JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE
 ASSIGNMENT
 Year: B. Tech. I Year
 Semester: II
 Subject: Engineering Mathematics -II
 Session: 2020-21

CO1. To understand the concept of rank of matrix, inverse, Eigen values $\boldsymbol{\&}$ vectors along with solution of linear simultaneous equation determine inverse of a matrix using Cayley Hamilton Theorem.
Q.1Find the Eigen value and Eigen vectors of the following matrix

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
-11 & 4 & 5 \\
-1 & 1 & 0
\end{array}\right]
$$

Q. 2 Examine for Consistency the following equation and solve them if they are consistent

$$
x+y+z=6, \quad 2 x+y+3 z=13, \quad 5 x+2 y+z=12, \quad 2 x-3 y-2 z=-10 .
$$

Q. 3 Verify Cayley Hamilton Theorem for the following matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$
Q. 4 Verify Cayley Hamilton Theorem for the following matrix $\left[\begin{array}{ccc}-2 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & -3 & 2\end{array}\right]$. Hence find A^{-1}.
Q. 5 Find the Inverse of the following matrix by using elementary transformation method

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & -1 & 1
\end{array}\right]
$$

Q.6Examine consistency of the system of equation and if consistent solve the equation. $2 x+y+z=4,-2 x+$ $y+3 z=12,3 x+2 y+z=12$ and $2 x-3 y-2 z=-10$.
Q. 7 Q 6 Investigate for what values of λ and μ the system of linear equations
$x+2 y+z=7, x+y+\lambda z=\mu, x+3 y-5 z=5$ has
(i) no solution (ii) a unique solution (iii) an infinite number of solutions.
Q. 8 Q. 5 Find the condition on a, b and c so that the following system of linear equations has one parameter family of solutions:
$x+y+z=a, x+2 y+3 z=b, 3 x+5 y+7 z=c$.
Q. 9 Determine the ranks of the following matrices and reduce in normal form:-
(i) $\left[\begin{array}{ccc}3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right]$ (ii) $\left[\begin{array}{cccc}1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1\end{array}\right]$ (iii) $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$
Q. 10 Define Rank-nullity theorem.

JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE
 ASSIGNMENT

Year: B. Tech. I Year
 Semester: II

Subject: Engineering Mathematics -II

Session: 2020-21

Co2: To solve Ordinary D.E of first order, first degree and first order higher degree using various methods.

Solve:

Q. $1 y=-p x+x^{4} p^{2}$
Q. $2 y d x-x d y+\log x d x=0$
Q. $3\left(x^{4} e^{x}-2 m x y^{2}\right) d x+2 m x^{2} y d y=0$

Q 4 Solve $\mathrm{x} \log \mathrm{x} \frac{d y}{d x}+\mathrm{y}=2 \log \mathrm{x}$.
Q 5 Solve $p^{2}+2 p y \cot x-y^{2}=0$
Q. 6 Solve $(\mathrm{y}+\mathrm{px})(2 \mathrm{p}-1)=-\mathrm{p}$
Q. 7 Solve $\left(\sec x \tan x \tan y-e^{x}\right) d x+\sec x \sec ^{2} y d y=0$
Q. $8 \frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}$
Q. $9(1+x y) x d y+(1-x y) y d x=0$
Q. $10\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$
Q. $11 x^{2}\left(\frac{d y}{d x}\right)^{2}+x y\left(\frac{d y}{d x}\right)-6 y^{2}=0$
$\mathrm{Q} .129(y+x p \log p)=(2+3 \log p) p^{3}$
Q. $13 x^{3} y^{3}(2 y d x+x d y)-(5 y d x+7 x d y)=0$

JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE

ASSIGNMENT

Year: B. Tech. I Year

Semester: II

Subject: Engineering Mathematics -II

Session: 2020-21

Co3: To find the complete solution of D.E of higher order with constant coefficient \& variable coefficients \& their methods of solution.
Q. 1 Solve $\left(D^{2}+a^{2}\right) y=\tan a x$
Q. $2 y^{\prime \prime}+3 y^{\prime}+2 y=e^{e^{x}}$
Q. $3 y^{\prime \prime}-4 y^{\prime}+4 y=8 x^{2} e^{2 x} \sin 2 x$
Q. 4 Solve $\left(D^{2}-3 D+2\right) y=e^{x}$
Q. $5(x+2) \frac{d^{2} y}{d x^{2}}-(2 x+5) \frac{d y}{d x}+2 y=(x+1) e^{x}$

Q . 6 Solve $\frac{d^{2} y}{d x^{2}}+(\tan x-3 \cos x) \frac{d y}{d x}+2 y \cos ^{2} x=\cos ^{4} x$
Q. 7 Solve $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-20 y=(x+1)^{2}$
$Q .8 x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\log x)$
$Q .9 x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2}$
$Q .10 x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+y=\frac{\log x \cdot \sin (\log x+1)}{x}$
Q. $11 \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-3\right) y=e^{x^{2}}$
Q. $12 x^{2} \frac{d^{2} y}{d x^{2}}-2\left(x^{2}+x\right) \frac{d y}{d x}+\left(x^{2}+2 x+2\right) y=0$

Solve by the method of variation of parameter
Q. $13 y^{\prime \prime}+4 y=4 \tan 2 x$
Q. 14 Solve $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$
Q. $15\left(\mathrm{D}^{2}-2 \mathrm{D}+1\right) \mathrm{y}=e^{x} \log x$

JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE
 ASSIGNMENT
 Year: B. Tech. I Year
 Semester: II

 Subject: Engineering Mathematics -II

 Subject: Engineering Mathematics -II}

Session: 2020-21

Co4: To solve partial differential equations with its applications in Laplace equation, Heat $\&$ Wave equation

Q. 1 Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for the conditions
(i) $u(0, y)=0=u(l, y)=0$
(ii) $u(x, 0)=0$ and $u(x, a)=\sin \frac{\pi x}{l}$
Q. 2 Using the method of separation of variables Solve $\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}$ where $u(x, 0)=6 e^{-3 x}$
Q. 3 Using the method of separation of variables, solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \quad$ given that $\mathbf{u}=0$ when $t \rightarrow \infty$, as well as $\mathrm{u}(0, \mathrm{t})=0=\mathrm{u}(1, \mathrm{t})$.
Q. 4 Find the solution of one dimensional heat equation if the bar is 10 cm long.
Q. 5 If both the ends of a bar of length l are at temperature zero and the initial temperature is to be prescribed as a function $f(x)$ in the bar then find the temperature at a subsequent time t.
Q. 6 Solve by the method of separation of variables: $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$
Q. 7 Using the method of separation of variables Solve $\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}$ where $u(x, 0)=6 e^{-3 x}$

