered}
x+2 y+z=1 \\
2 x+y+z=4 \\
-x+y+2 z=4 \\
4 x+2 y-5 z=-7
\end{gathered}
$$

Sol In order the obtain the best wales of x, y and z the normal eqnare

$$
\begin{align*}
& \frac{\partial S}{\partial x}=0 \quad, \frac{\partial S}{\partial y}=0, \frac{\partial S}{\partial y}=0 \\
& S=(x+2 y+z-1)^{2}+(2 x+y+z-4)^{2}+(-x+y+2 z-4)^{2} \\
& +(4 x+2 y-5 z+7)^{2} \\
& \frac{\partial S}{\partial x}=0 \Rightarrow 2(x+2 y+z-1)+4(2 x+y+z-4)-2(-x+y+2 z-4) \\
& +8(4 x+2 y-5 z+7)=0 \\
& \Rightarrow \quad 40 x+22 y-38 z=-46 \\
& \frac{\partial s}{\partial y}=0 \Rightarrow 4(x+2 y+z-1)+2(2 x+y+z-4)+2(-x+y+2 z-4) \\
& +4(4 x+2 y-5 z+7)=0 \\
& \Rightarrow 22 x+20 y-10 z=-8 \\
& \frac{\partial s}{\partial z}=0 \Rightarrow 2(a x+2 y+z-1)+2(2 x+y+z-4)+4(-x+y+2 z-4) \\
& -10(4 x+2 y-5 z+7)=0 \\
& \Rightarrow-38 x-10 y+62 z=96
\end{align*}
$$

On soling (1) (2) \& (3) we get

$$
x=1.16, y=-0.76, \quad z=2.5
$$

Q. 4 fit a second diguce parabola to the following dates 13

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

Sol" Let eq" of parabola is

$$
y=a+b x+c x^{2} \quad, n=9
$$

Normal eq "s are

$$
\begin{aligned}
& \Sigma y=n a+b \leq x+c \Sigma x^{2} \\
& \Sigma x y=a \Sigma x+b \leq x^{2}+c \Sigma x^{3} \\
& \Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \sum x^{4}
\end{aligned}
$$

x	y	x^{2}	$y x^{3}$	x^{4}	$x y$	$x^{2} y$
1	2	1	1	1	2	2
2	6	4	8	16	12	24
3	7	9	27	81	21	63
4	8	16	64	256	32	128
5	10	25	125	625	50	250
6	11	36	216	1296	6	396
7	11	49	343	2401	77	539
8	10	64	512	4096	80	640
9	9	81	$\frac{729}{2025}$	$\frac{6561}{15333}$	$\frac{81}{421}$	2771
$\sum 45$	285	29				

Eq ${ }^{n}$ becomes

$$
\begin{aligned}
& 9 a+45 b+285 c=74 \\
& 45 a+285 b+2025 c=421 \\
& 285 a+2025 b+15333 c=2711
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Or } \quad & a+5 b+31.67 c=8.22 \\
& a+6.33 b+45 c=9.35 \\
& a+7.10 b+53.8 c=9.72 \\
\Rightarrow & a=-0.26, b=3.45, a=-0.78 \\
& y=-0.78+(3.45) x-0.26 x^{2}
\end{array}
$$

Q. 5 Fit a straight line for the following date

$$
\begin{array}{llllll}
x & 1 & 2 & 3 & 4 & 5
\end{array} \quad y=0.2+34 x
$$

Correlation \& ReGression

Correlation
The correlation coefficient tills us how strongly the variables are related, but it does not give us the magnitude of change of one variable due to other variable.

Ex. crime rate \& unemployment rate
Karl Pearsm Coefficient of Correlation

$$
\begin{aligned}
r=\gamma_{x y} & =\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
\operatorname{cov}(x, y) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x\right)\left(y_{i}-\bar{y}\right)=\frac{1}{n} x_{i} y_{i}-\frac{\sum x_{i}}{n} \bar{y}-\frac{\sum y_{i} \bar{x}}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\bar{x} \bar{y}
\end{aligned}
$$

$\nabla_{x}=$ Standard deviation of variable x

$$
=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x\right)^{2}}
$$

$\sigma_{y}=$ standard deviation of variable y

$$
=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

$\bar{x}=$ Mean of variable $x=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
$\bar{y}=$ Mean of nariatble $y=\frac{1}{n} \sum_{i=1}^{n} y_{i}$

$$
r_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\frac{1}{\sum_{i=1}^{n}}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

θr

$$
\gamma_{x y}=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\bar{x} y}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} y_{i}{ }^{2}-\bar{y}^{2}}}
$$

If values of x, y are very big then we can calculate

$$
\gamma_{r y}=\frac{1}{\eta i=1} \sum_{i=1}^{n} u_{i} v_{i}-\frac{1}{n} \sum_{i=1}^{n} u_{i} \sum_{i=1}^{n} v_{i} \quad \frac{\sum u v-\frac{\sum u ⿱ 亠 v}{n}}{\sqrt{\sum_{i=1}^{n} u_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} u_{i}\right)^{2}} \sqrt{\sum_{i=1}^{n} u_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} v_{i}\right)^{2}}}
$$

Where $u_{i}=\frac{x_{i}-a}{h} \quad v_{i}=\frac{y_{i}-b}{k}$
a, b are means of data of variables x and y. h, k are class internals of data x and y

$$
-1 \leqslant \gamma \leqslant 1
$$

1 If $r=0 \Rightarrow$ variables are unrelated
2. If $r=1 \Rightarrow$ perfect and positive correlation
3. If $r=-1 \Rightarrow$ Perfect and negative correlation
4. $0<r<1 \Rightarrow$ positive correlation
5. $-1<\gamma<0 \Rightarrow$ negateni correlation.
Q. 1 Calculate the correlation coefficient for the following heights of fathers (x) and their sons.(y)
$\begin{array}{llllllll}x & 65 \quad 66 \quad 67 & 67 & 68 & 69 & 70 & 72\end{array}$
$\begin{array}{lllllllll}y & 67 & 68 & 65 & 68 & 72 & 72 & 69 & 71\end{array}$

Sol" The correlates coefficient is given by

$$
\gamma=\frac{\operatorname{Cov}(x, y)}{\Gamma_{x} \sigma_{y}}=\frac{\frac{1}{n} \sum x y-\bar{x} \bar{y}}{\sqrt{\frac{1}{n} \sum x^{2}-\bar{x}^{2}} \sqrt{\frac{1}{n} \sum y^{2}-\bar{y}^{2}}}
$$

$$
\begin{aligned}
& \begin{array}{ccccc}
x & y & x^{2} & y^{2} & x y \\
65 & 67 & 4225 & 4489 & 4355
\end{array} \\
& 66 \quad 68 \quad 4356 \quad 4624 \quad 4488 \\
& 67 \quad 65 \quad 4489 \quad 4225 \quad 4355 \\
& 67 \quad 68 \quad 4489 \quad 4624 \quad 4556 \\
& 68 \quad 72 \quad 4624 \quad 5184 \quad 4896 \\
& 69 \quad 72 \quad 47615184 \quad 4968 \\
& 70 \quad 69 \quad 4950 \quad 4761 \quad 4830 \\
& \frac{72}{544} \frac{71}{552} \quad \frac{5184}{37028} \quad \frac{5041}{38132} \quad \frac{5112}{37560} \\
& \vec{x}=\frac{\frac{\sum 2}{n}}{n}=\frac{544}{8}=68 \\
& y^{2}=\frac{\sum y}{n}=\frac{1}{8} 552=69 \\
& \sigma_{x}=\sqrt{\frac{1}{n} \sum x^{2}-x^{-2}}=\sqrt{\frac{37028}{8}-(68)^{2}}=\sqrt{4.5}=2.121 \\
& \sigma_{y}=\sqrt{\frac{1}{n} \Sigma y^{2}-y^{-2}}=\sqrt{\frac{38132}{8}-(69)^{2}}=\sqrt{5.5}=2.345 \\
& \operatorname{Cov}(x, y)=\frac{1}{n} \sum x y-\bar{x} \bar{y}=\frac{1}{8} 37560-68 \times 69=3 \\
& r=\frac{3}{2.121 \times 2.345}=0.6032
\end{aligned}
$$

Aliter Way

x	y	$u=x-68$	$v=y-\operatorname{co}$	u^{2}	v^{2}	$u v$
65	67	-3	-2	9	4	6
66	68	-2	-1	4	1	2
67	65	-1	-4	1	16	4
67	68	-1	-1	1	1	1
68	72	0	3	0	9	0
69	72	1	3	1	9	3
70	69	2	0	4	0	0
72	71	4	2	$\frac{16}{36}$	$\frac{4}{44}$	$\frac{8}{24}$

Now $\bar{u}=0 \quad \bar{V}=0$

$$
\begin{gathered}
\operatorname{cov}(u, v)=\frac{1}{n} \sum u v-\bar{u} \bar{v}=\frac{1}{8} \times 24=3 \\
\sigma u=\sqrt{\frac{1}{n} \sum u^{2}-u^{2}}=\sqrt{\frac{1}{8} 36}=\sqrt{4.5}=2121 \\
r_{v}=\sqrt{\frac{1}{n} \sum v^{2}-\bar{v}^{2}}=\sqrt{\frac{1}{8} \times 44}=\sqrt{5.5}=2.345 \\
r=\frac{\operatorname{cov}(u, v)}{r u \sigma v}=\frac{3}{2.121 \times 2.345}=0.6032
\end{gathered}
$$

Q. 2 Given

Coefficient of correlation ir $=0.8$
standard deviation of y series $=2.5$
Product of duriatirss taken fum their nespecteni airthmatic means $=60$
Sum of squares of deviation taken from airthmatic means of x series $=90$.
Find the number of items

Sol" we house given

$$
\begin{aligned}
& r=0.8, \quad \sum y=2.5, \sum\left(x_{i}-x\right)\left(y_{i}-\bar{y}\right)=60 \\
& \geq\left(x_{i}-\tilde{x}\right)^{2}=90 \\
& r=\frac{\sum\left(x_{i}-\ddot{x}\right)\left(y_{i}-\ddot{y}\right)}{\sqrt{\sum\left(x_{i}-\tilde{x}\right)^{2}} \sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}} \\
& =\frac{\bar{z}\left(x_{i}-\vec{x}\right)\left(y_{i}-\bar{y}\right)}{n \sigma_{x} \sigma_{y}} \\
& \bar{\pi}=\sqrt{\frac{1}{n} E\left(x_{i}-\bar{x}\right)^{2}} \quad, \quad \sigma y=\sqrt{\frac{1}{n} \sum\left(y_{i}-\bar{y}\right)^{2}} \\
& r=0.8=\frac{60}{\sqrt[n]{\frac{90}{n} \times 2.5}} \Rightarrow 0.8=\frac{10}{\sqrt{n} \sqrt{90} \times 2.5} \\
& \text { or } \sqrt{n}=\frac{60}{2.5 \times 0.8 \times \sqrt{90}} \\
& =9.999 \approx 10
\end{aligned}
$$

Q. 3 Calculate the coefficient of correlation bet $^{n} x \& y$ using the following data

$$
\text { Let } a=7, b=15
$$

x	y	$u=x-7$	$v=y-15$	u^{2}	v^{2}	$u v$
1	8	-6	-7	36	49	42
3	12	-4	-3	16	9	12
5	15	-2	0	4	0	0
7	17	0	2	0	4	0
8	18	1	3	1	9	3
10	20	3	$\frac{5}{0}$	$\frac{9}{66}$	$\frac{25}{96}$	$\frac{15}{72}$
$\bar{u}=\frac{\sum u}{n}=\frac{-8}{6}=-\frac{4}{3}$	$v=\frac{\sum v}{n}=0$					

$$
\begin{aligned}
\sigma_{x}^{2} & =\frac{\sum u^{2}}{n}-(\bar{u})^{2}=\frac{66}{6}-\frac{16}{9}=\frac{83}{9} \\
\sigma_{y}^{2} & =\frac{\Sigma v^{2}}{n}-(\bar{v})^{2}=\frac{96}{9}-0=16 \\
\operatorname{Cov}(x, y) & =\frac{\Sigma u v}{n}-\bar{u} \bar{v}=\frac{72}{6}-0=16 \\
r & =\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{12}{4 \sqrt{\frac{83}{9}} \times 4}=\frac{9}{9.11} \\
& =0.988
\end{aligned}
$$

Q4 Calculate the coefficient of correlation

x	y	$u=x-5$	$v=y-12$	u^{2}	v^{2}	$u v$
1	9	-4	-3	16	9	12
2	8	-3	-4	9	16	12
3	10	-2	-2	4	4	4
4	12	-1	0	1	0	0
5	11	0	-1	0	1	0
6	13	1	1	1	1	1
7	14	2	2	4	4	4
8	16	3	4	9	16	12
9	15	$\frac{4}{4}$	$\frac{3}{0}$	$\frac{16}{60}$	$\frac{9}{60}$	$\frac{12}{57}$

$$
\begin{aligned}
& \vec{u}=\vec{v}=0 \quad \operatorname{cov}(u, v)=\frac{1}{n} \sum \dot{u} v-\vec{u} \vec{v} \\
&=\frac{57}{9}=6333 \\
& \sigma u=\sqrt{\frac{1}{n} \sum u^{2}-\bar{u}^{2}}=\sqrt{\frac{60}{9}}=\sqrt{6.666}=2.582=\sigma_{v} \\
& r=\frac{\operatorname{Cov}(u, v)}{\Gamma u^{\sigma} v}=\frac{6.333}{6.666}=0.95
\end{aligned}
$$

Rank Correlation
When evert it is not possible to measure any charactorstic attribute like honesty, morality, beatty $d i c$. Then we assign rank of that attribute and then calculate the correlation coefficients.

$$
r=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

where $d i=x_{i}-y_{i}, \sum_{i=1}^{n} d_{i}{ }^{2}=\sum_{i=1}^{n}\left[\left(x_{i}-x\right)^{\prime}-\left(y_{i}-\bar{y}\right)\right]^{2}$
Q. 1 Obtain the rank correlation coefficient for the following data

$$
\begin{array}{lllllllllll}
x & 68 & 64 & 75 & 50 & 64 & 80 & 75 & 40 & 55 & 64 \\
y & 62 & 58 & 68 & 45 & 81 & 60 & 68 & 48 & 50 & 74
\end{array}
$$

Sol.

X	68	64	75	50	64	80	75	40	55	64
$\operatorname{Rank}\left(x_{i}\right)$	4	6	2.5	9	6	1	2.5	10	8	6
y	62	58	68	45	81	60	68	48	50	78
$\operatorname{Rank}\left(y_{i}\right)$	5	7	3.5	10	1	6	3.5	9	8	2
$d_{i}=x_{i}-y_{i}$	-1	-1	-1	-1	5	-5	-1	1	0	$4 \Rightarrow 0$
d_{i}^{2}	1	1	1	1	25	25	1	1	0	$16 \Rightarrow 72$

2.5 is repeated thrice so it correlation factor

$$
\begin{aligned}
& \left.(2.5) x=\frac{2\left(2^{2}-1\right)}{12}=\frac{1}{2} \quad X \text { for } 6\right)=\frac{3\left(3^{2}-1\right)}{12}=2 \\
& \text { C.f. for } x=\frac{1}{2}+2=5 / 2 \\
& \text { C.f. for } y=\frac{2\left(2^{2}-1\right)}{12}=\frac{1}{2}
\end{aligned}
$$

The rank correlation coefficient

$$
\begin{aligned}
& r=1-\frac{6\left[\Sigma d^{2}+\frac{5}{2}+\frac{1}{2}\right]}{n\left(n^{2}-1\right)} \\
&=1-\frac{6(72+3)}{10(100-1)}=1-\frac{6 \times 75}{10 \times 99}=\frac{1-5}{11}=\frac{6}{11} \\
& r=0.545
\end{aligned}
$$

Q. 2 Ten competitors in a bealety contest are ranked by three judges in the following order

Rank correlation coefficient bet' I \&II judges

$$
r=1-\frac{6 \sum v^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 200}{10(100-1)}=-0.212
$$

Rank co. coif bet II \& III

$$
r=1-\frac{6 \sum D_{2}^{2}}{n\left(n^{2}-1\right)}=1-\frac{6(214)}{10(100-1)}=-0.297
$$

Rank co.coefl bet" I \& II

$$
\gamma=1-\frac{6 \sum D_{z}^{2}}{n\left(n^{2}-1\right)}=1-\frac{6(60)}{10(100-1)}=0.636
$$

Q. 3 The marks of 8 candidates in Mathematics and English are given as

Maths	76	90	98	69	54	82	67	52
E english	25	37	56	12	7	36	23	11

Calculate rank correlation.
sol

x (Math)	y (Eng.)	R_{1}	R_{2}	$D=R_{1}-R_{2}$	D^{2}
76	25	4	4	0	0
90	37	2	2	0	0
98	56	1	1	0	0
69	12	5	6	-1	1
54	7	7	8	-1	1
82	36	3	3	0	0
67	23	6	5	1	1
52	11	8	7	1	$\sum_{D}^{2}=4$

$$
r=1-\frac{6 \Delta J^{2}}{M\left(N^{2}-1\right)}=1-\frac{6 \times 4}{8(64-1)}=0.925
$$

- Regression

Regression model help is to evaluate the magnitude of change in one variable due to other variable.

Equation of line of regression of y on x is

$$
y-\bar{y}=\underbrace{\frac{\gamma \sigma_{y}}{\sigma_{x}}(x-\bar{x})} \text { by. Re-grasion coefficients }
$$

or $\quad y-\bar{y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x}^{2}}(x-\bar{x})$

The line of regression of x on y is

$$
\begin{aligned}
x-x^{-} & =\frac{\operatorname{cov}(x, y)}{y^{2}}\left(y-y^{-}\right) \\
\text {Or } \quad x-x^{-} & =\frac{\gamma \sigma x}{\sigma y}\left(y-y^{2}\right) \\
\text { Note:- } &
\end{aligned}
$$

1. $\bar{x} \cdot \bar{y}$ is point of intersection of the two lines of regression
$2 b_{y x}=\frac{r^{\prime}}{\sigma_{x}}$ and $b_{x y}=\frac{\gamma \sigma_{x}}{\sigma_{y}}$ is known as coefficient of regression.
2. If $r=0$ then $y=\bar{y}$ \& $x=\bar{x}$ be tune lines of regression
3. If $r= \pm 1$ then line of regression is

$$
\frac{y-\bar{y}}{\sigma y}= \pm\left(\frac{x-\bar{x}}{\sigma x}\right)
$$

Properties of Regression Coefficients

1. Copulation coefficient (γ) is geometric mean bet ${ }^{n}$ by x \& buy.
2. If one of the regression coefficient is greater than 1 , the other must be less than unity.
3. Airthmatie meen of regression coefficients is greater than the correlation coefficients
4. Regression coefficients are independent of the change of oirgin but not of scale.
Q. 1 Show that θ, the acute angle bet" the two lines of regression is
$\tan \theta=\left(\frac{1-\gamma^{2}}{\gamma}\right) \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma^{2}+\sigma^{\prime}}$, Also Interpret the case ail"

The regression line of y on x is

$$
(y-\bar{y})=\frac{\gamma \sigma_{y}}{\sigma_{x}}(x-\bar{x}) \quad m_{1}=\frac{\gamma \sigma y}{\sigma x}
$$

regression line of x on y is

$$
\begin{aligned}
& x-\vec{x}=\frac{\gamma \sigma_{x}}{\sigma_{y}}(y-y) \quad m_{2}=\frac{\sigma_{y}}{\sigma_{x}} \\
& \tan \theta= \pm \frac{\left(m_{1}-m_{2}\right)}{1+m_{1} m_{2}} \\
& \tan \theta= \pm \frac{\left(\frac{\gamma \sigma_{y}}{\sigma_{x}}-\frac{\sigma_{y}}{\gamma^{\prime}} \sigma_{x}\right)}{\left.1+\frac{\gamma \sigma_{y}}{\sigma_{x}} \cdot \frac{\sigma_{y}}{\gamma \sigma_{x}}\right)}= \pm \frac{\left(\gamma^{2} \sigma_{x} \sigma_{y}-\sigma_{y} \sigma_{x}\right)}{\gamma \sigma_{x}^{2}+\gamma \sigma_{y}^{2}} \\
&= \pm \frac{\sigma_{x} \sigma_{y}\left(r^{2}-1\right)}{\gamma\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right.}
\end{aligned}
$$

on positive sign $\tan \theta=\frac{\sigma x \sigma y\left(r^{2}-1\right)}{\gamma\left(\sigma x^{2}+\sigma y^{2}\right)}=\frac{-\left(1-\gamma^{2}\right) \sigma_{x} \sigma_{y}}{\gamma\left(\sigma x^{2}+\sigma^{2}\right)}$
(θ will be an obtuse angl)
Taking negative sign

$$
\tan \theta=\frac{\sigma_{x} \sigma_{y}\left(1-r^{2}\right)}{r\left(\sigma_{x}^{2}+r^{4}\right)} \quad \begin{aligned}
& \text { (} \theta \text { will be an } \\
& \text { acute angle })
\end{aligned}
$$

when $r=0, \tan \theta=\infty$
$\Rightarrow \theta=90^{\circ} \Rightarrow$ both the regression lines are 1 to each other
when $r= \pm 1, \tan \theta=0$ or 7
\Rightarrow both the regression lines coincide each other and there is perfect correlation.
Q. 2 Calculate the coefficient of correlation and obtain the line of regression for the following data

x	1	2	3	4	5	6	7	8	9
y	9	8	10	12	11	13	14	16	15

Sol" As done earlier
\rightarrow Aliten

$$
\gamma_{x y}=\gamma_{u v}=0.95
$$

As

$$
\begin{array}{ll}
u=x-5 & , v=y-12 \\
\bar{u}=\bar{x}-5 & \bar{v}=\bar{y}-12 \\
\sigma_{u}^{2}=\sigma_{x}^{2} & , \sigma_{v}{ }^{2}=\sigma y^{2}
\end{array}
$$

Line of regression of $y m x$ b

$$
\begin{aligned}
& y-\bar{y}=\gamma_{x y} \frac{\sigma y}{\sigma x}(x-\bar{x}) \\
& y-(\bar{v}+12)=\gamma_{u v} \cdot \frac{\sigma_{u}}{\sigma v}[x-(\bar{u}+5)] \\
& y-(0+12)\left.=0.95 \frac{\sqrt{60 / 9}}{\sqrt{60 / 9}}[x-10+5)\right] \\
& y-12=0.95(x-5) \Rightarrow y=0.95 x+7.25
\end{aligned}
$$

Line of regression of x on y is

$$
\begin{aligned}
x-x & =\gamma_{x y} \frac{\sigma x}{\sigma y}(y-\bar{y}) \\
x-(\bar{u}+5) & =\gamma_{u v}[y-(\bar{v}+12)] \\
x-5 & =0.95(y-12) \\
x= & =0.95 y-6.4
\end{aligned}
$$

Q:3. In a partially destroyed laboratory record 13. of an analysis of correction date, the following results only are legible.
Variances of $x=9$
Regression eq' $8 x-10 y+66=0,40 x-18 y=214$.
a find a) the mean values of $x \& y$
Since both the lines of regression pass through \bar{x}, \bar{y}. hence

$$
\begin{aligned}
& 8 x^{-}-10 y^{-}+66=0 \\
& 40 x^{\prime}-18 y^{\prime}=214 \\
& \text { on solving wee get } \quad b x y=\frac{10}{8} \quad \bar{x}=13, y^{\prime}=17
\end{aligned}
$$

b) The standard deviation of y I it assume the regression eq of x on y be

$$
\begin{aligned}
& 8 x=-C c+10 y \\
& x=-\frac{66}{8}+\frac{10}{8} y \Rightarrow b x y=\frac{10}{8}
\end{aligned}
$$

from second eq"

$$
\begin{aligned}
-18 y & =-40 x+214 \\
y & =\frac{-214}{18}+\frac{40}{18} x \Rightarrow 6 y x=\frac{40}{18}
\end{aligned}
$$

Since both the regression coefficients are greater than one. out assumption is wrong, Hence the first eq" 's $y m x$.
Again

$$
\begin{aligned}
& 10 y=8 x+66 \\
& y=\frac{8}{10} x+6.6 \quad \Rightarrow b y x=\frac{8}{10} \\
& x=\frac{18}{40} y+\frac{214}{40} \quad \Rightarrow b x y=\frac{18}{40} \\
& r= \pm \sqrt{b x y x b y x}=\sqrt{0.6} \quad=\sqrt{0.36}= \pm 0.6
\end{aligned}
$$

c) Coefficient of correlation bet ${ }^{n} x$ and y

Given $\sigma_{x}=3$

$$
b x y=\frac{r \sigma_{x}}{\sigma_{y}} \Rightarrow \frac{18}{40}=0.6 \times \frac{3}{\sigma_{y}} \Rightarrow \sigma_{y}=4
$$

Q. 4 For a binariate distribution $n=18, \sum x^{2}=60, \quad \sum y^{2}=96$ $\sum x=12, \sum y=18, \sum x y=48$. Find the equations of the lines of regression and r.
sot" $x^{-}=\frac{\sum x}{n}=\frac{12}{18}=0.667$.

$$
\begin{gathered}
y^{2}=\frac{\sum y}{n}=\frac{18}{18}=1 \\
\sigma_{x}^{2}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}=\frac{60}{18}-(0.667)^{2}=2.8884 \\
\sigma y^{2}=\frac{\sum y^{2}}{n}-(\bar{y})^{2}=\frac{96}{18}-1=4.3333 \\
\operatorname{Cov}(x, y)=\frac{\sum x y}{n}-\bar{x} y=\frac{48}{18}-(0.667)(1)=1.9997
\end{gathered}
$$

Line of regression of y on x b

$$
\begin{aligned}
y-y & =\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}}(x-\bar{x}) \\
y-1 & =\frac{1.9997}{2.888}(x-0.667) \\
& =0.692(x-0.667 \\
\Rightarrow \quad 0.692 x & -y+0.538=0 \\
\Rightarrow \quad y & =0.692 x+0.538
\end{aligned}
$$

Line of regression of x on y s

$$
\begin{aligned}
& \text { of regression of } x \text { on } y b \\
& x-x=\frac{\operatorname{cov}(x, y)}{y^{2}}\left(y-y^{-}\right) \Rightarrow x-0.667=\frac{1.9997}{4.333}(y-1 \\
& x-0.667=0.4615(y-1) \\
& x=0.4615 y+0.2055
\end{aligned}
$$

Also $\gamma^{2}=$ buy by x $=0.4615 \times 0.692=0.3194$

$$
r=0.57
$$

Scanned by CamScanner

