JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year \& Semester - B.Tech I year (I Semester)
Subject - Programming for Problem Solving
Presented by - Ms. YogitaPunjabi/ Ms. Abhilasha / Mr. Gajendra Sharma
Designation - Asst. Professor
Department - Computer Science (First Year)

Index

> Vision \& Mission of the Institute
Course Outcomes of PPS
$>$ Converting from one Number System to Another
\checkmark Converting from Another Base to Decimal
\checkmark Converting from Decimal to Another Base
\checkmark Converting from a Base (other than 10) to Another Base (other than 10)

- Shortcut Method for Binary to Octal Conversion
- Shortcut Method to Octal to Binary Conversion
- Shortcut Method to Binary to Hexadecimal Conversion
- Shortcut Method to Hexadecimal to Binary Conversion
> Fractional Numbers

VISION OF INSTITUTE

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

MISSION OF INSTITUTE

* Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
\& Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
* Offer opportunities for interaction between academia and industry.
* Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders can emerge in a range of profession.

Programming for Problem Solving : Course Outcomes

Students will be able to:
CO1: Understand concept of low-level and high-level languages, primary and secondary memory. Represent algorithm through flowchart and pseudo code for problem solving.

CO2: Represent and convert numbers \& alphabets in various notations.
CO3: Analyze and implement decision making statements and looping.
CO4: Apply pointers, memory allocation and data handling through files in ' C ' Programming Language.

Converting from one Number System to Another

\checkmark Converting from Another Base to Decimal

We use the following steps to convert a number in any other base to a base 10 -
Step 1: Determine the column (positional) value of each digit.
Step 2: Multiply the obtained column values by the digits in the corresponding columns.
Step 3: Calculate the sum of these products.
Examples -
(i) $4706_{8}=?_{10}$

Column values multiplied by the corresponding digits

$$
\begin{aligned}
4706_{8} & =4 \times 8^{3}+7 \times 8^{2}+0 \times 8^{1}+6 \times 8^{0} \\
& =4 \times 512+7 \times 64+0+6 \times 1 \\
& =2048+448+0+6 \\
& =2502_{10}
\end{aligned}
$$

Column Number (from right)	Column Value
1	$8^{0}=1$
2	$8^{1}=8$
3	$8^{2}=64$
4	$8^{3}=512$

Contd....

(ii) $11001_{2}=?_{10}$

Column values multiplied by the corresponding digits

$$
\begin{aligned}
11001_{2} & =1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =1 \times 16+1 \times 8+0+0+1 \times 1 \\
& =16+8+1
\end{aligned}
$$

Column Number (from right)	Column Value
1	$2^{0}=1$
2	$2^{1}=2$
3	$2^{2}=4$
4	$2^{3}=8$
5	$2^{4}=16$

$$
=25_{10}
$$

iii) $1 \mathrm{AC}_{16}=?_{10}$

Column values multiplied by the corresponding digits

$$
\begin{aligned}
1 \mathrm{AC}_{16} & =1 \times 16^{2}+\mathrm{A} \times 16^{1}+\mathrm{C} \times 16^{0} \\
& =1 \times 256+10 \times 16+12 \times 1 \\
& =256+160+12 \\
& =428_{10}
\end{aligned}
$$

Column Number (from right)	Column Value
1	$\mathbf{1 6}^{\mathbf{0}}=\mathbf{1}$
2	$\mathbf{1 6}^{\mathbf{1}}=\mathbf{1 6}$
3	$\mathbf{1 6}^{\mathbf{2}}=\mathbf{2 5 6}$

Contd....

(iv) $11001_{4}=?_{10}$

Column values multiplied by the corresponding digits

$$
\begin{aligned}
11001_{4} & =1 \times 4^{4}+1 \times 4^{3}+0 \times 4^{2}+0 \times 4^{1}+1 \times 4^{0} \\
& =1 \times 256+1 \times 64+0+0+1 \times 1 \\
& =256+64+1
\end{aligned}
$$

Column Number (from right)	Column Value
1	$4^{0}=1$
2	$4^{1}=4$
3	$4^{2}=16$
4	$4^{3}=64$
5	$4^{4}=256$

$$
=321_{10}
$$

v) $4052_{6}=?_{10}$

Column values multiplied by the corresponding digits

$$
\begin{aligned}
4052_{6} & =4 \times 6^{3}+0 \times 6^{2}+5 \times 6^{1}+2 \times 6^{0} \\
& =4 \times 216+0+5 \times 6+2 \times 1 \\
& =864+30+2 \\
& =896_{10}
\end{aligned}
$$

Column Number

 (from right) 12
3
4

Column Value

$$
\begin{aligned}
& 6^{0}=1 \\
& 6^{1}=6 \\
& 6^{2}=36 \\
& 6^{3}=216
\end{aligned}
$$

Converting from one Number System to Another

\checkmark Converting from Decimal to Another Base

Division - Remainder Method

We use the following steps to convert a base 10 to a number in any other base -
Step 1: Divide the decimal number by the value of the new base.
Step 2: Record the remainder from step 1 as the rightmost digit.
Step 3: Divide the received quotient by the value of the new base.
Step 4: Record the remainder from step 3 as the next digit.
Repeat the step $3 \& 4$ (with recording remainders from right to left) until the quotient becomes zero in step 3 .
Note that the last remainder, thus obtained, will be the most significant digit (MSD) of the new base number.

Contd....

Example -
(i) $952_{10}=?_{8}$

8	952		
8	119	0	
8	14	7	
8	1	6	
	0	1	
		\quad Remainders	

Now write Remainders $0,7,6,1$ in reverse order, making the first remainder (0) the least significant digit (LSD) and the last remainder(1) the most significant digit (MSD).

Hence, $952_{10}=1670_{8}$

Contd....

(ii) $42_{10}=?_{2}$

2	42	
2	21	0
2	10	1
2	5	0
2	2	1
2	1	0
	0	1

Remainders

Now write Remainders $0,1,0,1,0,1$ in reverse order, making the first remainder(0) the least significant digit (LSD) and the last remainder(1) the most significant digit (MSD).

Hence, $42_{10}=101010_{2}$

Contd....

Example -
(iii) $100_{10}=?_{4}$

4	100		
4	25	0	
4	6	1	
4	1	2	
	0	1	
	\quad Remainders		

Now write Remainders $0,1,2,1$ in reverse order, making the first remainder (0) the least significant digit (LSD) and the last remainder(1) the most significant digit (MSD).

Hence, $100_{10}=1210_{4}$

Contd....

Example -
(iv) $428_{10}=?_{16}$

16	428			
16	26	12		
16	1	10		
	0	1	\quad	Remainders
:---:				

Now write Remainders $12(\mathrm{C}), 10(\mathrm{~A}), 1$ in reverse order, making the first remainder(C) the least significant digit (LSD) and the last remainder(1) the most significant digit (MSD).

Hence, $428_{10}=1 \mathrm{AC}_{16}$

Contd....

Example -
(v) $1715_{10}=?_{12}$

12	1715			
12	142	11		
12	11	10		
	0	11	\quad	Remainders
:---:				

Now write Remainders $11(\mathrm{~B}), 10(\mathrm{~A}), 11(\mathrm{~B})$ in reverse order, making the first remainder(B) the least significant digit (LSD) and the last remainder(B) the most significant digit (MSD).

Hence, $1715_{10}=\mathrm{BAB}_{12}$

Converting from one Number System to Another (Contd...)

\checkmark Converting from a Base(other than 10) to Another Base (other than 10)
We use the following steps to convert a number in a base other 10 to a number in any other base other than 10-

Step 1: Convert the original number to a decimal number (base 10).
Step 2: Convert the decimal number so obtained to the new base number.
Examples -
(i) $56_{8}=?_{2}$

Step 1 : Convert 56_{8} to base 10

$$
\begin{aligned}
56_{8} & =5 \times 8^{1}+6 \times 8^{0} \\
& =5 \times 8+6 \times 1 \\
& =40+6 \\
& =46_{10}
\end{aligned}
$$

Contd....

Step 2: Convert 46_{10} to base 2

$$
46_{10}=?_{2}
$$

2	46	
2	23	0
2	11	1
2	5	1
2	2	1
2	1	0
	0	1

$$
56_{8}=46_{10}=101110_{2}
$$

Contd....
(ii) $545_{6}=?_{4}$

Step 1 : Convert 545_{6} to base 10 -

$$
\begin{aligned}
545_{6} & =5 \times 6^{2}+4 \times 6^{1}+5 \times 6^{0} \\
& =5 \times 36+4 \times 6+5 \times 1 \\
& =180+24+5 \\
& =209_{10}
\end{aligned}
$$

Step 2 : Convert 209 ${ }_{10}$ to base 4

4	209	
4	52	1
4	13	0
4	3	1
	0	3

$545_{6}=209_{10}=3101_{4}$

Contd....

(iii) $11010011_{2}=?_{16}$

Step 1 : Convert 11010011_{2} to base $10-$

$$
\begin{aligned}
11010011_{2} & =1 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =1 \times 128+1 \times 64+0+1 \times 16+0+0+1 \times 2+1 \times 1 \\
& =128+64+0+16+0+0+2+1 \\
& =211_{10}
\end{aligned}
$$

Step 2 : Convert 211_{10} to base 16

16	211	
16	13	3
	0	13

Remainders

$$
11010011_{2}=211_{10}=\mathrm{D} 3_{16}
$$

- Shortcut Method for Binary to Octal Conversion

Method

Step 1: Divide the digits into groups of three starting from the right.
Step 2: Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion.

Example -

$$
1101010_{2}=?_{8}
$$

Step 1: Divide the binary digits into from right groups of 3 starting

$$
\underline{001} \underline{101} \underline{010}
$$

Step 2: Convert each group into one octal digit

$$
\begin{aligned}
& 001_{2}=1 \\
& 101_{2}=5 \\
& 010_{2}=2
\end{aligned}
$$

Hence $1101010_{2}=152_{8}$

- Shortcut Method to Octal to Binary Conversion

Method

Step 1: Convert number decimal each octal digit to a 3 digit binary.
Step 2: Combine all the resulting binary single groups (of 3 digits each) into a binary number.
Example -

$$
562_{8}=?_{2}
$$

Step 1: Convert each octal digit to 3 binary digits

$$
5_{8}=101_{2}, 6_{8}=110_{2}, 2_{8}=010_{2}
$$

Step 2: Combine the binary groups

$$
562_{8}=\frac{101}{5} \frac{110}{6} \frac{010}{2}
$$

Hence $562_{8}=101110010_{2}$

- Shortcut Method for Binary to Hexadecimal Conversion

Method

Step 1: Divide the binary digits into groups of four starting from the right
Step 2: Combine each group of four binary digits to one hexadecimal digit
Example -

$$
111101_{2}=?_{16}
$$

Step 1: Divide the binary digits into groups of four starting from the right

$$
\underline{0011} \underline{1101}
$$

Step 2: Convert each group into a hexadecimal digit

$$
\begin{aligned}
& 0011_{2}=3_{16} \\
& 1101_{2}=D_{16}
\end{aligned}
$$

Hence $111101_{2}=3 D_{16}$

- Shortcut Method to Hexadecimal to Binary Conversion

Method

Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number.
Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number.
Example -
$2 \mathrm{AB} 16=? 2$
Step 1: Convert each hexadecimal binary number digit to a 4 digit

$$
\begin{aligned}
& 2_{16}=0010_{2} \\
& \mathrm{~A}_{16}=1010_{2} \\
& \mathrm{~B}_{16}=1011_{2}
\end{aligned}
$$

Step 2: Combine the binary groups

$$
2 \mathrm{AB}_{16}=\frac{0010}{2} \frac{1010}{\mathrm{~A}} \frac{1011}{\mathrm{~B}}
$$

Hence $2 \mathrm{AB}_{16}=001010101011_{2}$

$>$ Fractional Numbers

In Binary Number System, Fractional Numbers are formed in the same way as in decimal number system. For example, in decimal number system -
$0.235_{10}=\left(2 \times 10^{-1}\right)+\left(3 \times 10^{-2}\right)+\left(5 \times 10^{-3}\right) \quad$ and $\quad 68.53_{10}=\left(6 \times 10^{1}\right)+\left(8 \times 10^{0}\right)+\left(5 \times 10^{-1}\right)+\left(3 \times 10^{-2}\right)$

Similarly, in binary number system

$$
0.101_{2}=\left(1 \times 2^{-1}\right)+\left(0 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right) \quad \text { and } \quad 10.01_{2}=\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)
$$

Hence, Some positional values in binary number system are given below -

| Position | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{- 1}$ | $-\mathbf{2}$ | $\mathbf{- 3}$ | $\mathbf{- 4}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Position Value | $\mathbf{2}^{4}$ | $\mathbf{2}^{\mathbf{3}}$ | $\mathbf{2}^{\mathbf{2}}$ | $\mathbf{2}^{\mathbf{1}}$ | $\mathbf{2}^{\mathbf{0}}$ | $\mathbf{2}^{-1}$ | $\mathbf{2}^{-2}$ | $\mathbf{2}^{-3}$ | $\mathbf{2}^{-4}$ |
| Quantity | 16 | 8 | 4 | 2 | 1 | $1 / 2$ | $1 / 4$ | $1 / 8$ | $1 / 16$ |

Hence, as per the above mentioned general rule -
$46.23_{8}=\left(4 \times 8^{1}\right)+\left(6 \times 8^{0}\right)+\left(3 \times 8^{-1}\right)+\left(2 \times 8^{-2}\right)$ and $5 \mathrm{~A} .3 \mathrm{C}_{16}=\left(5 \times 16^{1}\right)+\left(10 \times 16^{0}\right)+\left(3 \times 16^{-1}\right)+\left(12 \times 16^{-2}\right)$
Example -
(i) $110.101_{2}=\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+\left(0 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)$

$$
\begin{aligned}
& =4+2+0+0.5+0+0.125 \\
& =6+0.5+0.125 \\
& =6.625_{10}
\end{aligned}
$$

(ii) 2 B. $C 4_{16}=\left(1 \times 16^{1}\right)+\left(11 \times 16^{0}\right)+\left(12 \times 16^{-1}\right)+\left(4 \times 16^{-2}\right)$

$$
\begin{aligned}
& =32+11+12 / 16+4 / 256 \\
& =43+0.75+0.015625 \\
& =43.765652_{10}
\end{aligned}
$$

Thank You

