
Lecture Notes on

4AID4-05

Database Management System

Unit 5

Department of Artificial Intelligence & Data Science

Jaipur Engineering College & Research Centre, Jaipur

Neelkamal Chaudhary

Assistant Professor

AI&DS

Vision of the Institute

To become a renowned centre of outcome based learning and work toward academic,

professional, cultural and social enrichment of the lives of individuals and

communities.

Mission of the Institute

M1: Focus on evaluation of learning outcomes and motivate students to inculcate

research aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the

areas of focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

 Vision Of The Department

 To prepare students in the field of Artificial Intelligence and Data Science for competing with

 the global perspective through outcome based education, research and innovation.

 Mission Of The Department

1. To impart outcome based education in the area of AI&DS.

2. To provide platform to the experts from institutions and industry of repute to transfer the

 knowledge to students for providing competitive and sustainable solutions.

3. To provide platform for innovation and research.

Program Outcomes (PO)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and Artificial Intelligence & Data Science specialization to the solution of complex

Artificial Intelligence & Data Science problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex Artificial

Intelligence & Data Science problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex Artificial Intelligence & Data

Science problems and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of Artificial Intelligence & Data Science experiments, analysis and

interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex Artificial Intelligence & Data

Science activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional Artificial Intelligence & Data Science practice.

7. Environment and sustainability: Understand the impact of the professional Artificial Intelligence

& Data Science in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the Artificial Intelligence & Data Science practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings in Artificial Intelligence & Data Science

10. Communication: Communicate effectively on complex Artificial Intelligence & Data Science

activities with the engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the Artificial

Intelligence & Data Science and management principles and apply these to one‟ s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change in Artificial

Intelligence & Data Science.

Program Educational Objectives (PEO)

PEO1: To provide students with the fundamentals of Engineering Sciences with more emphasis in

Artificial Intelligence & Data Science by way of analyzing and exploiting engineering challenges.

PEO2:To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems in Artificial

Intelligence & Data Science

PEO3: To inculcate professional and ethical attitude, effective communication skills, teamwork skills,

multidisciplinary approach, entrepreneurial thinking and an ability to relate engineering issues with

social issues for Artificial Intelligence & Data Science.

PEO4: To provide students with an academic environment aware of excellence, leadership, written

ethical codes and guidelines, and the self-motivated life-long learning needed for a successful

professional career in Artificial Intelligence & Data Science.

PEO5: To prepare students to excel in Industry and Higher education by Educating Students along

with High moral values and Knowledge in Artificial Intelligence & Data Science.

 COURSE OUTCOME: After studying this subject, student will be able

CO-1 Design an ER model for an enterprise

CO-2

Perform and analysis Query database using Relational Algebra, Relational Calculus and

SQL

CO-3 Apply normalization based on functional dependency.

C0-4

 Illustrate for serialzability among concurrent transactions and apply concurrency control

protocols, and Outline database recovery techniques

CO_PO Mapping

SUBJECT

CODE

subject

name

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

4AID4-05

Database

Management
System

CO-1 3 3 3 3 3 2 1 2 1 2 2 2

CO-2 3 3 3 3 3 2 1 1 1 2 2 2

CO-3 3 3 3 3 3 2 1 1 1 2 2 2

CO-4 3 3 3 2 2 2 1 1 1 2 2 2

4AID4-05: Database Management System

Credit: 3 Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam: 3 Hours

SN Contents Hours

1 Introduction: Objective, scope and outcome of the course. 1

2 Introduction to database systems: Overview and History of DBMS. File System v/s

DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries in

DBMS.Structure of a DBMS.

Entity Relationship model: Overview of Data Design Entities, Attributes and Entity Sets,

Relationship and Relationship Sets. Features of the ER Model- Key Constraints,

Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data

Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs

Ternary Relationship and Aggregation v/s ternary

Relationship Conceptual Design for a Large Enterprise.

7

3 Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set

Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra

and Calculus.

SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and

Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison

Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL,

ODBC and JDBC, Triggers

and Active Databases.

8

4 Schema refinement and Normal forms: Introductions to Schema Refinement, Functional

Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-

Decomposition into BCNF

Decomposition into 3-NF.

8

5 Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent

Executions. Need of Serializability, Conflict vs. View Serializability, Testing for

Serializability, Recoverable Schedules,

Cascadeless Schedules.

8

6 Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-

based protocols, Validation-based protocols, Deadlock handling,

Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow Paging

and Log-based Recovery, Recovery with Concurrent transactions.

8

Total 40

Unit 5

DBMS

Transaction processing

o The transaction is a set of logically related operation. It contains a group of tasks.

o A transaction is an action or series of actions. It is performed by a single user to perform

operations for accessing the contents of the database.

Example: Suppose an employee of bank transfers Rs 800 from X's account to Y's account. This small
transaction contains several low-level tasks:

 X's Account
1. Open_Account(X)

2. Old_Balance = X.balance
3. New_Balance = Old_Balance - 800

4. X.balance = New_Balance

5. Close_Account(X)

 Y's Account
1. Open_Account(Y)

2. Old_Balance = Y.balance

3. New_Balance = Old_Balance + 800
4. Y.balance = New_Balance

5. Close_Account(Y)

Operations of Transaction:

Following are the main operations of transaction:

Read(X): Read operation is used to read the value of X from the database and stores it in a buffer in main

memory.

Write(X): Write operation is used to write the value back to the database from the buffer.

Let's take an example to debit transaction from an account which consists of following operations:

1. 1. R(X);

2. 2. X = X - 500;
3. 3. W(X);

Let's assume the value of X before starting of the transaction is 4000.

o The first operation reads X's value from database and stores it in a buffer.

o The second operation will decrease the value of X by 500. So buffer will contain 3500.

o The third operation will write the buffer's value to the database. So X's final value will be 3500.

But it may be possible that because of the failure of hardware, software or power, etc. that transaction

may fail before finished all the operations in the set.

For example: If in the above transaction, the debit transaction fails after executing operation 2 then X's

value will remain 4000 in the database which is not acceptable by the bank.

To solve this problem, we have two important operations:

Commit: It is used to save the work done permanently.

https://www.javatpoint.com/dbms-transaction-processing-concept
https://www.javatpoint.com/dbms-transaction-processing-concept

Rollback: It is used to undo the work done.

Transaction property

The transaction has the four properties. These are used to maintain consistency in a database, before and
after the transaction.

Property of Transaction

1. Atomicity

2. Consistency
3. Isolation

4. Durability

Atomicity

o It states that all operations of the transaction take place at once if not, the transaction is aborted.

o There is no midway, i.e., the transaction cannot occur partially. Each transaction is treated as one

unit and either run to completion or is not executed at all.

Atomicity involves the following two operations:

Abort: If a transaction aborts then all the changes made are not visible.

Commit: If a transaction commits then all the changes made are visible.

Example: Let's assume that following transaction T consisting of T1 and T2. A consists of Rs 600 and B

consists of Rs 300. Transfer Rs 100 from account A to account B.

T1 T2

Read(A)
A:= A-100

Write(A)

Read(B)
Y:= Y+100

Write(B)

After completion of the transaction, A consists of Rs 500 and B consists of Rs 400.

If the transaction T fails after the completion of transaction T1 but before completion of transaction T2,

then the amount will be deducted from A but not added to B. This shows the inconsistent database state.

In order to ensure correctness of database state, the transaction must be executed in entirety.

Consistency

o The integrity constraints are maintained so that the database is consistent before and after the
transaction.

o The execution of a transaction will leave a database in either its prior stable state or a new stable

state.

o The consistent property of database states that every transaction sees a consistent database

instance.

o The transaction is used to transform the database from one consistent state to another consistent

state.

For example: The total amount must be maintained before or after the transaction.

1. Total before T occurs = 600+300=900

2. Total after T occurs= 500+400=900

Therefore, the database is consistent. In the case when T1 is completed but T2 fails, then inconsistency

will occur.

Isolation

o It shows that the data which is used at the time of execution of a transaction cannot be used by the

second transaction until the first one is completed.

o In isolation, if the transaction T1 is being executed and using the data item X, then that data item

can't be accessed by any other transaction T2 until the transaction T1 ends.

o The concurrency control subsystem of the DBMS enforced the isolation property.

Durability

o The durability property is used to indicate the performance of the database's consistent state. It

states that the transaction made the permanent changes.

o They cannot be lost by the erroneous operation of a faulty transaction or by the system failure.

When a transaction is completed, then the database reaches a state known as the consistent state.
That consistent state cannot be lost, even in the event of a system's failure.

o The recovery subsystem of the DBMS has the responsibility of Durability property.

States of Transaction

In a database, the transaction can be in one of the following states -

Active state

o The active state is the first state of every transaction. In this state, the transaction is being

executed.

o For example: Insertion or deletion or updating a record is done here. But all the records are still

not saved to the database.

Partially committed

o In the partially committed state, a transaction executes its final operation, but the data is still not

saved to the database.

o In the total mark calculation example, a final display of the total marks step is executed in this

state.

Committed

A transaction is said to be in a committed state if it executes all its operations successfully. In this state,

all the effects are now permanently saved on the database system.

Failed state

o If any of the checks made by the database recovery system fails, then the transaction is said to be

in the failed state.

o In the example of total mark calculation, if the database is not able to fire a query to fetch the

marks, then the transaction will fail to execute.

Aborted

o If any of the checks fail and the transaction has reached a failed state then the database recovery

system will make sure that the database is in its previous consistent state. If not then it will abort

or roll back the transaction to bring the database into a consistent state.

o If the transaction fails in the middle of the transaction then before executing the transaction, all

the executed transactions are rolled back to its consistent state.

o After aborting the transaction, the database recovery module will select one of the two operations:

1. Re-start the transaction

2. Kill the transaction

Schedule

A series of operation from one transaction to another transaction is known as schedule. It is used to

preserve the order of the operation in each of the individual transaction.

1. Serial Schedule

The serial schedule is a type of schedule where one transaction is executed completely before starting

another transaction. In the serial schedule, when the first transaction completes its cycle, then the next

transaction is executed.

For example: Suppose there are two transactions T1 and T2 which have some operations. If it has no

interleaving of operations, then there are the following two possible outcomes:

1. Execute all the operations of T1 which was followed by all the operations of T2.

2. Execute all the operations of T1 which was followed by all the operations of T2.

o In the given (a) figure, Schedule A shows the serial schedule where T1 followed by T2.

o In the given (b) figure, Schedule B shows the serial schedule where T2 followed by T1.

2. Non-serial Schedule

o If interleaving of operations is allowed, then there will be non-serial schedule.

o It contains many possible orders in which the system can execute the individual operations of the

transactions.

o In the given figure (c) and (d), Schedule C and Schedule D are the non-serial schedules. It has

interleaving of operations.

3. Serializable schedule

o The serializability of schedules is used to find non-serial schedules that allow the transaction to

execute concurrently without interfering with one another.

o It identifies which schedules are correct when executions of the transaction have interleaving of

their operations.

o A non-serial schedule will be serializable if its result is equal to the result of its transactions

executed serially.

Here,

Schedule A and Schedule B are serial schedule.

Schedule C and Schedule D are Non-serial schedule.

Testing of Serializability

Serialization Graph is used to test the Serializability of a schedule.

Assume a schedule S. For S, we construct a graph known as precedence graph. This graph has a pair G =

(V, E), where V consists a set of vertices, and E consists a set of edges. The set of vertices is used to
contain all the transactions participating in the schedule. The set of edges is used to contain all edges Ti -

>Tj for which one of the three conditions holds:

1. Create a node Ti → Tj if Ti executes write (Q) before Tj executes read (Q).

2. Create a node Ti → Tj if Ti executes read (Q) before Tj executes write (Q).

3. Create a node Ti → Tj if Ti executes write (Q) before Tj executes write (Q).

o If a precedence graph contains a single edge Ti → Tj, then all the instructions of Ti are executed

before the first instruction of Tj is executed.

o If a precedence graph for schedule S contains a cycle, then S is non-serializable. If the precedence

graph has no cycle, then S is known as serializable.

For example:

Explanation:

Read(A): In T1, no subsequent writes to A, so no new edges
Read(B): In T2, no subsequent writes to B, so no new edges

Read(C): In T3, no subsequent writes to C, so no new edges

Write(B): B is subsequently read by T3, so add edge T2 → T3
Write(C): C is subsequently read by T1, so add edge T3 → T1

Write(A): A is subsequently read by T2, so add edge T1 → T2

Write(A): In T2, no subsequent reads to A, so no new edges

Write(C): In T1, no subsequent reads to C, so no new edges

Write(B): In T3, no subsequent reads to B, so no new edges

Precedence graph for schedule S1:

The precedence graph for schedule S1 contains a cycle that's why Schedule S1 is non-serializable.

Explanation:

Read(A): In T4,no subsequent writes to A, so no new edges

Read(C): In T4, no subsequent writes to C, so no new edges

Write(A): A is subsequently read by T5, so add edge T4 → T5
Read(B): In T5,no subsequent writes to B, so no new edges

Write(C): C is subsequently read by T6, so add edge T4 → T6

Write(B): A is subsequently read by T6, so add edge T5 → T6

Write(C): In T6, no subsequent reads to C, so no new edges
Write(A): In T5, no subsequent reads to A, so no new edges

Write(B): In T6, no subsequent reads to B, so no new edges

Precedence graph for schedule S2:

The precedence graph for schedule S2 contains no cycle that's why ScheduleS2 is serializable.

Conflict Serializable Schedule

o A schedule is called conflict serializability if after swapping of non-conflicting operations, it can

transform into a serial schedule.

o The schedule will be a conflict serializable if it is conflict equivalent to a serial schedule.

Conflicting Operations

The two operations become conflicting if all conditions satisfy:

1. Both belong to separate transactions.

2. They have the same data item.

3. They contain at least one write operation.

Example:

Swapping is possible only if S1 and S2 are logically equal.

Here, S1 = S2. That means it is non-conflict.

Here, S1 ≠ S2. That means it is conflict.

Conflict Equivalent

In the conflict equivalent, one can be transformed to another by swapping non-conflicting operations. In

the given example, S2 is conflict equivalent to S1 (S1 can be converted to S2 by swapping non-

conflicting operations).

Two schedules are said to be conflict equivalent if and only if:

1. They contain the same set of the transaction.

2. If each pair of conflict operations are ordered in the same way.

Example:

Schedule S2 is a serial schedule because, in this, all operations of T1 are performed before starting any

operation of T2. Schedule S1 can be transformed into a serial schedule by swapping non-conflicting

operations of S1.

After swapping of non-conflict operations, the schedule S1 becomes:

T1 T2

Read(A)

Write(A)

Read(B)
Write(B)

Read(A)

Write(A)

Read(B)
Write(B)

Since, S1 is conflict serializable.

View Serializability

o A schedule will view serializable if it is view equivalent to a serial schedule.

o If a schedule is conflict serializable, then it will be view serializable.

o The view serializable which does not conflict serializable contains blind writes.

View Equivalent

Two schedules S1 and S2 are said to be view equivalent if they satisfy the following conditions:

1. Initial Read

An initial read of both schedules must be the same. Suppose two schedule S1 and S2. In schedule S1, if a

transaction T1 is reading the data item A, then in S2, transaction T1 should also read A.

Above two schedules are view equivalent because Initial read operation in S1 is done by T1 and in S2 it is

also done by T1.

2. Updated Read

In schedule S1, if Ti is reading A which is updated by Tj then in S2 also, Ti should read A which is

updated by Tj.

Above two schedules are not view equal because, in S1, T3 is reading A updated by T2 and in S2, T3 is

reading A updated by T1.

3. Final Write

A final write must be the same between both the schedules. In schedule S1, if a transaction T1 updates A

at last then in S2, final writes operations should also be done by T1.

Above two schedules is view equal because Final write operation in S1 is done by T3 and in S2, the final

write operation is also done by T3.

Example:

Schedule S

With 3 transactions, the total number of possible schedule

1. = 3! = 6
2. S1 = <T1 T2 T3>

3. S2 = <T1 T3 T2>

4. S3 = <T2 T3 T1>

5. S4 = <T2 T1 T3>
6. S5 = <T3 T1 T2>

7. S6 = <T3 T2 T1>

Taking first schedule S1:

Schedule S1

Step 1: final updation on data items

In both schedules S and S1, there is no read except the initial read that's why we don't need to check that

condition.

Step 2: Initial Read

The initial read operation in S is done by T1 and in S1, it is also done by T1.

Step 3: Final Write

The final write operation in S is done by T3 and in S1, it is also done by T3. So, S and S1 are view

Equivalent.

The first schedule S1 satisfies all three conditions, so we don't need to check another schedule.

Hence, view equivalent serial schedule is:

1. T1 → T2 → T3

2. Recoverability of Schedule

3. Sometimes a transaction may not execute completely due to a software issue, system crash or
hardware failure. In that case, the failed transaction has to be rollback. But some other transaction

may also have used value produced by the failed transaction. So we also have to rollback those
transactions.

4.

5. The above table 1 shows a schedule which has two transactions. T1 reads and writes the value of
A and that value is read and written by T2. T2 commits but later on, T1 fails. Due to the failure,

we have to rollback T1. T2 should also be rollback because it reads the value written by T1, but

T2 can't be rollback because it already committed. So this type of schedule is known as
irrecoverable schedule.

6. Irrecoverable schedule: The schedule will be irrecoverable if Tj reads the updated value of Ti

and Tj committed before Ti commit.
7.

8. The above table 2 shows a schedule with two transactions. Transaction T1 reads and writes A,
and that value is read and written by transaction T2. But later on, T1 fails. Due to this, we have to

rollback T1. T2 should be rollback because T2 has read the value written by T1. As it has not

committed before T1 commits so we can rollback transaction T2 as well. So it is recoverable with
cascade rollback.

9.
10. Recoverable with cascading rollback: The schedule will be recoverable with cascading rollback

if Tj reads the updated value of Ti. Commit of Tj is delayed till commit of Ti.

11.

12. The above Table 3 shows a schedule with two transactions. Transaction T1 reads and write A and

commits, and that value is read and written by T2. So this is a cascade less recoverable schedule.

Failure Classification

To find that where the problem has occurred, we generalize a failure into the following categories:

1. Transaction failure

2. System crash

3. Disk failure

1. Transaction failure

The transaction failure occurs when it fails to execute or when it reaches a point from where it

can't go any further. If a few transaction or process is hurt, then this is called as transaction

failure.

Reasons for a transaction failure could be -

1. Logical errors: If a transaction cannot complete due to some code error or an internal

error condition, then the logical error occurs.

2. Syntax error: It occurs where the DBMS itself terminates an active transaction because

the database system is not able to execute it. For example, The system aborts an active

transaction, in case of deadlock or resource unavailability.

2. System Crash

o System failure can occur due to power failure or other hardware or software

failure. Example: Operating system error.

Fail-stop assumption: In the system crash, non-volatile storage is assumed not to be

corrupted.

3. Disk Failure

o It occurs where hard-disk drives or storage drives used to fail frequently. It was a

common problem in the early days of technology evolution.

o Disk failure occurs due to the formation of bad sectors, disk head crash, and

unreachability to the disk or any other failure, which destroy all or part of disk storage.

	Department of Artificial Intelligence & Data Science
	Jaipur Engineering College & Research Centre, Jaipur
	Mission of the Institute
	Program Outcomes (PO)
	Program Educational Objectives (PEO)
	Unit 5
	DBMS
	Transaction processing
	Operations of Transaction:

	Transaction property
	Property of Transaction
	Atomicity
	Consistency
	Isolation
	Durability

	States of Transaction
	Active state
	Partially committed
	Committed
	Failed state
	Aborted

	Schedule
	1. Serial Schedule
	2. Non-serial Schedule
	3. Serializable schedule

	Testing of Serializability
	Precedence graph for schedule S1:
	Precedence graph for schedule S2:

	Conflict Serializable Schedule
	Conflicting Operations
	Example:

	Conflict Equivalent
	Example:

	View Serializability
	View Equivalent
	1. Initial Read
	2. Updated Read
	3. Final Write

	2. Recoverability of Schedule
	Failure Classification
	1. Transaction failure
	2. System Crash
	3. Disk Failure

