Example . Using Fourier transform, solve $\frac{\partial^{4} \theta}{\partial x^{4}}+\frac{\partial^{2} \theta}{\partial t^{2}}=0 \quad-\infty<x<\infty, t \geq 0$
satisfying the conditions,
(i) $\theta=f(x)$ when $t=0, x>0$
(ii) $\frac{\partial \theta}{\partial t}=0, \quad$ when $t=0, x>0$
(iii) $\theta(x, t)$ and its first three partial derivatives with respect to x tend to zero as $x \rightarrow \pm \infty$.

Sol. Taking the Fourier transform of both the sides, we have

$$
\begin{aligned}
& \mathrm{F}\left[\frac{\partial^{4} \theta}{\partial x^{4}}\right]+\mathrm{F}\left[\frac{\partial^{2} \theta}{\partial t^{2}}\right]=0 \\
\Rightarrow \quad & (-i s)^{4} \mathrm{~F}(\theta)+\frac{d^{2} \bar{\theta}}{d t^{2}}=0 \\
\Rightarrow \quad & \frac{d^{2} \bar{\theta}}{d t^{2}}+s^{4} \bar{\theta}=0 \\
\Rightarrow \quad & \left(\mathrm{D}^{2}+s^{4}\right) \bar{\theta}=0
\end{aligned}
$$

A.E. is $m^{2}+s^{4}=0 \Rightarrow m= \pm i s^{2}$
$\therefore \bar{\theta}=\mathrm{A} \cos s^{2} t+\mathrm{B} \sin s^{2} t$
But we are given that $\theta=f(x)$ when $t=0$

$$
\bar{\theta}=\bar{f}(s) \text { when } t=0
$$

Applying this condition in (1) we obtain

$$
\begin{equation*}
\bar{f}(s)=\mathrm{A}+0 \Rightarrow \mathrm{~A}=\bar{f}(s) \tag{2}
\end{equation*}
$$

From the second boundary condition, we have

$$
\frac{\partial \theta}{\partial t}=0 \text { when } t=0
$$

$\Rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{\partial \theta}{\partial t} e^{i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 0 \cdot e^{i s x} d x=0$
$\Rightarrow \frac{\partial \bar{\theta}}{\partial t}=0$ when $t=0$
Now Differentiating (1) with respect to t, we have

$$
\frac{d \bar{\theta}}{d t}=-\mathrm{A} s^{2} \sin \left(s^{2} t\right)+\mathrm{B} s^{2} \cos \left(s^{2} t\right)
$$

$$
\begin{equation*}
\therefore 0=0+B s^{2} 1 \quad \therefore \mathrm{~B}=0 \quad\left(\text { as } s^{2} \neq 0\right) \tag{3}
\end{equation*}
$$

Putting the values of A and B from (2) and (3) in the equation (1), we have $\bar{\theta}=\bar{f}(s) \cos s^{2} t$
Again applying the inversion formula, we get

$$
\begin{aligned}
& \theta(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{\theta} e^{-i s x} d s \\
& \theta(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{f}(s) \cos \left(s^{2} t\right) e^{-i s x} d s
\end{aligned}
$$

Its solution is $\bar{u}_{s}=A e^{-2 s^{2} t}$
But given that $u(x, 0)=e^{-x}, \therefore \quad$ when $t=0$

$$
\begin{gather*}
\bar{u}(s, 0)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} u(x, 0) \sin s x d x \\
\bar{u}(s, 0)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x} \sin s x d x \\
\bar{u}(s, 0)=\sqrt{\frac{2}{\pi}} \frac{s}{1+s^{2}} \tag{4}
\end{gather*}
$$

using (4) in (3) when $t=0$, we get

$$
A=\sqrt{\frac{2}{\pi}} \frac{s}{1+s^{2}}
$$

$\therefore \quad$ from (3) $\bar{u}_{s}=\sqrt{\frac{2}{\pi}} \frac{s}{1+s^{2}} e^{-2 s^{2} t}$
Now, applying the inverse Fourier sine transform, we have

$$
\begin{align*}
u(x, t)= & \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sqrt{\frac{2}{\pi}} \frac{s}{1+s^{2}} e^{-2 s^{2} t} \sin s x d s \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{s e^{-2 s^{2} t}}{\left(1+s^{2}\right)} \sin s x d s
\end{align*}
$$

2. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, if $u_{x}(0, t)=0, u(x, 0)=\left\{\begin{array}{cc}x, & 0 \leq x \leq 1 \\ 0, & x>1\end{array}\right.$ and $u(x, t)$ is bounded where $x>0, t>0$.
Sol. Given equation is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

Taking the Fourier cosine transform of both the sides, we have

$$
F_{c}\left\{\frac{\partial u}{\partial t}\right\}=F_{c}\left\{\frac{\partial^{2} u}{\partial x^{2}}\right\}
$$

$\Rightarrow \frac{d \bar{u}_{c}}{d t}=-\sqrt{\frac{2}{\pi}}\left(\frac{\partial u}{\partial x}\right)_{x=0}-s^{2} \bar{u}_{c}(s, t)$
$\Rightarrow \frac{d \bar{u}_{c}}{d t}+s^{2} \bar{u}_{c}=-\sqrt{\frac{2}{\pi}}\left(\frac{\partial u}{\partial x}\right)_{x=0}$
$\Rightarrow \frac{d \bar{u}_{c}}{d t}+s^{2} \bar{u}_{c}=0$
Its solution is $\bar{u}_{c}=A e^{-s^{2} t}$
But $u(x, 0)=\left\{\begin{array}{cc}x, & 0 \leq x \leq 1 \\ 0, & x>1\end{array} ;\right.$ when $t=0$
$\Rightarrow \quad \bar{u}_{c}(s, 0)=f_{c}\{u(x, 0)\}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} u(x, 0) \cos s x d x$

$$
\begin{align*}
& =\sqrt{\frac{2}{\pi}}\left[\int_{0}^{1} x \cos s x d x\right]=\sqrt{\frac{2}{\pi}}\left[\frac{x \sin s x}{s}+\frac{\cos s x}{s^{2}}\right]_{0}^{1} \\
\bar{u}_{c}(s, 0) & =\sqrt{\frac{2}{\pi}}\left[\frac{\sin s}{s}+\frac{\cos s-1}{s^{2}}\right] \tag{3}
\end{align*}
$$

$\therefore \quad$ using the above condition (3) in (2), we have

$$
\begin{equation*}
A=\sqrt{\frac{2}{\pi}}\left[\frac{\sin s}{s}+\frac{\cos s-1}{s^{2}}\right] \tag{4}
\end{equation*}
$$

putting the value of A in (2), we get

$$
\bar{u}_{c}(s, t)=\sqrt{\frac{2}{\pi}}\left[\frac{\sin s}{s}+\frac{\cos s-1}{s^{2}}\right] e^{-s^{2} t}
$$

Now applying the inverse Fourier cosine transform, we have

$$
\begin{aligned}
& u(x, t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \bar{u}_{c}(s, t) \cos s x d s \\
& =\frac{2}{\pi} \int_{0}^{\infty}\left(\frac{\sin s}{s}+\frac{\cos s-1}{s^{2}}\right) e^{-s^{2} t} \cos s x d s
\end{aligned}
$$

Ans.
4. Use the method of Fourier transform to determine the displacement $y(x, t)$ of an infinite string, given that the string is initially at rest and that the initial displacement is $f(x),-\infty<x<\infty$. Show that the solution can also be put in the form

$$
y(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]
$$

Sol. Displacement of the string is governed by one dimensional wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
where $y(x, t)$ is the displacement of string at any time t,
$-\infty<x<\infty, t>0$ and $c^{2}=\frac{T}{\rho}$

Taking the Fourier transform of both the sides of equation (1), we have

$$
\begin{aligned}
& F\left[\frac{\partial^{2} y}{\partial t^{2}}\right]=c^{2} F\left[\frac{\partial^{2} y}{\partial x^{2}}\right] \\
\Rightarrow & \frac{d^{2} \bar{y}}{d t^{2}}=c^{2}(-i s)^{2} \bar{y}(s, t)=-c^{2} s^{2} \bar{y}(s, t) \\
\Rightarrow & \frac{d^{2} \bar{y}}{d t^{2}}(s, t)+c^{2} s^{2} \bar{y}(s, t)=0
\end{aligned}
$$

whose solution is

$$
\begin{equation*}
\bar{y}(s, t)=A \cos c s t+B \sin c s t \tag{2}
\end{equation*}
$$

Initially the string is at rest i.e.. $\frac{\partial y}{\partial t}=0$ at $t=0$

$$
\begin{equation*}
\therefore \quad\left(\frac{d \bar{y}}{d t}\right)_{t=0}=F\left[\left(\frac{\partial y}{\partial t}\right)_{t=0}\right]=0 \tag{3}
\end{equation*}
$$

differentiating (3) w.r.to t, we have

$$
\begin{equation*}
\frac{d \bar{y}}{d t}=-A \operatorname{cs} \sin c s t+B \operatorname{cscos} c s t \tag{4}
\end{equation*}
$$

using (3) in (4), we get $B c s=0$ or $B=0$
\therefore (2) can be written as $\bar{y}(s, t)=A \cos c s t$
Also at $t=0, y=f(x)$

$$
\begin{align*}
& \therefore \quad \bar{y}(s, 0)=F[y(x, 0)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(u) e^{i s u} d u=\bar{f}(s) \\
& \therefore \quad \bar{y}(s, 0)=\bar{f}(s) \tag{6}
\end{align*}
$$

at $t=0$ from (5) and (6), we get $A=\bar{f}(s)$
$\therefore \quad \bar{y}(s, t)=\bar{f}(s) \cos c s t$
Taking the inverse Fourier transform, we have

$$
y(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{f}(s) \cos c s t e^{-i s x} d s
$$

$$
\begin{align*}
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{f}(s)\left\{\frac{e^{i c s t}+e^{-i c s t}}{2}\right\} e^{-i s x} d s \\
& =\frac{1}{2 \sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{f}(s)\left\{e^{-i s(x-c t)}+e^{-i s(x+c t)}\right\} d s \\
& =\frac{1}{2}\{f(x-c t)+f(x+c t)\} \\
\therefore \quad & y(x, t)=\frac{1}{2}[f(x-c t)+f(x+c t)] \tag{Ans.}
\end{align*}
$$

5. If the initial temperature of an infinite bar is given by

$$
u(x)=\left\{\begin{array}{ccc}
u_{0} & \text { for } & |x|<a \\
0 & \text { for } & |x|>a
\end{array}\right.
$$

Determine the temperature at any point x at any instant t.
Sol. We know that the heat diffusion equation is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

where $u(x, t)$ is the temperature at any point x and at any instant t.
Taking the Fourier transform of both the sides of (1), we get

$$
\begin{aligned}
& F\left\{\frac{\partial u}{\partial t}\right\}=c^{2} F\left[\frac{\partial^{2} u}{\partial x^{2}}\right\} \\
\Rightarrow & \frac{d \bar{u}}{d t}(s, t)=c^{2}(-i s)^{2} \bar{u}(s, t) \\
\Rightarrow & \frac{d \bar{u}}{d t}=-c^{2} s^{2} \bar{u}
\end{aligned}
$$

whose solution is $\bar{u}=A e^{-c^{2} s^{2} t}$
But given that when $t=0, u(x, 0)=f(x)=\left\{\begin{array}{cc}u_{0}, & |x|<a \\ 0, & |x|>a\end{array}\right.$
$\therefore \quad \bar{u}(s, 0)=F[u(x, 0)]$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, 0) e^{i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} u_{0} e^{i s x} d x
$$

$$
\begin{align*}
\bar{u}(s, 0) & =\frac{u_{0}}{\sqrt{2 \pi}} \frac{1}{i s}\left[e^{i s x}\right]_{-a}^{a}=\frac{u_{0}}{i s \sqrt{2 \pi}}\left(e^{i s a}-e^{-i s a}\right) \\
& =\frac{u_{0}}{s \sqrt{2 \pi}} 2 \sin a s=\sqrt{\frac{2}{\pi}} u_{0} \frac{\sin a s}{s} \\
\therefore \quad \bar{u}(s, 0) & =\sqrt{\frac{2}{\pi}} u_{0} \frac{\sin a s}{s} \tag{3}
\end{align*}
$$

Now at $t=0$, using (3) in (2) we get $A=\sqrt{\frac{2}{\pi}} u_{0} \frac{\sin a s}{s}$

$$
\therefore \quad \bar{u}=\sqrt{\frac{2}{\pi}} \frac{u_{0} \sin a s}{s} e^{-c^{2} s^{2} t}
$$

now taking inverse Fourier transform, we get

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \bar{u}(s, t) e^{-i s x} d s \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} u_{0} \frac{\sin a s}{s} e^{-c^{2} s^{2} t} e^{-i s x} d s \\
& =\frac{u_{0}}{\pi} \int_{-\infty}^{\infty} \frac{\sin a s}{s} e^{-c^{2} s^{2} t}(\cos s x-i \sin s x) d s \\
& =\frac{2 u_{0}}{\pi} \int_{0}^{\infty} \frac{\sin a s}{s} e^{-c^{2} s^{2} t} \cos s x d s
\end{aligned}
$$

(by definition of odd/even function)

$$
\Rightarrow u(x, t)=\frac{u_{0}}{\pi} \int_{0}^{\infty} \frac{e^{-c^{2} s^{2} t}}{s}[\sin (a+x) s+\sin (a-x) s] d s
$$

