JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTER

Year \& Sem. - II \& III Civil
Subject -Engineering Mechanics
Unit- 2
Presented by - Sumit Saini (Assistant Professor)

VISION AND MISSION OF INSTITUTE

VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional ,cultur al and social enrichment of the lives of indivisuals and communities

MISSION OF INSTITUTE

Focus on evaluation of learining, outcomes and motivate students to research apptitude by project base d learning.
-Identify based on informed perception of indian ,regional and global needs ,the area of focus and prov ide plateform to gain knowledge and solutions.
-
-Offer oppurtunites for interaction between academic and industry .
-Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted lea ders may emerge.

VISION AND MISSION OF DEPARTMENT

Vision

To become a role model in the field of Civil Engineering for the sustainable development of the s ociety.

Mission

1)To provide outcome base education.
2)To create a learning environment conducive for achieving academic excellence.
3)To prepare civil engineers for the society with high ethical values.

ANALYSIS OF PLANE TRUSSES

$>$ Engineering Structures
$>$ Rigid or perfectTruss
$>$ Determination of Axial forces in themembers of truss
Method of Joints

Fig. c Statically inderterminate truss with one redundant member

Method of Sections.

ENGINEERING STRUCTURES

ENGINEERING STRUCTURES:-- These may be defined as any system of connected member built to support of transfer forces acting on them and to safely withstand these forces.

The Engineering structures are broadly divided in to-
1.Trusses

2. Frames

3. Machine

Trusses

- A truss is a structure composed of slender members joined together at their end points.
- Each member onlytakes axial forces
- It is a system of uniform bars and members (of circular, channel and angle section etc.) joined together at their ends by riveting and welding.
- Trusses are constructed to support loads.
- The members of a truss are straight members and the loads are applied only on the joints.
- Every member of a truss is two force member.

Frames

- It is a structure consisting of several bars or members pinned together and
- In which one and more than one of its members is subjected to more than two forces.
- They are designed to support loads and are stationary structures

(Forces are applied only at the joints)

Frame
(Forces may act anywhere on the member)

RIGID OR PERFECT TRUSS

- The term rigid with reference to the truss, is used in the sense that the truss is non collapsible when external forces areremoved
- Stable structure If ($\mathbf{m + 3 = 2 x j}$)

Basic Assumption for Perfect Truss

1. The joints of simple truss are assumed to be pin connections and frictionless. The joints therefore can not resist moments.
2. The loads on the truss are applied in joints only.
3. The members of a truss are straight two force members with the forces acting collinear with the centerline of the members.
4. The weight of the members are negligibly small unless otherwise mentioned.
5. The truss is statically determinate

Determination of Axial forces in the members of truss

There are three methods :

1. METHOD OFJOINTS

2 METHOD OFSECTION

Method of Joints

Principle;

If a truss is in equilibrium, then each of its joints must also be in equilibrium.

Procedure:

1. Start with a joint that has no more than two unknown forces
2. Establish the x and y axis;
3. At this joint, $\sum \mathrm{F}_{\mathrm{x}}=0$ and $\sum \mathrm{F}_{\mathrm{y}}=0$;
4. After finding the unknown forces applied on this joint, these forces become the given values in the analysis of the n extjoints.
5. At this joint, $\sum \mathrm{F}_{\mathrm{x}}=0$ and $\sum \mathrm{F}_{\mathrm{y}}=0$;

Method of Joints

Tips:

1. The joints with external supports always connect with two truss members. Thus many ti mes, the analysis starts from analyzing the supports. Therefore very often the analysis be gins with finding the reaction forces applied at the supports.
2. Pay attention to symmetric systems and zero-force members. Identification of these special case s sometimes will make the whole analysis WAY EASIER!!

Method of Joint

At any joint having two unknown forces
$\sum F_{x}=0$ and $\sum F_{y}=0$

SPECIAL CONDITIONS

1. When two members meet at a joint are not collinear and there is no external force acting at the joint, then the forces in both the members are zero.
2. When there are three members meeting at a joint, of which two are collinear and third member be at an an gle and if there is no load at the joint, the force in third member is zero.

Method of Joint

- The method of joints is one of the simplest methods for determining the force acting on the individual members of a truss because it only involves two force equilibrium equations.

Since only two equations are involved, only two unknowns can be solved for at a time. Ther efore, you need to solve the joints in a certain order. That is, you need to work from the sides towards the center of the truss.

- Since you need to work in a certain order, the Method of Sections (which will be covered lat er) can be more useful if you just want to know the forces acting on a particular member clo se to the center of the truss.

Method of Joint

- Using method of joints find the axial forces in all the members of a truss with the loading shown infigure

Sol : As there is no horizontal external force acting on the truss, so horizontal component of a reaction at A is zero therefore
Lets take moment at A

$$
\begin{aligned}
& \sum_{-2000 \times 1.5-4000 \times 4.5+\operatorname{Rc} \times 6=0} \\
& \mathrm{Rc}=3500 \mathrm{~N}
\end{aligned}
$$

$$
\sum \mathrm{Fy}=0
$$

$$
\mathrm{Ra}+\mathrm{Rc}-2000-4000=0 \mathrm{Ra}=2500 \mathrm{~N}
$$

Two unknown reactions are known now

Method of joint

- Using method of joints find the axial forces in all the members of a truss with the loading shown infigure

Joint-A

Lets begin with joint A , at which there are two unknown forc es. We can not begin with joint D because there are three unkn own forces acting at joint D therefore,
Consider a free body diagram at joint A. Equations of equilibr ium can be written as
$\sum \mathrm{F}_{\mathrm{x}}=0, \mathrm{~F}_{\mathrm{ab}}-\mathrm{F}_{\mathrm{ad}} \cos 60^{\circ}=0$
$\sum \mathrm{Fy}=0, \mathrm{R}_{\mathrm{a}}-\mathrm{F}_{\mathrm{ad}} \sin 60^{\circ}=0$
$\mathrm{F}_{\mathrm{ad}}=\mathrm{Ra} / \sin 60=2500 / 0.866=2887 \mathrm{~N}$ (Comp)
$\mathrm{C}=\mathrm{F}_{\mathrm{ad}} \cos 60^{\circ}=2887 \times 0.5=1443 \mathrm{~N} \quad$ (Tensile)
The forces $\mathrm{F}_{\mathrm{ad}} \& \mathrm{~F}_{\mathrm{ab}}$ are both positive therefore the assu med direction of forces are correct

Method of joint

Joint-C

Therefore
Consider a free body diagram at joint C. Equations of equili brium can be written as
$\sum \mathrm{Fx}=0, \mathrm{~F}_{\mathrm{cc}} \cos 60^{\circ}-\mathrm{F}_{\mathrm{cb}}=0$
$\sum \mathrm{Fy}=0, \mathrm{R}_{\mathrm{c}}-\mathrm{F}_{\mathrm{ce}} \sin 60^{\circ}=0$
$\mathrm{F}_{\mathrm{ce}}=\mathrm{Rc} / \sin 60=3500 / 0.866=$ 4041 N
(Comp)
$\mathrm{F}_{\mathrm{cb}}=\mathrm{F}_{\mathrm{ce}} \mathrm{x} \cos 60^{\circ}=4041 \times 0.5=$ 2020.5 N
(Tensile)
The forces $\mathrm{Fce} \& \mathrm{Fcb}$ are both positive therefore the assumed direction of forces are correct

Method of Joint

Joint-D

Therefore
Consider a free body diagram at joint C. Equations of eq uilibrium can be written as
$\sum \mathrm{Fx}=0, \mathrm{~F}_{\mathrm{db}} \cos 60^{\circ}+\mathrm{F}_{\mathrm{ad}} \cos 60^{\circ}-\mathrm{F}_{\mathrm{de}}=0$
$\sum \mathrm{Fy}=0, \mathrm{R}_{\mathrm{c}} \mathrm{F}_{\mathrm{ce}} \sin 600^{\circ}=0$
$\mathrm{F}_{\mathrm{ce}}=\mathrm{Rc} / \sin 60=3500 / 0.866=4041 \mathrm{~N}$
(Comp)
$\mathrm{F}_{\mathrm{cb}}=\mathrm{F}_{\mathrm{ce}} \mathrm{x} \cos 60^{\circ}=4041 \times 0.5=2020.5 \mathrm{~N}$ (Tensile)

The forces $\mathrm{Fce} \& \mathrm{Fcb}$ are both positive therefore the assumed direction of forces are correct

Method of joint

Method of Joint

- $\sum \mathrm{Fx}=0, \mathrm{~F}_{\mathrm{eb}} \cos 60^{0}+\mathrm{F}_{\mathrm{de}}-\mathrm{F}_{\mathrm{de}} \cos 60^{\circ}=0$

$$
\mathrm{F}_{\mathrm{eb}}=4041 \times 0.5-1732 / 0.5=577 \mathrm{~N}(\mathrm{comp})
$$

- There is no need to consider the equilibrium of the joint B as all the forces have been determined

Method of Section

1.The Method of Sections involves analytically cutting the truss into sections and solving for static equilibrium foreach section.

Method of Section

Method of Sections - Cutting through AC, BC and BD

Let's create a section by cutting through members AC, BC and BD. Recall that we want to cut through at most three members.

Let's redraw this section enlarged.

Method of Section

Method of Sections - Cutting through AC, BC and BD

Since $F_{B C}$ is the only force that has a vertical component, it must point down to balance the 15 N force ($A \mathrm{x}_{\mathrm{N}}$).
Taking moments about point B has both forces at A giving clockwise moments. Therefore, FAC must point to the right to provide a counter-clockwise moment.
Taking moments about point C has the 15 N force acting at A and the 120 N acting at B giving clockwise moments. Therefore, F_{BD} must point to the left to provide a counter-clockwise moment.

Method of Section

- Solving in the order of the previous page:
- $\mathrm{F}_{\mathrm{Y}}=+15 \mathrm{~N}-\mathrm{F}_{\mathrm{BC}}=0$

$$
\mathrm{F}_{\mathrm{BC}}=15 \mathrm{~N} \text { (tension) }
$$

- $\mathrm{M}_{\mathrm{B}}=-(120 \mathrm{~N})(3 \mathrm{~m})-(15 \mathrm{~N})(4 \mathrm{~m})+\mathrm{F}_{\mathrm{AC}}(3 \mathrm{~m})=0$

$$
\mathrm{F}_{\mathrm{AC}}=140 \mathrm{~N} \text { (tension) }
$$

- $\mathrm{M}_{\mathrm{C}}=-(15 \mathrm{~N})(4 \mathrm{~m})-(120 \mathrm{~N})(3 \mathrm{~m})+\mathrm{F}_{\mathrm{BD}}(3 \mathrm{~m})=0$

$$
\mathrm{F}_{\mathrm{BD}}=140 \mathrm{~N} \text { (compression) }
$$

Method of Section

Method of Sections - Important Points

- When drawing your sections, include the points that the cut members would have connecte d to if not cut. In the section just looked at, this would be points C and D .

Each member that is cut represents an unknown force. Look to see if there is a direction (h orizontal or vertical) that has only one unknown. If this true, you should balance forces in t hat direction. In the section just looked at, this would be the forces in the vertical direction since only F_{BC} has a vertical component.

If possible, take moments about points that two of the three unknown forces have lines of forces that pass through that point. This will result in just one unknown in that moment e quation. In the section just looked at, taking moments about point B eliminates the unknow ns F_{BC} and F_{BD}. Similarly, taking moments about point C eliminates the unknowns F_{BC} and F ${ }_{A C}$ from the equation.

Method of Sections - Cutting through BD, CD and CE

- Since we know (from the previous section) the direction of F_{BD} we draw that in first. W e could also reason this direction by taking moments about point C .
- Since F_{CD} is the only force that has a vertical component, it must point down to balance t he 15 N
force $\left(A_{Y}\right)$.
- Taking moments about point D has the 120 N force and 15 N force acting at A giving cl ockwise moments. Therefore F_{CE} must point to the right to give a counter-clockwise m oment to balance this out.

Method of Section

Solving in the order of the previous page:

- $\mathrm{F}_{\mathrm{Y}}=+15 \mathrm{~N}-3 / 5 \mathrm{~F}_{\mathrm{CD}}=0$

$$
\mathrm{F}_{\mathrm{CD}}=5 / 3(15 \mathrm{~N})=25 \mathrm{~N}(\text { compression })
$$

- $\mathrm{M}_{\mathrm{D}}=-(120 \mathrm{~N})(3 \mathrm{~m})-(15 \mathrm{~N})(8 \mathrm{~m})+\mathrm{F}_{\mathrm{CE}}(3 \mathrm{~m})=0$

$$
\mathrm{F}_{\mathrm{CE}}=\quad=160 \mathrm{~N}(\text { tension })
$$

Method of Section

Method of Sections - Cutting through DF, DG and EG
s

Since FDG is the only unknown with a vertical component, it must point up since the 150 N force at F is bigger the 135 N force at H . Taking moments about point G has the 135 N force at H giving a counter-clockwise moment. Therefore FDF must point to the right to give a clockwise moment about point G to balance this out.
Taking moments about point D has the 150 N force acting clockwise and the 135 N force acting counter-clockwise. The 135 N force has twice the moment arm so $F_{E G}$ must point left to give a

Method of Section

- Solving in the order of the previous page:
- $\mathrm{F}_{\mathrm{Y}}=-150 \mathrm{~N}+135 \mathrm{~N}+\mathrm{F}_{\mathrm{FG}}=0$

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{FG}}=150 \mathrm{~N}-135 \mathrm{~N}=15 \mathrm{~N}(\text { compression }) \\
\cdot \mathrm{M}_{\mathrm{F}}=+(135 \mathrm{~N})(4 \mathrm{~m})-\mathrm{F}_{\mathrm{GH}}(3 \mathrm{~m})=0 \\
\mathrm{~F}_{\mathrm{GH}}=180 \mathrm{~N}(\text { tension })
\end{array}
$$

Method of Section

- Method of Sections - Remaining members
- For the rest of the members, AB, DE and FH , the only sections that would cut through them amount t o applying the Method of Joints.
- To solve for the force in member AB , you would cut through AB and AC . This is equivalent to applying the method of joints at joint A .
- To solve for the force in member FH, you would cut through FH and GH. This is equivalent to applying the method of joints at joint H .
- To solve for the force in member DE, you would cut through CE,DE and EG. This is equivalent to ap plying the method of joints at joint E .

Solved Example

Substituting for $F_{B C}$ in (ii) $\quad F_{B F}=F_{B G} \cos 49.1^{\circ}=0.441 \mathrm{~W} \times 0.655$ $F_{B F}=0.289 \mathrm{~W}(\mathrm{C})$ Ans.

Joint G

Joint G
$\Sigma F_{x}=0: \quad-F_{G E}+F_{G C}+F_{G B} \cos 79.1^{\circ}+F_{G F} \cos 60^{\circ}=0$ $\Sigma F=0: \quad-F_{G F} \sin 60^{\circ}+F_{G B} \sin 79.1^{\circ}=0$
...(iii)

$$
\text { Or } \quad F_{G F}=\frac{F_{G B} \sin 79.1}{\sin 60^{\circ}}=\frac{0.441 \mathrm{~K}}{0.887}
$$

$$
F_{G F}=0.5 W(C) \text { Ans. }
$$

Solving (iii)
$G_{G F}=0.5 \mathrm{~W}(\mathrm{C}) \quad$ Ans
Example 9.5 A truss is loaded and supported as shown. Determine the members $C E, C G$ and $F G$.

Fir 9.15

coulibrium of the entire truss as a free-body
Suppurt Reactionents about A, $\quad 00 \times A D-1000 \times A C=0$
Takint moments $R_{B}(3)-2000 \times A D-1000 \times A C=0$
$\Sigma M_{A}=0: \quad R_{B} \quad 3 R_{B}-2000 A F \cos 30^{\circ}-1000 A G \cos 30^{\circ}=0$

$$
3 R_{B}=2000 \times \frac{\sqrt{3}}{2}+1000 \times 2 \times \frac{\sqrt{3}}{2}
$$

$$
R_{B}=\frac{2000}{\sqrt{3}} \mathrm{~N}
$$

$\Sigma F_{y}=0: R_{B}+Y_{A}-1000 \cos 30^{\circ}-2000 \cos 30^{\circ}-1000 \cos 30^{\circ}=0$
$Y_{A}=\frac{\sqrt{3}}{2}(4000)-\frac{2000}{\sqrt{3}}=\frac{4000}{\sqrt{3}}$
$Y_{A}=\frac{4000}{\sqrt{3}} \mathrm{~N}$
$x_{A}+1000 \sin 30^{\circ}+2000 \sin 30^{\circ}+1000 \sin 30^{\circ}=0$
$\Sigma F_{x}=0: \quad-X_{A}=1000 \times 0.5+2000 \times 0.5+1000 \times 0.5$

$$
X_{A}=2000 \mathrm{~N}
$$ \[

X_{A}=2000 \mathrm{~N}
\]

Pass a section $m n$ through the truss cutting the members CE, CG an 1000 N

Taking moments about C,
$\Sigma M_{C}=0: \quad-F_{F G} \times 0.5 \tan 60^{\circ}+R_{B}(1.5)$

$$
-F_{F G} \times 0.5 \times \sqrt{3}+\frac{2000}{\sqrt{3}} \times 1.5=0
$$

$F_{F G}=2000 \mathrm{~N}(\mathrm{~T})$ Ans.

203

Taking moments about G,
$\Sigma M_{G}=0 ; \quad F_{C K}\left(1 \times \sin 30^{\prime \prime}\right)+R_{G}(1)=0$

$$
F_{C E}=-\frac{2000}{\sqrt{3}} \times \frac{1}{0.5}=-2309 \mathrm{~N}
$$

Reverse the sign of the force $F_{C E}$
$F_{C E}=2309 \mathrm{~N}(\mathrm{C}) \quad$ Ans.
Taking moments about B,
$\Sigma M_{B}=0$:
$\mathrm{CCO}^{\left(1 \times \sin 60^{\circ}\right)=0}$
$F_{C G}=0$ Ans

- Example 9.6 A hexagonal truss formed of 11 bars of 2 m length each. It is hinged at one end Example 9.6 A hexagonal Solution: Support Reactions: Consider the equilibrium of the entire truss as a free-body Fig- 9.17.

Taking moments about A,
$\Sigma M_{A}=0: \quad R_{E}(A F)-50(H G)=0$

$$
\begin{aligned}
H G & =2 \sin 60^{\circ}=2 \times \frac{\sqrt{3}}{2}=\sqrt{3} \\
R_{F} & =\frac{50 \times \sqrt{3}}{2} \\
R_{F} & =43.3 \mathrm{~N}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Sigma F_{x}=0: & X_{A} & =50 \mathrm{~N} \\
\Sigma F_{y}=0: & Y_{A}+R_{F}-100 & =0 \\
& & Y_{A} & =100-43.3 \\
Y_{A} & =56.7 \mathrm{~N}
\end{array}
$$

the truss cutting the members $C D, G D, G E$ and $G F$ and conside ion $m n$ through the truss
Puas librium of the risht han
Taking moments about $G_{1}, F_{C u}\left(2 \sin 60^{\circ}\right)=0$
$\Sigma u_{G}=0$:
$R_{F}(1)-F_{C D}(2 \sin$
$\times 1-F_{C D} \times 2 \times 0.866=0$
$F_{C D}=25.0 \mathrm{~N}(C)$ Ans.
$F_{C D}=C B, G B$ and $G A$
Next pass a section $p q$ cutting the mand portion of the truss (Fig. 9.18)
Consider the equilibrium
Take moments about B
$\mathrm{SM}_{\mathrm{B}}=0$:
$F_{G A}\left(2 \sin 60^{\circ}\right)+43.3(3)-129.9-100=0$
$\boldsymbol{F}_{G A}=17.26 \mathrm{~N}(\mathrm{~T})$
Take moments about G,
$\Sigma M_{C}=0:-F_{C n}(2 \sin 609)+100(1)+43.3(1)=0$
$F_{C B}=\frac{143.3}{2 \times 0.866}$
$F_{C B}=82.74 \mathrm{~N}(\mathrm{C})$
$F_{G B}=0$
$F_{G B}=\cos 60^{\circ}\left(F_{C B}-F_{G A}\right.$
$F_{G B}=0.5(82.74-17.26)$
$F_{G B}=32.74 \mathrm{~N}(\mathrm{~T})$ Ans.
Example 9.7 Determine the forces in the bars $D C, D H$ and $F H$ of the truss loaded and supported
as shown in Fig. 9.19.

Pig. 9.19

JECRC Foundation

JAIPUR ENGINEEPING COLLEGE AND RESEARCH CENTRE

Jhank you?

STAY HOME, STAY SAFE

