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Fourier Series for odd and even function:

Even Function: A function f(x) is said to be even function,
if

f(—x) = f(x) for all values of x
For example , x4, cos x, sec x , are even function.
Properties of even function:
 The product of two even function is even function is even.
 The sum of two even function is even function is even
 The graph of even function is symmetric about the y-axis.

* For even function f(x), f_aaf(x) dx = 2 foaf(x)dx.



Odd Function: A function f(x) is said to be even function
if

f(—x) = —f(x) for all values of x
For example , x, x3,sin x, cosecx ,tan x are odd function.
Properties of odd function:
The product of two odd function is even function is even.

The sum(or difference) of two odd function is odd function
IS even.

The product of one even function and one odd function is
odd function.

The graph of even function is symmetric about origin.
For odd function f(x), f_aaf(x) dx = 0.



Fourier Series of Even and odd Function:

The Fourier series expansion of the function f(x) in (—m, ) is given by
f(x) ==+ X7 _a,coxnx + Y, b, sinnx (1)

where ap = gf_nf(x)dx
a,= %ffnf(x). cosnx.dx
b, = iffnf(x).sinnx Ldx

Now if f(x) is even function in (—m, ) then all b,'s will be zero.
therefore the Fourier series of an even function contains only cosines
terms and is given by

f(x) ==+ Y_,a,coxnx (2)
where a, = ;fo f(x)dx
a,= %f:f(x).cosnx.dx



* Andif Now if f(x) is odd functionin (—m, )
then a, and all a,,'s will be zero. Therefore
the Fourier series of an odd function contains
only sine terms and is given by

. f(x) =)7r_1b,sinnx (3)

« where b, = %foﬂf(x).sin nx.dx



Example: Find the Fourier series expansion of the function f(x) = xsin x, inthe

interval(—m, ). Hence show that
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Solution:  Since the given function satisfies

f(—=x) = (—x)sin (—x) = xsin x = f(x),
therefore f(x) = xsin x is even function so b,, = 0.
Let Fourier series expansion be

f(x) = % + Y1 ApcoxXnx (1)
where ay = %fonf(x) dx
=%f0nxsin x. dx
= %[x(— cosx) — (sinx) ]g = 1

a,= %fonf(x). cosnx.dx = %fonxsin x.cosnx.dx

1 .
=;f0 2.xSin x.cos nx .dx

— %fon x.{sin(n + 1)x — sin(n — 1)x.dx



Integrating by parts taking {sin(n + 1)x — sin(n — 1) x as first
function
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Therefore putting the value of ay, a; and a,, in Equation (1), we have

(_1)n+1
n2-1

f(x) =xsinx = 1—%+22${’=2 . COS NX (2)

Equation (2) is required Fourier Series expansion.

Now , putting x = g in equation (2), we have

m—1 1 1 1 1

— === —— 4 ... Proved.
4 1.3 3.5 5.7 7.9




Example: Find the Fourier series expansion of the function
f(x)=x3,—-T<x<m.

Solution: Since the given function satisfiesf(—x) = (—x)3= —x3= —f(x),
therefore f(x) = x°is odd function so a, = 0,a,, =0

. f(x) =X, b,sinnx (1)
« where b, = if:f(x).sinnx.dx
. 2 (™35

nfo x3.sinnx . dx

* Integrating by parts taking x3 as first function

2 () () ) -)]
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. _ o/_1\n 3 6
=2(=1) [n | n3]
* Therefore putting the value of b,, in Equation

(1), we have

f(x) =x3 = 22{";1(—1)"[7;3 | 6]sinnx

| n3
(2)
e Equation (2) is required Fourier Series expansion.
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