

Lecture Notes on

4AID4-05

Database Management System

Unit 3

Department of Artificial Intelligence & Data Science

Jaipur Engineering College & Research Centre, Jaipur

Neelkamal Chaudhary

Assistant Professor

AI&DS

Vision of the Institute

To become a renowned centre of outcome based learning and work toward academic,

professional, cultural and social enrichment of the lives of individuals and communities.

Mission of the Institute

M1: Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

M2: Identify, based on informed perception of Indian, regional and global needs, the areas of

focus and provide platform to gain knowledge and solutions.

M3: Offer opportunities for interaction between academia and industry.

M4: Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders can emerge in a range of professions.

 Vision Of The Department

 To prepare students in the field of Artificial Intelligence and Data Science for competing with
 the global perspective through outcome based education, research and innovation.

 Mission Of The Department
1. To impart outcome based education in the area of AI&DS.

2. To provide platform to the experts from institutions and industry of repute to transfer the

 knowledge to students for providing competitive and sustainable solutions.
3. To provide platform for innovation and research.

Program Outcomes (PO)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

Artificial Intelligence & Data Science specialization to the solution of complex Artificial Intelligence & Data

Science problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex Artificial Intelligence &

Data Science problems reaching substantiated conclusions using first principles of mathematics, natural

sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex Artificial Intelligence & Data Science

problems and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of Artificial Intelligence & Data Science experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and

IT tools including prediction and modeling to complex Artificial Intelligence & Data Science activities with an

understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional Artificial

Intelligence & Data Science practice.

7. Environment and sustainability: Understand the impact of the professional Artificial Intelligence & Data

Science in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

Artificial Intelligence & Data Science practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings in Artificial Intelligence & Data Science

10. Communication: Communicate effectively on complex Artificial Intelligence & Data Science activities

with the engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive clear

instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the Artificial

Intelligence & Data Science and management principles and apply these to one‟ s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent

and life-long learning in the broadest context of technological change in Artificial Intelligence & Data Science.

Program Educational Objectives (PEO)

PEO1: To provide students with the fundamentals of Engineering Sciences with more emphasis in Artificial

Intelligence & Data Science by way of analyzing and exploiting engineering challenges.

PEO2:To train students with good scientific and engineering knowledge so as to comprehend, analyze, design,

and create novel products and solutions for the real life problems in Artificial Intelligence & Data Science

PEO3: To inculcate professional and ethical attitude, effective communication skills, teamwork skills,

multidisciplinary approach, entrepreneurial thinking and an ability to relate engineering issues with social issues

for Artificial Intelligence & Data Science.

PEO4: To provide students with an academic environment aware of excellence, leadership, written ethical

codes and guidelines, and the self-motivated life-long learning needed for a successful professional career in

Artificial Intelligence & Data Science.

PEO5: To prepare students to excel in Industry and Higher education by Educating Students along with High

moral values and Knowledge in Artificial Intelligence & Data Science.

 COURSE OUTCOME: After studying this subject, student will be able

CO-1 Design an ER model for an enterprise

CO-2 Perform and analysis Query database using Relational Algebra, Relational Calculus and SQL

CO-3 Apply normalization based on functional dependency.

C0-4

 Illustrate for serialzability among concurrent transactions and apply concurrency control

protocols, and Outline database recovery techniques

6

CO_PO Mapping

SUBJECT

CODE

subject

name

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

4AID4-05

Database

Management

System

CO-1 3 3 3 3 3 2 1 2 1 2 2 2

CO-2 3 3 3 3 3 2 1 1 1 2 2 2

CO-3 3 3 3 3 3 2 1 1 1 2 2 2

CO-4 3 3 3 2 2 2 1 1 1 2 2 2

7

4AID4-05: Database Management System

 Credit: 3 Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam: 3 Hours

SN Contents Hours

1 Introduction: Objective, scope and outcome of the course. 1

2 Introduction to database systems: Overview and History of DBMS. File System

v/s DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries

in DBMS.Structure of a DBMS.

Entity Relationship model: Overview of Data Design Entities, Attributes and

Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key

Constraints, Participation Constraints, Weak Entities, Class Hierarchies,

Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s

Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation

v/s ternary

Relationship Conceptual Design for a Large Enterprise.

7

3 Relationship Algebra and Calculus: Relationship Algebra Selection and

Projection, Set Operations, Renaming, Joints, Division, Relation Calculus,

Expressive Power of Algebra and Calculus.

SQL queries programming and Triggers: The Forms of a Basic SQL Query,

Union, and Intersection and Except, Nested Queries, Correlated Nested Queries,

Set-Comparison Operations, Aggregate Operators, Null Values and Embedded

SQL, Dynamic SQL, ODBC and JDBC, Triggers

and Active Databases.

8

4 Schema refinement and Normal forms: Introductions to Schema Refinement,

Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form,

Normalization-Decomposition into BCNF

Decomposition into 3-NF.

8

5 Transaction Processing: Introduction-Transaction State, Transaction properties,

Concurrent Executions. Need of Serializability, Conflict vs. View Serializability,

Testing for Serializability, Recoverable Schedules,

Cascadeless Schedules.

8

6 Concurrency Control: Implementation of Concurrency: Lock-based protocols,

Timestamp-based protocols, Validation-based protocols, Deadlock handling,

Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow

Paging and Log-based Recovery, Recovery with Concurrent transactions.

8

Total 40

8

UNIT-3

RELATIONAL MODEL

A database is a collection of 1 or more ‘relations’, where each relation is a table with rows and columns.

This is the primary data model for commercial data processing
applications. The major advantages of the relational model over the older
data models are,

1. It is simple and elegant.
2.simple data
representation.

3.The ease with which even complex queries can be expressed.

Introduction:

The main construct for representing data in the relational model is a ‘relation’.

A relation consists of
1. Relation

Schema.
2. Relation

Instance.

Explanation is as below.

1. Relation Schema:

The relation schema describes the column heads for the table.

The schema specifies the relation’s name, the name of each field (column, attribute) and the ‘domain’
of each field.

A domain is referred to in a relation schema by the domain name and has a set of associated
values. Example:

Student information in a university database to illustrate the parts of a relation schema.

Students (Sid: string, name: string, login: string, age: integer, gross: real)

This says that the field named ‘sid’ has a domain named ‘string’.

The set of values associated with domain ‘string’ is the set of all character strings.

2. Relation Instance:

This is a table specifying the information.

An instance of a relation is a set of ‘tuples’, also called ‘records’, in which each tuple has the same
number of fields as the relation schemas.

A relation instance can be thought of as a table in which each tuple is a row and all rows have the same
number of fields.

The relation instance is also called as ‘relation’.

Each relation is defined to be a set of unique tuples or rows.

Example:

Fields (Attributes, Columns)

sid login age Field names

9

1111 Dave dave@cs 19 1.2

2222 Jones Jones@cs 18 2.3 Tuples (Records, Rows)

333 Smith smith@ee 18 3.4

4444 Smith smith@math 19 4.5

This example is an instance of the students relation, which consists 4 tuples and 5 fields. No two rows are
identical.

10

Degree:
The number of fields is called as ‘degree’.
This is also called as ‘arity’.

Cardinality:

The cardinality of a relation instance is the number of tuples in
it. Example:

In the above example, the degree of the relation is 5 and the cardinality is 4.
Relational database:

It is a collection of relations with distinct relation
names. Relational database schema:

It is the collection of schemas for the relations in the
database. Instance:

An instance of a relational database is a collection of relation instances, one per relation schema in the
database schema.

Each relation instance must satisfy the domain constraints in its schema.

2.Integrity constraints over relations

An integrity constraint (IC) is a condition that is specified on a database schema and restricts the data can be
stored in an instance of the database.

Various restrictions on data that can be specified on a relational database schema in the form of ‘constraints’.

A DBMS enforces integrity constraints, in that it permits only legal instances to be stored in the database.
Integrity constraints are specified and enforced at different times as below.

1. When the DBA or end user defines a database schema, he or

she specifies the ICs that must hold on any instance of this
database.

2. When a data base application is run, the DBMS checks for
violations and disallows changes to the data that violate the
specified ICs.

Legal Instance:

If the database instance satisfies all the integrity constraints specified on the database
schema. The constraints can be classified into 4 types as below.

1. Domain
Constraints.

2. Key Constraints.

3. Entity Integrity Constraints.
4.Referential Integrity
Constraints.

Explanation is as below.

1. Domain Constraints

Domain constraints are the most elementary form of integrity constraints. They are tested easily by the system
whenever a new data item is entered into the database.

Domain constraints specify the set of possible values that may be associated with an attribute. Such
constraints may also prohibit the use of null values for particular attributes.

The data types associated with domains typically include standard numeric data types for integers
A relation schema specifies the domain of each field or column in the relation instance.

These domain constraints in the schema specify an important condition that each instance of the relation to
satisfy: The values that appear in a column must be drawn from the domain associated with that column.
Thus the domain of a field is essentially the type of that field.

2. Key Constraints

1. Explain the concept of Super Key, Candidate Key and Primary Key with examples?(6 Marks, Feb-2004)

A key constraint is a statement that a certain minimal subset of the fields of a relation is a unique identifier for

11

a tuple.

Example:

The ‘students’ relation and the constraint that no 2 students have tha same student id
(sid). These can be classified into 3 types as below.

12

a. Candidate Key or Key.
b. Super Key.

c. Primary Key.
Explanation is as
below.

a. Candidate Key or Key:

1. Explain ‘Candidate Key’?(4 Marks, Semptember-2003)

A set of fields that uniquely identifies a tuple according to a key constraint is called as a ‘Candidate Key’ for
the relation.

This is also called as a ‘key’.

From the definition of candidate key, we have,

1. Two distinct tuples in a legal instance cannot have identical values

in all the fields of a key.i.e, in any legal instance, the values in the key
fields uniquely identify a tuple in the instance.

i. e,the values in the key fields uniquely identify a tuple in the instance. 2.
No subset of the set of fields in key is a unique identifier for a tuple,

i.e., the set of fields {sid, name} is not a key for
Students. A relation schema may have more than key.

Example: In the above Students relation, the ‘sid’ field is a candidate key.

{sid}.

The value of a key attribute can be used to identify uniquely each tuple in the relation.

‘A set of attributes constituting a key’ is a property of the relation schema.
A key is determined from the meaning of attributes.

Every relation is guaranteed to have a key. Since a relation is a set of tuples, the set of all fields is always a
super key.

b. Super Key:

The set of fields that contains a key is called as a ‘super key’.

The set of 1 or more attributes that allows us to identify uniquely an entity in the entity set.

A super key specifies a uniqueness constraint that no 2 distinct tuples can have the same
value. Every relation has at least 1 default super key as the set of all attributes.

Example:

Students
(Relation) Name (Fields)

Login

Age

Gross
One of the super key = {Sid, Name, Login, Gross}

c. Primary Key:

This is also a candidate key, whose values are used to identify tuples in the relation.

It is common to designate one of the candidate keys as a primary key of the relation.

The attributes that form the primary key of a relation schema are underlined.

It is used to denote a candidate key that is chosen by the database designer as
the principal means of identifying entities with an entity set.

Example:

‘Sid’ of Students relation.

d. Specifying Key Constraints in SQL-92:

In SQL, we are declaring the set of fields of a table consisting a key by using

‘UNIQUE’ constraint.

This ‘UNIQUE’ constraint specifies that 2 distinct tuples cannot have identical

Values.

Candidate keys can be declared as a ‘primary key’ using the constraint
‘PRIMARY KEY’.

13

We can name a constraint by using the syntax as below.

CONSTRAINT constraint_name KEY_NOTATION (key_names);

If the constraint is violated, then the constraint_name is returned and it can
be used to identify the error.

Example:

Express ‘sid’ as a primary key and the combination {name, age} as a key.

CREATE TABLE Students (sid CHAR (20), name CHAR (30), login CHAR(20),

age INTEGER, gross REAL, UNIQUE (name, age),
` CONSTRAINT sid1 PRIMARY KEY (sid));

3. Entity Integrity Constraints

This states that no primary key value can be null.

The primary key value is used to identify individual tuples in a relation.

Having null values for the primary key implies that we cannot identify some
tuples. NOTE: Key Constraints, Entity Integrity Constraints are specified on
individual relations. PRIMARY KEYS comes under this.

4. Referential Integrity Constraints

The Referential Integrity Constraint is specified between 2 relations and is

used to maintain the consistency among tuples of the 2 relations.

Informally, the referential integrity constraint states that ‘a tuple in 1

relation that refers to another relation must refer to an existing tuple in

that relation.

We can diagrammatically display the referential integrity constraints by

drawing a directed arc from each foreign key to the relation it references.

The arrowhead may point to the primary key of the referenced relation.

SELECT Statement Basics

In the subsequent text, the following 3 example tables are used:

p Table (parts) s Table (suppliers) sp Table (suppliers & parts)

The SQL SELECT statement queries data from tables in the database. The statement begins with the
SELECT keyword. The basic SELECT statement has 3 clauses:

SELECT
FROM

WHERE

2

1

The SELECT clause specifies the table columns that are retrieved. The FROM clause specifies the tables
accessed. The WHERE clause specifies which table rows are used. The WHERE clause is optional; if
missing, all table rows are used.
For example,

SELECT name FROM s WHERE city='Rome'

This query accesses rows from the table - s. It then filters those rows where the city column contains
Rome. Finally, the query retrieves the name column from each filtered row. Using the example s table, this
query produces:

name

Mario

A detailed description of the query actions:

The FROM clause accesses the s table. Contents:

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

The WHERE clause filters the rows of the FROM table to use those whose city column
contains Rome. This chooses a single row from s:

sno name city

S3 Mario Rome

pno descr color

P1 Widget Blue

P2 Widget Red

P3 Dongle Green

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

The SELECT clause retrieves the name column from the rows filtered by the WHERE clause:

SELECT Clause

The SELECT clause is mandatory. It specifies a list of columns to be retrieved from the tables in the FROM
clause. It has the following general format:

SELECT [ALL|DISTINCT] select-list

select-list is a list of column names separated by commas. The ALL and DISTINCT specifiers are optional.
DISTINCT specifies that duplicate rows are discarded. A duplicate row is when each corresponding select-
list column has the same value. The default is ALL, which retains duplicate rows.

For example,

SELECT descr, color FROM p

The column names in the select list can be qualified by the appropriate table name:

SELECT p.descr, p.color FROM p

A column in the select list can be renamed by following the column name with the new name. For example:

SELECT name supplier, city location FROM s

This produces:

supplier l ocation

Pierre Paris

John London

Mario Rome

A special select list consisting of a single '*' requests all columns in all tables in the FROM clause. For
example,

SELECT * FROM sp

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

The * delimiter will retrieve just the columns of a single table when qualified by the table name. For
example:

SELECT sp.* FROM sp

This produces the same result as the previous example.

An unqualified * cannot be combined with other elements in the select list; it must be stand alone.
However, a qualified * can be combined with other elements. For example,

SELECT sp.*,

city FROM sp, s
WHERE

sp.sno=s.sno

sno pno qty city

S1 P1 NULL Paris

name

Mario

S2 P1 200 London

S3 P1 1000 Rome

S3 P2 200 Rome

Note: this is an example of a query joining

2 tables. FROM Clause

The FROM clause always follows the SELECT clause. It lists the tables accessed by the query. For example,

SELECT * FROM s

When the From List contains multiple tables, commas separate the table names. For example,

SELECT sp.*,

city FROM sp, s
WHERE
sp.sno=s.sno

When the From List has multiple tables, they must be joined together.

Correlation Names

Like columns in the select list, tables in the from list can be renamed by following the table name with the
new name. For example,

SELECT supplier.name FROM s supplier

The new name is known as the correlation (or range) name for the table. Self joins require
correlation names.

WHERE Clause

The WHERE clause is optional. When specified, it always follows the FROM clause. The WHERE clause
filters rows from the FROM clause tables. Omitting the WHERE clause specifies that all rows are used.
Following the WHERE keyword is a logical expression, also known as a predicate.

The predicate evaluates to a SQL logical value -- true, false or unknown. The most basic predicate is a
comparison:

color = 'Red'

This predicate returns:

true -- if the color column contains the string value -- 'Red',

false -- if the color column contains another string value (not
'Red'), or unknown -- if the color column contains null.

Generally, a comparison expression compares the contents of a table column to a literal, as above. A
comparison expression may also compare two columns to each other. Table joins use this type of
comparison.

The = (equals) comparison operator compares two values for equality. Additional comparison operators are:

> --
greater
than < --
less than

>= -- greater than or
equal to <= -- less than
or equal to <> -- not
equal to

For example,

SELECT * FROM sp WHERE qty >= 200

sno pno qty

S2 P1 200

S3 P1 1000

S3 P2 200

Note: In the sp table, the qty column for one of the rows contains null. The comparison - qty >= 200,
evaluates to unknown for this row. In the final result of a query, rows with a WHERE clause evaluating to
unknown (or false) are eliminated (filtered out).

Both operands of a comparison should be the same data type, however automatic conversions are performed
between numeric, datetime and interval types. The CAST expression provides explicit type conversions.

Extended Comparisons

In addition to the basic comparisons described above, SQL supports extended comparison operators

-- BETWEEN, IN, LIKE and IS NULL.

BETWEEN Operator

The BETWEEN operator implements a range comparison, that is, it tests whether a value is

between two other values. BETWEEN comparisons have the following format:

value-1 [NOT] BETWEEN value-2 AND value-3

This comparison tests if value-1 is greater than or equal to value-2 and less than or equal to

value-3. It is equivalent to the following predicate:

value-1 >= value-2 AND value-1 <= value-3

Or, if NOT is included:

NOT (value-1 >= value-2 AND value-1 <= value-3)

For example,

SELECT *

2

4

FROM sp

WHERE qty BETWEEN 50 and 500

sno pno qty

S2 P1 200

S3 P2 200

IN Operator

The IN operator implements comparison to a list of values, that is, it tests whether a value matches
any value in a list of values. IN comparisons have the following general format:

value-1 [NOT] IN (value-2 [, value-3] ...)

This comparison tests if value-1 matches value-2 or matches value-3, and so on. It is
equivalent to the following logical predicate:

value-1 = value-2 [OR value-1 = value-3] ...

or if NOT is included:

NOT (value-1 = value-2 [OR value-1 = value-3] ...)

For example,

SELECT name FROM s WHERE city IN

e','Paris') name

LIKE Operator

The LIKE operator implements a pattern match comparison, that is, it matches a string value
against a pattern string containing wild-card characters.

The wild-card characters for LIKE are percent -- '%' and underscore -- '_'. Underscore
matches any single character. Percent matches zero or more characters.

Examples,

Match Value Pattern Result

'abc' '_b_' True

'ab' '_b_' False

'abc' '%b%' True

'ab' '%b%' True

'abc' 'a_' False

'ab' 'a_' True

'abc' 'a%_' True

'ab' 'a%_' True

25

LIKE comparison has the following general format:

value-1 [NOT] LIKE value-2 [ESCAPE value-3]

All values must be string (character). This comparison uses value-2 as a pattern to match value-1.
The optional ESCAPE sub-clause specifies an escape character for the pattern, allowing the pattern
to use '%' and '_' (and the escape character) for matching. The ESCAPE value must be a single
character string. In the pattern, the ESCAPE character precedes any character to be escaped.

For example, to match a string ending with '%', use:

x LIKE '%/%' ESCAPE '/'

A more contrived example that escapes the escape character:

y LIKE '/%//%' ESCAPE '/'

... matches any string beginning with '%/'. The

optional NOT reverses the result so that:

z NOT LIKE 'abc%'

('Rom

Pierre

Mario

is equivalent to:

NOT z LIKE 'abc%'

IS NULL Operator

A database null in a table column has a special meaning -- the value of the column is not currently
known (missing), however its value may be known at a later time. A database null may represent any
value in the future, but the value is not available at this time. Since two null columns may eventually
be assigned different values, one null can't be compared to another in the conventional way. The
following syntax is illegal in SQL:

WHERE qty = NULL

A special comparison operator -- IS NULL, tests a column for null. It has the following general
format:

value-1 IS [NOT] NULL

This comparison returns true if value-1 contains a null and false otherwise. The optional NOT
reverses the result:

value-1 IS NOT NULL

is equivalent to:

NOT value-1 IS NULL

For example,

6

SELECT * FROM sp WHERE qty IS NULL

sno pno qty

S1 P1 NULL

Logical Operators

The logical operators are AND, OR, NOT. They take logical expressions as operands and produce a logical
result (True, False, Unknown). In logical expressions, parentheses are used for grouping.

AND Operator

The AND operator combines two logical operands. The operands are comparisons or logical
expressions. It has the following general format:

predicate-1 AND predicate-2

AND returns:

o True -- if both operands evaluate to true

o False -- if either operand evaluates to false
o Unknown -- otherwise (one operand is true and the other is unknown or both are
unknown)

The truth table for AND:

AND T F U

T T F U

F F F F

U U F U

For example,

SELECT *

FROM sp

WHERE sno='S3' AND qty < 500

sno pno qty

S3 P2 200

OR Operator

The OR operator combines two logical operands. The operands are comparisons or logical
expressions. It has the following general format:

predicate-1 OR predicate-2

OR returns:

o True -- if either operand evaluates to
true o False -- if both operands evaluate
to false
o Unknown -- otherwise (one operand is false and the other is unknown or both are
unknown)

The truth table for OR:

27

OR T F U

T T T T

F T F U

U T U U

For example,

SELECT *

FROM s

WHERE sno='S3' OR city = 'London'

sno name city

S2 John London

S3 Mario Rome

AND has a higher precedence than OR, so the following expression:

a OR b AND c

is equivalent to:

a OR (b AND c)

NOT Operator

The NOT operator inverts the result of a comparison expression or a logical expression. It has the
following general format:

NOT predicate-1

The truth table for NOT:

NOT

T F

F T

U U

Example query:

SELECT *

FROM sp

WHERE NOT sno = 'S3'

sno pno qty

S1 P1 NULL

S2 P1 200

ORDER BY Clause

The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement. The ORDER BY
clause requests sorting for the results of a query.

When the ORDER BY clause is missing, the result rows from a query have no defined order (they are unordered).
The ORDER BY clause defines the ordering of rows based on columns from the SELECT clause. The ORDER BY
clause has the following general format:

ORDER BY column-1 [ASC|DESC] [column-2 [ASC|DESC]] ...

column-1, column-2, ... are column names specified (or implied) in the select list. If a select column is renamed
(given a new name in the select entry), the new name is used in the ORDER BY list. ASC and DESC request
ascending or descending sort for a column. ASC is the default.

ORDER BY sorts rows using the ordering columns in left-to-right, major-to-minor order. The rows are sorted first
on the first column name in the list. If there are any duplicate values for the first column, the duplicates are sorted on
the second column (within the first column sort) in the Order By list, and so on. There is no defined inner ordering
for rows that have duplicate values for all Order By columns.

Database nulls require special processing in ORDER BY. A null column sorts higher than all regular values; this is
reversed for DESC.

In sorting, nulls are considered duplicates of each other for ORDER BY. Sorting on hidden information makes no
sense in utilizing the results of a query. This is also why SQL only allows select list columns in ORDER BY.

For convenience when using expressions in the select list, select items can be specified by number (starting with 1).
Names and numbers can be intermixed.
Example queries:

SELECT * FROM sp ORDER BY 3 DESC

sno pno qty

S1 P1 NULL

S3 P1 1000

S3 P2 200

S2 P1 200

SELECT name, city FROM s ORDER BY name

name city

John London

Mario Rome

Pierre Paris

SELECT * FROM sp ORDER BY qty DESC, sno

sno pno qty

S1 P1 NULL

S3 P1 1000

S2 P1 200

S3 P2 200

Expressions

In the previous subsection on basic Select statements, column values are used in the select list and where
predicate. SQL allows a scalar value expression to be used instead. A SQL value expression can be a:

Literal -- quoted string, numeric value, datetime value

Function Call -- reference to builtin SQL function System

Value -- current date, current user, ...

Special Construct -- CAST, COALESCE, CASE Numeric or

String Operator -- combining sub-expressions

29

Literals

A literal is a typed value that is self-defining. SQL supports 3 types of literals:

String -- ASCII text framed by single quotes ('). Within a literal, a single quote is represented by 2 single
quotes ('').

Numeric -- numeric digits (at least 1) with an optional decimal point and exponent. The format is

[ddd][[.]ddd][E[+|-]ddd]

Numeric literals with no exponent or decimal point are typed as Integer. Those with a decimal point but no
exponent are typed as Decimal. Those with an exponent are typed as Float.

Datetime -- datetime literals begin with a keyword identifying the type, followed by a string literal:

o Date -- DATE 'yyyy-mm-dd'

o Time -- TIME 'hh:mm:ss[.fff]'

o Timestamp -- TIMESTAMP 'yyyy-mm-dd hh:mm:ss[.fff]'

o Interval -- INTERVAL [+|-] string interval-qualifier

The format of the string in the Interval literal depends on the interval qualifier. For year-month intervals, the
format is: 'dd[-dd]'. For day-time intervals, the format is '[dd]dd[:dd[:dd]][.fff]'.

SQL Functions

SQL has the following builtin functions: SUBSTRING(exp-

1 FROM exp-2 [FOR exp-3])

Extracts a substring from a string - exp-1, beginning at the integer value - exp-2, for the length of the integer
value - exp-3. exp-2 is 1 relative. If FOR exp-3 is omitted, the length of the remaining string is used. Returns
the substring.

UPPER(exp-1)

Converts any lowercase characters in a string - exp-1 to uppercase. Returns the converted string.

LOWER(exp-1)

Converts any uppercase characters in a string - exp-1 to lowercase. Returns the converted string.

TRIM([LEADING|TRAILING|BOTH] [FROM] exp-1)

TRIM([LEADING|TRAILING|BOTH] exp-2 FROM exp-1)

Trims leading, trailing or both characters from a string - exp-1. The trim character is a space, or if exp-2 is
specified, it supplies the trim character. If LEADING, TRAILING, BOTH are missing, the default is BOTH.
Returns the trimmed string.

POSITION(exp-1 IN exp-2)

Searches a string - exp-2, for a match on a substring - exp-2. Returns an integer, the 1 relative position of the
match or 0 for no match.

CHAR_LENGTH(exp-1)
CHARACTER_LENGTH(exp-1)

http://www.firstsql.com/tutor6.htm#qual

30

Returns the integer number of characters in the string - exp-1.

OCTET_LENGTH(exp-1)

Returns the integer number of octets (8-bit bytes) needed to represent the string - exp-1.

EXTRACT(sub-field FROM exp-1)

Returns the numeric sub-field extracted from a datetime value - exp-1. sub-field is YEAR, QUARTER,
 MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR or
TIMEZONE_MINUTE. TIMEZONE_HOUR and TIMEZONE_MINUTE extract sub-fields from the
Timezone portion of exp-1. QUARTER is (MONTH-1)/4+1.

System Values

SQL System Values are reserved names used to access builtin values:

USER -- returns a string with the current SQL authorization
identifier. CURRENT_USER -- same as USER.

SESSION_USER -- returns a string with the current SQL session authorization identifier.
SYSTEM_USER -- returns a string with the current operating system user.
CURRENT_DATE -- returns a Date value for the current system date.
CURRENT_TIME -- returns a Time value for the current system time.

CURRENT_TIMESTAMP -- returns a Timestamp value for the current system timestamp.

SQL Special Constructs

SQL supports a set of special expression constructs:

CAST(exp-1 AS data-type)

Converts the value - exp-1, into the specified date-type. Returns the converted value.

COALESCE(exp-1, exp-2 [, exp-3] ...)

Returns exp-1 if it is not null, otherwise returns exp-2 if it is not null, otherwise returns exp-3, and so on.
Returns null if all values are null.

CASE exp-1 { WHEN exp-2 THEN exp-3 } ... [ELSE exp-4] END CASE { WHEN predicate-1 THEN
exp-3 } ... [ELSE exp-4] END

The first form of the CASE construct compares exp-1 to exp-2 in each WHEN clause. If a match is found,
CASE returns exp-3 from the corresponding THEN clause. If no matches are found, it returns exp-4 from the
ELSE clause or null if the ELSE clause is omitted.

The second form of the CASE construct evaluates predicate-1 in each WHEN clause. If the predicate
is true, CASE returns exp-3 from the corresponding THEN clause. If no predicates evaluate to true, it returns
exp-4 from the ELSE clause or null if the ELSE clause is omitted.

Expression Operators

Expression operators combine 2 subexpressions to calculate a value. There are 2 basic types -- numeric and string.

String Operators

31

There is just one string operator - ||, for string concatenation. Both operands of || must be strings. The
operator concatenates the second string to the end of the first. For example,

'ab' || 'cd' ==> 'abcd'

Numeric operators

The numeric operators are common to most languages:

o + -- addition

o - -- subtraction

o * -- multiplication

o / -- division

All numeric operators can be used on the standard numeric data types:

o Integer -- TINYINT, SMALLINT, INT, BIGINT

o Exact -- NUMERIC, DECIMAL

o Approximate -- FLOAT, DOUBLE, REAL

Automatic conversion is provided for numeric operators. If an integer type is combined with an exact type,
the integer is converted to exact before the operation. If an exact (or integer) type is combined with an
approximate type, it is converted to approximate before the operation.

The + and - operators can also be used as unary operators.

The numeric operators can be applied to datetime values, with some restrictions. The basic rules for datetime
expressions are:

o A date, time, timestamp value can be added to an interval; result is a date, time, timestamp value.

o An interval value can be subtracted from a date, time, timestamp value; result is a date, time,
timestamp value.

o An interval value can be added to or subtracted from another interval; result is an interval value.

o An interval can be multiplied by or divided by a standard numeric value; result is an interval value.

A special form can be used to subtract a date, time, timestamp value from another date, time,
timestamp value to yield an interval value:

(datetime-1 - datetime-2) interval-qualifier

The interval-qualifier specifies the specific interval type for the result. A

second special form allows a ? parameter to be typed as an interval:

? interval-qualifier

In expressions, parentheses are used for grouping.

Joining Tables

The FROM clause allows more than 1 table in its list, however simply listing more than one table will very rarely
produce the expected results. The rows from one table must be correlated with the rows of the others. This
correlation is known as joining.

32

An example can best illustrate the rationale behind joins. The following query:

SELECT * FROM sp, p

Produces:

sno pno qty pno descr color

S1 P1 NULL P1 Widget Blue

S1 P1 NULL P2 Widget Red

S1 P1 NULL P3 Dongle Green

S2 P1 200 P1 Widget Blue

S2 P1 200 P2 Widget Red

S2 P1 200 P3 Dongle Green

S3 P1 1000 P1 Widget Blue

S3 P1 1000 P2 Widget Red

S3 P1 1000 P3 Dongle Green

S3 P2 200 P1 Widget Blue

S3 P2 200 P2 Widget Red

S3 P2 200 P3 Dongle Green

Each row in sp is arbitrarily combined with each row in p, giving 12 result rows (4 rows in sp X 3 rows in

p.) This is known as a cartesian product.

A more usable query would correlate the rows from sp with rows from p, for instance matching on the common
column -- pno:

SELECT *

FROM sp, p

WHERE sp.pno = p.pno

This produces:

sno pno qty pno descr color

S1 P1 NULL P1 Widget Blue

S2 P1 200 P1 Widget Blue

S3 P1 1000 P1 Widget Blue

S3 P2 200 P2 Widget Red

Rows for each part in p are combined with rows in sp for the same part by matching on part number (pno). In this
query, the WHERE Clause provides the join predicate, matching pno from p with pno from sp.

The join in this example is known as an inner equi-join. equi meaning that the join predicate uses = (equals) to
match the join columns. Other types of joins use different comparison operators. For example, a query might use a
greater-than join.

The term inner means only rows that match are included. Rows in the first table that have no matching rows in
the second table are excluded and vice versa (in the above join, the row in p with pno P3 is not included in the
result.) An outer join includes unmatched rows in the result.

More than 2 tables can participate in a join. This is basically just an extension of a 2 table join. 3 tables --

a, b, c, might be joined in various ways:

a joins b which joins c

a joins b and the join of a and b joins c a
joins b and a joins c

Plus several other variations. With inner joins, this structure is not explicit. It is implicit in the nature of the join
predicates. With outer joins, it is explicit;

This query performs a 3 table

33

SELECT name, qty, descr, color
FROM s, sp, p

WHERE s.sno = sp.sno
AND sp.pno = p.pno

It joins s to sp and sp to p, producing:

name qty descr color

Pierre NULL Widget Blue

John 200 Widget Blue

Mario 1000 Widget Blue

Mario 200 Widget Red

Note that the order of tables listed in the FROM clause should have no significance, nor does the order of join
predicates in the WHERE clause.

Outer Joins

An inner join excludes rows from either table that don't have a matching row in the other table. An outer join
provides the ability to include unmatched rows in the query results. The outer join combines the unmatched row in
one of the tables with an artificial row for the other table. This artificial row has all columns set to null.

The outer join is specified in the FROM clause and has the following general format:

table-1 { LEFT | RIGHT | FULL } OUTER JOIN table-2 ON predicate-1

predicate-1 is a join predicate for the outer join. It can only reference columns from the joined tables. The LEFT,
RIGHT or FULL specifiers give the type of join:

LEFT -- only unmatched rows from the left side table (table-1) are retained RIGHT -

- only unmatched rows from the right side table (table-2) are retained FULL --
unmatched rows from both tables (table-1 and table-2) are retained

Outer join example:

SELECT pno, descr, color, sno, qty

FROM p LEFT OUTER JOIN sp ON p.pno = sp.pno

pno descr color sno qty

P1 Widget Blue S1 NULL

P1 Widget Blue S2 200

P1 Widget Blue S3 1000

P2 Widget Red S3 200

P3 Dongle Green NULL NULL

Self Joins

A query can join a table to itself. Self joins have a number of real world uses. For example, a self join can
determine which parts have more than one supplier:

SELECT DISTINCT a.pno

FROM sp a, sp b

WHERE a.pno = b.pno
AND a.sno <> b.sno

As illustrated in the above example, self joins use correlation names to distinguish columns in the select list and
where predicate. In this case, the references to the same table are renamed - a and b.

Self joins are often used in subqueries.

P1

pno

34

Subqueries

Subqueries are an identifying feature of SQL. It is called Structured Query Language because a query can nest
inside another query.
There are 3 basic types of subqueries in SQL:

Predicate Subqueries -- extended logical constructs in the WHERE (and HAVING) clause.

Scalar Subqueries -- standalone queries that return a single value; they can be used anywhere a scalar
value is used.

Table Subqueries -- queries nested in the FROM clause.

All subqueries must be enclosed in parentheses.

Predicate Subqueries

Predicate subqueries are used in the WHERE (and HAVING) clause. Each is a special logical construct. Except
for EXISTS, predicate subqueries must retrieve one column (in their select list.)

IN Subquery

The IN Subquery tests whether a scalar value matches the single query column value in any subquery result
row. It has the following general format:

value-1 [NOT] IN (query-1)

Using NOT is equivalent to:

NOT value-1 IN (query-1)

For example, to list parts that have suppliers:

SELECT *

FROM p

WHERE pno IN (SELECT pno FROM sp)

pno descr color

P1 Widget Blue

P2 Widget Red

The Self Join example in the previous subsection can be expressed with an IN Subquery:

SELECT DISTINCT pno

FROM sp a

WHERE pno IN (SELECT pno FROM sp b WHERE a.sno <> b.sno)

Note that the subquery where clause references a column in the outer query (a.sno). This is known as an
outer reference. Subqueries with outer references are sometimes known as correlated subqueries.

Quantified Subqueries

A quantified subquery allows several types of tests and can use the full set of comparison operators. It has the
following general format:

P1

pno

35

value-1 {=|>|<|>=|<=|<>} {ANY|ALL|SOME} (query-1)

The comparison operator specifies how to compare value-1 to the single query column value from each
subquery result row. The ANY, ALL, SOME specifiers give the type of match expected. ANY and SOME
must match at least one row in the subquery. ALL must match all rows in the subquery.

For example, to list all parts that have suppliers:

SELECT *

FROM p

WHERE pno =ANY (SELECT pno FROM sp)

pno descr color

P1 Widget Blue

P2 Widget Red

A self join is used to list the supplier with the highest quantity of each part (ignoring null

quantities):

SELECT *

FROM sp a

WHERE qty >ALL (SELECT qty FROM sp b

WHERE a.pno = b.pno

AND a.sno <> b.sno AND

qty IS NOT NULL)

sno pno qty

S3 P1 1000

S3 P2 200

EXISTS Subqueries

The EXISTS Subquery tests whether a subquery retrieves at least one row, that is, whether a qualifying row
exists. It has the following general format

EXISTS(query-1)

Any valid EXISTS subquery must contain an outer reference. It must be a correlated subquery.

Note: the select list in the EXISTS subquery is not actually used in evaluating the EXISTS, so it can contain
any valid select list (though * is normally used).

To list parts that have suppliers:

SELECT *

FROM p

WHERE EXISTS(SELECT * FROM sp WHERE p.pno = sp.pno)

pno descr color

P1 Widget Blue

P2 Widget Red

36

Scalar Subqueries

The Scalar Subquery can be used anywhere a value can be used. The subquery must reference just one column in the
select list. It must also retrieve no more than one row.

When the subquery returns a single row, the value of the single select list column becomes the value of the Scalar
Subquery. When the subquery returns no rows, a database null is used as the result of the subquery. Should the
subquery retreive more than one row, it is a run-time error and aborts query execution.

A Scalar Subquery can appear as a scalar value in the select list and where predicate of an another query. The
following query on the sp table uses a Scalar Subquery in the select list to retrieve the supplier city associated with
the supplier number (sno column in sp):

SELECT pno, qty, (SELECT city FROM s WHERE s.sno =
sp.sno) FROM sp

pno qty city

P1 NULL Paris

P1 200 London

P1 1000 Rome

P2 200 Rome

The next query on the sp table uses a Scalar Subquery in the where clause to match parts on the color associated with
the part number (pno column in sp):

SELECT *

FROM sp

WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

Note that both example queries use outer references. This is normal in Scalar Subqueries. Often, Scalar Subqueries
are Aggregate Queries.

Table Subqueries

Table Subqueries are queries used in the FROM clause, replacing a table name. Basically, the result set of the Table
Subquery acts like a base table in the from list. Table Subqueries can have a correlation name in the from list. They
can also be in outer joins.
The following two queries produce the same result:

SELECT p.*, qty
FROM p, sp

WHERE p.pno = sp.pno
AND sno = 'S3'

pno descr color qty

P1 Widget Blue 1000

P2 Widget Red 200

SELECT p.*, qty

FROM p, (SELECT pno, qty FROM sp WHERE sno = 'S3')

WHERE p.pno = sp.pno

pno descr color qty

P1 Widget Blue 1000

P2 Widget Red 200

37

Grouping Queries

A Grouping Query is a special type of query that groups and summarizes rows. It uses the GROUP BY Clause.

A Grouping Query groups rows based on common values in a set of grouping columns. Rows with the same values
for the grouping columns are placed in distinct groups. Each group is treated as a single row in the query result.

Even though a group is treated as a single row, the underlying rows can be subject to summary operations known as
Set Functions whose results can be included in the query. The optional HAVING Clause supports filtering for group
rows in the same manner as the WHERE clause filters FROM rows.
For example, grouping the sp table on the pno column produces 2 groups:

sno pno qty

S1 P1 NULL

'P1' Group
S2 P1 200

S3 P1 1000

S3 P2 200 'P2' Group

The P1 group contains 3 sp rows with pno='P1'

The P2 group contains a single sp row with pno='P2'

Nulls get special treatment by GROUP BY. GROUP BY considers a null as distinct from every other null. Each row
that has a null in one of its grouping columns forms a separate group.
Grouping the sp table on the qty column produces 3 groups:

sno pno qty

S1 P1 NULL NULL Group

S2 P1 200
200 Group

S3 P2 200

S3 P1 1000 1000 Group

The row where qty is null forms a separate group.

GROUP BY Clause

GROUP BY is an optional clause in a query. It follows the WHERE clause or the FROM clause if the WHERE
clause is missing. A query containing a GROUP BY clause is a Grouping Query. The GROUP BY clause has the
following general format:

GROUP BY column-1 [, column-2] ...

column-1 and column-2 are the grouping columns. They must be names of columns from tables in the FROM clause;
they can't be expressions.

GROUP BY operates on the rows from the FROM clause as filtered by the WHERE clause. It collects the rows into
groups based on common values in the grouping columns. Except nulls, rows with the same set of values for the
grouping columns are placed in the same group. If any grouping column for a row contains a null, the row is given
its own group.

For example,

SELECT pno
FROM sp
GROUP BY pno

pno

P1

P2

In Grouping Queries, the select list can only contain grouping columns, plus literals, outer references and
expression involving these elements. Non-grouping columns from the underlying FROM tables cannot be

38

referenced directly. However, non-grouping columns can be used in the select list as arguments to Set
Functions. Set Functions summarize columns from the underlying rows of a group.

Set Functions

Set Functions are special summarizing functions used with Grouping Queries and Aggregate Queries. They
summarize columns from the underlying rows of a group or aggregate.
Using the Group By example from above, grouping the sp table on the pno column:

sno pno qty

S1 P1 NULL
'P1' Group

S2 P1 200

S3 P1 1000

S3 P2 200 'P2' Group

A Set Function can compute the total quantities for each group:

sno pno qty qty total

S1 P1 NULL

'P1' Group

1200
S2 P1 200

S3 P1 1000

S3 P2 200 'P2' Group
200

Null columns are ignored in computing the summary. The Set Function -- SUM, computes the arithmetic sum of a
numeric column in a set of grouped/aggregate rows. For example,

SELECT pno,
SUM(qty) FROM sp

GROUP BY pno

pno

P1 1200

P2 200

Set Functions have the following general format: set-
function ([DISTINCT|ALL] column-1)

set-function is:

COUNT -- count of rows

SUM -- arithmetic sum of numeric column

AVG -- arithmetic average of numeric column; should be SUM()/COUNT(). MIN --
minimum value found in column

MAX -- maximum value found in column

The result of the COUNT function is always integer. The result of all other Set Functions is the same data type as the
argument.

The Set Functions skip columns with nulls, summarizing non-null values. COUNT counts rows with non- null
values, AVG averages non-null values, and so on. COUNT returns 0 when no non-null column values are found; the
other functions return null when there are no values to summarize.

A Set Function argument can be a column or a scalar expression.

The DISTINCT and ALL specifiers are optional. ALL specifies that all non-null values are summarized; it is the
default. DISTINCT specifies that distinct column values are summarized; duplicate values are skipped. Note:
DISTINCT has no effect on MIN and MAX results.

COUNT also has an alternate format:

COUNT(*)

... which counts the underlying rows regardless of column

39

Set Function examples:

SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT

sno) FROM sp

GROUP BY pno

pno

P1 S1 1000 600 3 P2

S3 200 200 1

SELECT sno, COUNT(*) parts

FROM sp

GROUP BY sno

sno parts

S1 1

S2 1

S3 2

HAVING Clause

The HAVING Clause is associated with Grouping Queries and Aggregate Queries. It is optional in both cases. In
Grouping Queries, it follows the GROUP BY clause. In Aggregate Queries, HAVING follows the WHERE clause
or the FROM clause if the WHERE clause is missing.

The HAVING Clause has the following general format:

HAVING predicate

Like the WHERE Clause, HAVING filters the query result rows. WHERE filters the rows from the FROM clause.
HAVING filters the grouped rows (from the GROUP BY clause) or the aggregate row (for Aggregate Queries).

predicate is a logical expression referencing grouped columns and set functions. It has the same restrictions as the
select list for Grouping Queries and Aggregate Queries.

If the Having predicate evaluates to true for a grouped or aggregate row, the row is included in the query result,
otherwise, the row is skipped (not included in the query result).

For example,

SELECT sno, COUNT(*) parts
FROM sp

GROUP BY sno HAVING
COUNT(*) > 1

sno parts

S3 2

Aggregate Queries

An Aggregate Query can use Set Functions and a HAVING Clause. It is similar to a Grouping Query except there
are no grouping columns. The underlying rows from the FROM and WHERE clauses are grouped into a single
aggregate row. An Aggregate Query always returns a single row, except when the Having clause is used.

An Aggregate Query is a query containing Set Functions in the select list but no GROUP BY clause. The Set
Functions operate on the columns of the underlying rows of the single aggregate row. Except for outer references,
any columns used in the select list must be arguments to Set Functions.

An aggregate query may also have a Having clause. The Having clause filters the single aggregate row. If the
Having predicate evaluates to true, the query result contains the aggregate row. Otherwise, the query result contains
no rows.
For example,

SELECT COUNT(DISTINCT pno) number_parts, SUM(qty)
total_parts FROM sp

 number_parts total_parts

40

2 1400

Subqueries are often Aggregate Queries. For example, parts with suppliers:

SELECT

* FROM p

WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0

pno descr color

P1 Widget Blue

P2 Widget Red

Parts with multiple suppliers:

SELECT

* FROM p

WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1

pno descr color

P1 Widget Blue

Union Queries

The SQL UNION operator combines the results of two queries into a composite result. The component queries can
be SELECT/FROM queries with optional WHERE/GROUP BY/HAVING clauses. The UNION operator has the
following general format:

query-1 UNION [ALL] query-2

query-1 and query-2 are full query specifications. The UNION operator creates a new query result that includes rows
from each component query.

By default, UNION eliminates duplicate rows in its composite results. The optional ALL specifier requests that
duplicates be retained in the UNION result.

The component queries of a Union Query can also be Union Queries themselves. Parentheses are used for grouping
queries.

The select lists from the component queries must be union-compatible. They must match in degree (number of
columns). For Entry Level SQL92, the column descriptor (data type and precision, scale) for each corresponding
column must match. The rules for Intermediate Level SQL92 are less restrictive.

Union-Compatible Queries

For Entry Level SQL92, each corresponding column of both queries must have the same column descriptor in order
for two queries to be union-compatible. The rules are less restrictive for Intermediate Level SQL92. It supports
automatic conversion within type categories. In general, the resulting data type will be the broader type. The
corresponding columns need only be in the same data type category:

Character (String) -- fixed/variable length Bit

String -- fixed/variable length

Exact Numeric (fixed point) -- integer/decimal

Approximate Numeric (floating point) -- float/double
Datetime -- sub-category must be the same,

o Date

o Time

o Timestamp

Interval -- sub-category must be the same,

o Year-month

o Day-time

UNION Examples

SELECT * FROM sp

UNION

SELECT CAST(' ' AS VARCHAR(5)), pno, CAST(0 AS INT)

41

FROM p

WHERE pno NOT IN (SELECT pno FROM sp)

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

 P3 0

SQL Modification Statements

The SQL Modification Statements make changes to database data in tables and columns. There are 3
modification statements:

INSERT Statement -- add rows to tables

UPDATE Statement -- modify columns in table rows

DELETE Statement -- remove rows from tables

INSERT Statement

The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)

and,

INSERT INTO table-1 [(column-list)] (query-specification)

The first form inserts a single row into table-1 and explicitly specifies the column values for the row. The second
form uses the result of query-specification to insert one or more rows into table-1. The result rows from the query are
the rows added to the insert table. Note: the query cannot reference table-1.

Both forms have an optional column-list specification. Only the columns listed will be assigned values. Unlisted
columns are set to null, so unlisted columns must allow nulls. The values from the VALUES Clause (first form) or
the columns from the query-specification rows (second form) are assigned to the corresponding column in column-
list in order.

If the optional column-list is missing, the default column list is substituted. The default column list contains all
columns in table-1 in the order they were declared in CREATE TABLE, or CREATE VIEW.

VALUES Clause

The VALUES Clause in the INSERT Statement provides a set of values to place in the columns of a new row. It
has the following general format:

VALUES (value-1 [, value-2] ...)

value-1 and value-2 are Literal Values or Scalar Expressions involving literals. They can also specify NULL.

The values list in the VALUES clause must match the explicit or implicit column list for INSERT in degree
(number of items). They must also match the data type of corresponding column or be convertible to that data type.

INSERT Examples

INSERT INTO p (pno, color) VALUES ('P4', 'Brown')

Before After

=>

pno descr color

P1 Widget Blue

P2 Widget Red

P3 Dongle Green

pno descr color

P1 Widget Blue

P2 Widget Red

P3 Dongle Green

42

 P4 NULL Brown

INSERT INTO sp

SELECT s.sno, p.pno, 500
FROM s, p
WHERE p.color='Green' AND s.city='London'

Before After

=

>

UPDATE Statement

The UPDATE statement modifies columns in selected table rows. It has the following general format:

UPDATE table-1 SET set-list [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The WHERE
clause chooses which table rows to update. If it is missing, all rows are in table-1 are updated.

The set-list contains assignments of new values for selected columns.

The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the subqueries cannot
reference table-1. This prevents situations where results are dependent on the order of processing.

SET Clause

The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the selected table rows. It has
the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...

column-1 and column-2 are columns in the Update table. value-1 and value-2 are expressions that can reference
columns from the update table. They also can be the keyword -- NULL, to set the column to null. Since the
assignment expressions can reference columns from the current row, the expressions are evaluated first. After the
values of all Set expressions have been computed, they are then assigned to the referenced columns. This avoids
results dependent on the order of processing.

UPDATE Examples

UPDATE sp SET qty = qty + 20

Before After

=

>

UPDATE s

SET name = 'Tony', city = 'Milan'

WHERE sno = 'S3'

Before After

=>

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

S2 P3 500

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

sno pno qty

S1 P1 NULL

S2 P1 220

S3 P1 1020

S3 P2 220

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

sno name city

S1 Pierre Paris

S2 John London

S3 Tony Milan

43

DELETE Statement

The DELETE Statement removes selected rows from a table. It has the following general format:

DELETE FROM table-1 [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The WHERE
clause chooses which table rows to delete. If it is missing, all rows are in table-1 are removed.
The WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-1. This prevents
situations where results are dependent on the order of processing.

DELETE Examples

DELETE FROM sp WHERE pno = 'P1'

Before After

sno pno qty

S3 P2 200
=

>

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)

Before After

=>

SQL-Transaction Statements

SQL-Transaction Statements control transactions in database access. This subset of SQL is also called the Data
Control Language for SQL (SQL DCL).

There are 2 SQL-Transaction Statements:

COMMIT Statement -- commit (make persistent) all changes for the current transaction
ROLLBACK Statement -- roll back (rescind) all changes for the current transaction

Transaction Overview

A database transaction is a larger unit that frames multiple SQL statements. A transaction ensures that the action of
the framed statements is atomic with respect to recovery.

A SQL Modification Statement has limited effect. A given statement can only directly modify the contents of a
single table (Referential Integrity effects may cause indirect modification of other tables.) The upshot is that
operations which require modification of several tables must involve multiple modification statements. A classic
example is a bank operation that transfers funds from one type of account to another, requiring updates to 2 tables.
Transactions provide a way to group these multiple statements in one atomic unit.

In SQL92, there is no BEGIN TRANSACTION statement. A transaction begins with the execution of a SQL-Data
statement when there is no current transaction. All subsequent SQL-Data statements until COMMIT or
ROLLBACK become part of the transaction. Execution of a COMMIT Statement or ROLLBACK Statement
completes the current transaction. A subsequent SQL-Data statement starts a new transaction.

In terms of direct effect on the database, it is the SQL Modification Statements that are the main consideration since
they change data. The total set of changes to the database by the modification statements in a transaction are treated
as an atomic unit through the actions of the transaction. The set of changes either:

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

pno descr color

P1 Widget Blue

P2 Widget Red

P3 Dongle Green

pno descr color

P1 Widget Blue

P2 Widget Red

44

Is made fully persistent in the database through the action of the COMMIT Statement, or Has no
persistent effect whatever on the database, through:

o the action of the ROLLBACK Statement,

o abnormal termination of the client requesting the transaction, or

o abnormal termination of the transaction by the DBMS. This may be an action by the system
(deadlock resolution) or by an administrative agent, or it may be an abnormal termination of the
DBMS itself. In the latter case, the DBMS must roll back any active transactions during recovery.

The DBMS must ensure that the effect of a transaction is not partial. All changes in a transaction must be made
persistent, or no changes from the transaction must be made persistent.

Transaction Isolation

In most cases, transactions are executed under a client connection to the DBMS. Multiple client
connections can initiate transactions at the same time. This is known as concurrent transactions.

In the relational model, each transaction is completely isolated from other active transactions. After initiation, a
transaction can only see changes to the database made by transactions committed prior to starting the new
transaction. Changes made by concurrent transactions are not seen by SQL DML query and modification
statements. This is known as full isolation or Serializable transactions.

SQL92 defines Serializable for transactions. However, full serialized transactions can impact performance. For this
reason, SQL92 allows additional isolation modes that reduce the isolation between concurrent transactions. SQL92
defines 3 other isolation modes, but support by existing DBMSs is often incomplete and doesn't always match the
SQL92 modes. Check the documentation of your DBMS for more details.

SQL-Schema Statements in Transactions

The 3rd type of SQL Statements - SQL-Schema Statements, may participate in the transaction mechanism. SQL-
Schema statements can either be:

included in a transaction along with SQL-Data statements,
required to be in separate transactions, or

ignored by the transaction mechanism (can't be rolled back).

SQL92 leaves the choice up to the individual DBMS. It is implementation defined behavior.

COMMIT Statement

The COMMIT Statement terminates the current transaction and makes all changes under the transaction persistent. It
commits the changes to the database. The COMMIT statement has the following general format:

COMMIT [WORK]

WORK is an optional keyword that does not change the semantics of COMMIT.
ROLLBACK Statement

The ROLLBACK Statement terminates the current transaction and rescinds all changes made under the transaction.
It rolls back the changes to the database. The ROLLBACK statement has the following general format:

ROLLBACK [WORK]

WORK is an optional keyword that does not change the semantics of ROLLBACK.

SQL-Schema Statements

SQL-Schema Statements provide maintenance of catalog objects for a schema -- tables, views and privileges. This
subset of SQL is also called the Data Definition Language for SQL (SQL DDL).
There are 6 SQL-Schema Statements:

CREATE TABLE Statement -- create a new base table in the current schema

CREATE VIEW Statement -- create a new view table in the current schema DROP

TABLE Statement -- remove a base table from the current schema

45

DROP VIEW Statement -- remove a view table from the current schema

GRANT Statement -- grant access privileges for objects in the current schema to other users
REVOKE Statement -- revoke previously granted access privileges for objects in the current schema
from other users

Schema Overview

A relational database contains a catalog that describes the various elements in the system. The catalog divides the
database into sub-databases known as schemas. Within each schema are database objects -- tables, views and
privileges.

The catalog itself is a set of tables with its own schema name - definition_schema. Tables in the catalog cannot be
modified directly. They are modified indirectly with SQL-Schema statements.

Tables

The database table is the root structure in the relational model and in SQL. A table (called a relation in relational)
consists of rows and columns. In relational, rows are called tuples and columns are called attributes. Tables are often
displayed in a flat format, with columns arrayed horizontally and rows vertically:

C o l u m n s

R

o

w

s

Database tables are a logical structure with no implied physical characteristics. Primary among the various logical
tables is the base table. A base table is persistent and self contained, that is, all data is part of the table itself with no
information dynamically derived from other tables.

A table has a fixed set of columns. The columns in a base table are not accessed positionally but by name, which
must be unique among the columns of the table. Each column has a defined data type, and the value for the column
in each row must be from the defined data type or null. The columns of a table are accessed and identified by name.

A table has 0 or more rows. A row in a base table has a value or null for each column in the table. The rows in a
table have no defined ordering and are not accessed positionally. A table row is accessed and identified by the values
in its columns.

In SQL92, base tables can have duplicate rows (rows where each column has the same value or null). However, the
relational model does not recognize tables with duplicate rows as valid base tables (relations). The relational model
requires that each base table have a unique identifier, known as the Primary Key. The primary key for a table is a
designated set of columns which have a unique value for each table row. For a discussion of Primary Keys, see
Entity Integrity under CREATE TABLE below.

A base table is defined using the CREATE TABLE Statement. This statement places the table description in the
catalog and initializes an internal entity for the actual representation of the base table.
Example base table - s:

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

The s table records suppliers. It has 3 defined columns:

sno -- supplier number, an unique identifier that is the primary key name

-- the name of the supplier

city -- the city where the supplier is located

46

At the current time, there are 3 rows.

Other types of tables in the system are derived tables. SQL-Data statements use internally derived tables in
computing results. A query is in fact a derived table. For instance, the query operator - Union, combines two derived
tables to produce a third one. Much of the power of SQL comes from the fact that its higher level operations are
performed on tables and produce a table as their result.

Derived tables are less constrained than base tables. Column names are not required and need not be unique. Derived
tables may have duplicate rows. Views are a type of derived table that are cataloged in the database.

Views

A view is a derived table registered in the catalog. A view is defined using a SQL query. The view is dynamically
derived, that is, its contents are materialized for each use. Views are added to the catalog with the CREATE VIEW
Statement.

Once defined in the catalog, a view can substitute for a table in SQL-Data statements. A view name can be used
instead of a base table name in the FROM clause of a SELECT statement. Views can also be the subject of a
modification statement with some restrictions.

A SQL Modification Statement can operate on a view if it is an updatable view. An updatable view has the following
restrictions on its defining query:

The query FROM clause can reference a single table (or view) The
single table in the FROM clause must be:

o a base table,

o a view that is also an updatable view, or

o a nested query that is updatable, that is, it follows the rules for an updatable view query. The
query must be a basic query, not a:

o Grouping Query,

o Aggregate Query, or

o Union Query.

The select list cannot contain:

o the DISTINCT specifier,
o an Expression, or

o duplicate column references

Subqueries are acceptable in updatable views but cannot reference the underlying base table for the view's FROM
clause.

Privileges

SQL92 defines a SQL-agent as an implementation-dependent entity that causes the execution of SQL statements.
Prior to execution of SQL statements, the SQL-agent must establish an authorization identifier for database access.
An authorization identifier is commonly called a user name.

A DBMS user may access database objects (tables, columns, views) as allowed by the privileges assigned to that
specific authorization identifier. Access privileges may be granted by the system (automatic) or by other users.
System granted privileges include:

All privileges on a table to the user that created the table. This includes the privilege to grant

privileges on the table to other users.

SELECT (readonly) privilege on the catalog (the tables in the schema - definition_schema). This is granted
to all users.

User granted privileges cover privileges to access and modify tables and their columns. Privileges can be granted for
specific SQL-Data Statements -- SELECT, INSERT, UPDATE, DELETE.

CREATE TABLE Statement

The CREATE TABLE Statement creates a new base table. It adds the table description to the catalog. A base
table is a logical entity with persistence. The logical description of a base table consists of:

47

Schema -- the logical database schema the table resides in

Table Name -- a name unique among tables and views in the Schema
Column List -- an ordered list of column declarations (name, data type)
Constraints -- a list of constraints on the contents of the table

The CREATE TABLE Statement has the following general format:

CREATE TABLE table-name ({column-descr|constraint} [,{column-descr|constraint}]...) table-
name is the new name for the table. column-descr is a column declaration. constraint is a table constraint.

The column declaration can include optional column constraints. The declaration has the following general format:

column-name data-type [column-constraints]

column-name is the name of the column and must be unique among the columns of the table. data-type declares the
type of the column. Data types are described below. column-constraints is an optional list of column constraints with
no separators.

Constraints

Constraint specifications add additional restrictions on the contents of the table. They are automatically

enforced by the DBMS. The column constraints are:

NOT NULL -- specifies that the column can't be set to null. If this constraint is not specified, the column is
nullable, that is, it can be set to null. Normally, primary key columns are declared as NOT NULL.

PRIMARY KEY -- specifies that this column is the only column in the primary key. There can be only one
primary key declaration in a CREATE TABLE. For primary keys with multiple columns, use the
PRIMARY KEY table constraint. See Entity Integrity below for a detailed description of primary keys.

UNIQUE -- specifies that this column has a unique value or null for all rows of the table. REFERENCES
-- specifies that this column is the only column in a foreign key. For foreign keys with multiple columns,
use the FOREIGN KEY table constraint. See Referential Integrity below for a detailed description of
primary keys.

CHECK -- specifies a user defined constraint on the table. See the table constraint - CHECK, below.

The table constraints are:

PRIMARY KEY -- specifies the set of columns that comprise the primary key. There can be only one
primary key declaration in a CREATE TABLE Statement. See Entity Integrity below for a detailed
description of primary keys.

UNIQUE -- specifies that a set of columns have unique values (or nulls) for all rows in the table. The
UNIQUE specifier is followed by a parenthesized list of column names, separated by commas. FOREIGN
KEY -- specifies the set of columns in a foreign key. See Referential Integrity below for a detailed
description of foreign keys.

CHECK -- specifies a user defined constraint, known as a check condition. The CHECK specifier is followed
by a predicate enclosed in parentheses. For Intermediate Level SQL92, the CHECK predicate can only
reference columns from the current table row, with no subqueries. Many DBMSs support subqueries in the
check predicate.

The check predicate must evaluate to true before a modification or addition of a row takes place. The check
is effectively made on the contents of the table after the modification. For INSERT Statements, the predicate
is evaluated as if the INSERT row were added to the table. For UPDATE Statements, the predicate is
evaluated as if the row were updated. For DELETE Statements, the predicate is evaluated as if the row were
deleted (Note: A check predicate is only useful for DELETE if a subquery is used.)

48

Data Type

This subsection describes data type specifications. The data type categories are:

Character (String) -- fixed or variable length character strings. The character set is implementation defined
but often defaults to ASCII.

Numeric -- values representing numeric quantities. Numeric values are divided into these two broad
categories:

o Exact (also known as fixed-point) -- Exact numeric values have a fixed number of digits to the left
of the decimal point and a fixed number of digits to the right (the scale). The total number of
digits on both sides of the decimal are the precision. A special subset of exact numeric types with a
scale of 0 is called integer.

o Approximate (also known as floating-point) -- Approximate numeric values that have a fixed
precision (number of digits) but a floating decimal point.

All numeric types are signed.

Datetime -- Datetime values include calendar and clock values (Date, Time, Timestamp) and
intervals. The datetime types are:

o Date -- calendar date with year, month and day

o Time -- clock time with hour, minute, second and fraction of second, plus a timezone component
(adjustment in hours, minutes)

o Timestamp -- combination calendar date and clock time with year, month, day, hour, minute, second
and fraction of second, plus a timezone component (adjustment in hours, minutes)

o Interval -- intervals represent time and date intervals. They are signed. An interval value can contain
a subset of the interval fields, for example - hour to minute, year, day to second. Interval types are
subdivided into:

year-month intervals -- may contain years, months or combination years/months value.

day-time intervals -- days, hours, minutes, seconds, fractions of second.

Data type declarations have the following general format:

Character (String)

CHAR [(length)]

CHARACTER [(length)]

VARCHAR (length)

CHARACTER VARYING (length)

length specifies the number of characters for fixed size strings (CHAR, CHARACTER); spaces are
supplied for shorter strings. If length is missing for fixed size strings, the default length is 1. For
variable size strings (VARCHAR, CHARACTER VARYING), length is the maximum size of the
string. Strings exceeding length are truncated on the right.

Numeric
SMALLINT
INT
INTEGER

The integer types have default binary precision -- 15 for SMALLINT and 31 for INT, INTEGER.
NUMERIC (precision [, scale])

DECIMAL (precision [, scale])

Fixed point types have a decimal precision (total number of digits) and scale (which cannot exceed
the precision). The default scale is 0. NUMERIC scales must be represented exactly. DECIMAL
values can be stored internally with a larger scale (implementation defined).

49

FLOAT [(precision)]

REAL
DOUBLE

The floating point types have a binary precision (maximum significant binary digits). Precision
values are implementation dependent for REAL and DOUBLE, although the standard states
that the default precision for DOUBLE must be larger than for REAL. FLOAT also uses an
implementation defined default for precision (commonly this is the same as for REAL), but the
binary precision for FLOAT can be explicit.

Datetime DATE

TIME [(scale)] [WITH TIME ZONE]

TIMESTAMP [(scale)] [WITH TIME ZONE]

TIME and TIMESTAMP allow an optional seconds fraction (scale). The default scale for TIME is
0, for TIMESTAMP 6. The optional WITH TIME ZONE specifier indicates that the timezone
adjustment is stored with the value; if omitted, the current system timezone is assumed.

INTERVAL interval-qualifier

Interval Qualifier

An interval qualifier defines the specific type of an interval value. The qualifier for an interval type declares the sub-
fields that comprise the interval, the precision of the highest (left-most) sub-field and the scale of the SECOND sub-
field (if any).

Intervals are divided into sub-types -- year-month intervals and day-time intervals. Year-month intervals can only
contain the sub-fields - year and month. Day-time intervals can contain day, hour, minute, second. The interval
qualifier has the following formats:

YEAR [(precision)] [TO MONTH]

MONTH [(precision)]

{DAY|HOUR|MINUTE} [(precision)] [TO SECOND [(scale)]] DAY

[(precision)] [TO {HOUR|MINUTE}]

HOUR [(precision)] [TO MINUTE]

SECOND [(precision [, scale])]

The default precision is 2. The default scale is 6.

Entity Integrity

As mentioned earlier, the relational model requires that each base table have a Primary Key. SQL92, on the other
hand, allows a table to created without a primary key. The advice here is to create all tables with primary keys.

A primary key is a constraint on the contents of a table. In relational terms, the primary key maintains

Entity Integrity for the table. It constrains the table as follows,

For a given row, the set of values for the primary key columns must be unique from all other rows in the
table,

No primary key column can contain a null, and

A table can have only one primary key (set of primary key columns).

Note: SQL92 does not require the second restriction on nulls in the primary key. However, it is required for a
relational system.

50

Entity Integrity (Primary Keys) is enforced by the DBMS and ensures that every row has a proper unique identifier.
The contents of any column in the table with Entity Integrity can be uniquely accessed with 3 pieces of
information:

table identifier
primary key value
column name

This capability is crucial to a relational system. Having a clear, consistent identifier for table rows (and their
columns) distinguishes relational systems from all others. It allows the establishment of relationships between tables,
also crucial to relational systems. This is discussed below under Referential Integrity.

The primary key constraint in the CREATE STATEMENT has two forms. When the primary key consists of a single
column, it can be declared as a column constraint, simply - PRIMARY KEY, attached to the column descriptor. For
example:

sno VARCHAR(5) NOT NULL PRIMARY KEY

As a table constraint, it has the following format:

PRIMARY KEY (column-1 [, column-2] ...)

column-1 and column-2 are the names of the columns of the primary key. For example,

PRIMARY KEY (sno, pno)

The order of columns in the primary key is not significant, except as the default order for the FOREIGN KEY table
constraint.

Referential Integrity

Foreign keys provide relationships between tables in the database. In relational, a foreign key in a table is a set of
columns that reference the primary key of another table. For each row in the referencing table, the foreign key must
match an existing primary key in the referenced table. The enforcement of this constraint is known as Referential
Integrity.

Referential Integrity requires that:

The columns of a foreign key must match in number and type the columns of the primary key in the

referenced table.

The values of the foreign key columns in each row of the referencing table must match the values of the
corresponding primary key columns for a row in the referenced table.

The one exception to the second restriction is when the foreign key columns for a row contain nulls. Since primary
keys should not contain nulls, a foreign key with nulls cannot match any row in the referenced table. However, a row
with a foreign key of all nulls (all foreign key columns contain null) is allowed in the referencing table. It is a null
reference.

Like other constraints, the referential integrity constraint restricts the contents of the referencing table, but it also
may in effect restrict the contents of the referenced table. When a row in a table is referenced (through its primary
key) by a foreign key in a row in another table, operations that affect its primary key columns have side-effects and
may restrict the operation. Changing the primary key of or deleting a row which has referencing foreign keys would
violate the referential integrity constraints on the referencing table if allowec to proceed. This is handled in two
ways,

The referenced table is restricted from making the change (and violating referential integrity in the referencing table),
or

Rows in the referencing table are modified so the referential integrity constraint is maintained.

These actions are controlled by the referential integrity effects declarations, called referential triggers by SQL92.
The referential integrity effect actions defined for SQL are:

NO ACTION -- the change to the referenced (primary key) table is not performed. This is the default.

51

CASCADE -- the change to the referenced table is propagated to the referencing (foreign key) table.

SET NULL -- the foreign key columns in the referencing table are set to null.

Update and delete have separate action declarations. For CASCADE, update and delete also operate
differently:

For update (the primary key column values have been modified), the corresponding foreign key columns
for referencing rows are set to the new values.

For delete (the primary key row is deleted), the referencing rows are deleted.

A referential integrity constraint in the CREATE STATEMENT has two forms. When the foreign key consists of a
single column, it can be declared as a column constraint, like:

column-descr REFERENCES references-specification

As a table constraint, it has the following format:

FOREIGN KEY (column-list) REFERENCES references-specification

column-list is the referencing table columns that comprise the foreign key. Commas separate column names in the
list. Their order must match the explicit or implicit column list in the references-specification. The references-
specification has the following format:

table-2 [(referenced-columns)]

[ON UPDATE { CASCADE | SET NULL | NO ACTION }] [ON

DELETE { CASCADE | SET NULL | NO ACTION }]

The order of the ON UPDATE and ON DELETE clauses may be reversed. These clauses declare the effect action
when the referenced primary key is updated or deleted. The default for ON UPDATE and ON DELETE is NO
ACTION.

table-2 is the referenced table name (primary key table). The optional referenced-columns list the columns of the
referenced primary key. Commas separate column names in the list. The default is the primary key list in declaration
order.

Contrary to the relational model, SQL92 allows foreign keys to reference any set of columns declared with the
UNIQUE constraint in the referenced table (even when the table has a primary key). In this case, the referenced-
columns list is required.

Example table constraint for referential integrity (for the sp table):

FOREIGN KEY (sno)
REFERENCES s(sno)

ON DELETE NO ACTION

ON UPDATE CASCADE

CREATE TABLE Examples

Creating the example tables:

CREATE TABLE s

(sno VARCHAR(5) NOT NULL PRIMARY KEY,
name VARCHAR(16),

city VARCHAR(16)

)

CREATE TABLE p

(pno VARCHAR(5) NOT NULL PRIMARY KEY,
descr VARCHAR(16),

color VARCHAR(8)

)

CREATE TABLE sp

(sno VARCHAR(5) NOT NULL REFERENCES s, pno
VARCHAR(5) NOT NULL REFERENCES p,

52

qty INT,

PRIMARY KEY (sno, pno)

)

Create for sp with a constraint that the qty column can't be negative:

CREATE TABLE sp

(sno VARCHAR(5) NOT NULL REFERENCES s, pno
VARCHAR(5) NOT NULL REFERENCES p, qty INT
CHECK (qty IS NULL OR qty >= 0),

PRIMARY KEY (sno, pno)

)

CREATE VIEW Statement

The CREATE VIEW statement creates a new database view. A view is effectively a SQL query stored in the
catalog. The CREATE VIEW has the following general format:

CREATE VIEW view-name [(column-list)] AS query-1

[WITH [CASCADED|LOCAL] CHECK OPTION]

view-name is the name for the new view. column-list is an optional list of names for the columns of the view, comma
separated. query-1 is any SELECT statement without an ORDER BY clause. The optional WITH CHECK OPTION
clause is a constraint on updatable views.

column-list must have the same number of columns as the select list in query-1. If column-list is omitted, all items
in the select list of query-1 must be named. In either case, duplicate column names are not allowed for a view.

The optional WITH CHECK OPTION clause only applies to updatable views. It affects SQL INSERT and UPDATE
statements. If WITH CHECK OPTION is specified, the WHERE predicate for query-1 must evaluate to true for the
added row or the changed row.

The CASCADED and LOCAL specifiers apply when the underlying table for query-1 is another view. CASCADED
requests that WITH CHECK OPTION apply to all underlying views (to any level.) LOCAL requests that the current
WITH CHECK OPTION apply only to this view. LOCAL is the default.

CREATE VIEW Examples

Parts with suppliers:

CREATE VIEW supplied_parts AS
SELECT *

FROM p

WHERE pno IN (SELECT pno FROM sp)
WITH CHECK OPTION

Access example:

SELECT * FROM supplied_parts

pno descr color

P1 Widget Red

P2 Widget Blue

Joined view:

CREATE VIEW part_locations (part, quantity, location) AS

SELECT pno, qty, city

FROM sp, s

WHERE sp.sno = s.sno

Access examples:

SELECT * FROM part_locations

part quantity location

P1 NULL Paris

P1 200 London

P1 1000 Rome

P2 200 Rome

SELECT part, quantity

FROM part_locations

WHERE location = 'Rome'

part quantity

P1 1000

P2 200

DROP TABLE Statement

The DROP TABLE Statement removes a previously created table and its description from the catalog. It has the
following general format:

DROP TABLE table-name {CASCADE|RESTRICT}

table-name is the name of an existing base table in the current schema. The CASCADE and RESTRICT specifiers
define the disposition of other objects dependent on the table. A base table may have two types of dependencies:

A view whose query specification references the drop table.

Another base table that references the drop table in a constraint - a CHECK constraint or
REFERENCES constraint.

RESTRICT specifies that the table not be dropped if any dependencies exist. If dependencies are found, an error is
returned and the table isn't dropped.

CASCADE specifies that any dependencies are removed before the drop is performed:

Views that reference the base table are dropped, and the sequence is repeated for their
dependencies.

Constraints in other tables that reference this table are dropped; the constraint is dropped but the table
retained.

DROP VIEW Statement

The DROP VIEW Statement removes a previously created view and its description from the catalog. It has the
following general format:

DROP VIEW view-name {CASCADE|RESTRICT}

view-name is the name of an existing view in the current schema. The CASCADE and RESTRICT specifiers define
the disposition of other objects dependent on the view. A view may have two types of dependencies:

A view whose query specification references the drop view.

A base table that references the drop view in a constraint - a CHECK constraint.

RESTRICT specifies that the view not be dropped if any dependencies exist. If dependencies are found, an error is
returned and the view isn't dropped.
CASCADE specifies that any dependencies are removed before the drop is performed:

Views that reference the drop view are dropped, and the sequence is repeated for their
dependencies.

Constraints in base tables that reference this view are dropped; the constraint is dropped but the table
retained.

	Department of Artificial Intelligence & Data Science
	Jaipur Engineering College & Research Centre, Jaipur
	Mission of the Institute
	Program Outcomes (PO)
	Program Educational Objectives (PEO)
	UNIT-3
	p Table (parts) s Table (suppliers) sp Table (suppliers & parts)
	SELECT name FROM s WHERE city='Rome'
	name
	SELECT [ALL|DISTINCT] select-list
	SELECT descr, color FROM p
	SELECT p.descr, p.color FROM p
	SELECT name supplier, city location FROM s
	SELECT * FROM sp
	SELECT sp.* FROM sp
	SELECT sp.*,
	sp.sno=s.sno
	SELECT * FROM s
	SELECT sp.*, (1)
	sp.sno=s.sno (1)
	SELECT supplier.name FROM s supplier
	color = 'Red'
	SELECT * FROM sp WHERE qty >= 200
	Extended Comparisons
	value-1 [NOT] BETWEEN value-2 AND value-3
	value-1 >= value-2 AND value-1 <= value-3
	NOT (value-1 >= value-2 AND value-1 <= value-3)
	SELECT *
	FROM sp
	value-1 [NOT] IN (value-2 [, value-3] ...)
	value-1 = value-2 [OR value-1 = value-3] ...
	NOT (value-1 = value-2 [OR value-1 = value-3] ...)
	SELECT name FROM s WHERE city IN e','Paris') name
	value-1 [NOT] LIKE value-2 [ESCAPE value-3]
	x LIKE '%/%' ESCAPE '/'
	y LIKE '/%//%' ESCAPE '/'
	z NOT LIKE 'abc%'
	NOT z LIKE 'abc%'
	WHERE qty = NULL
	value-1 IS [NOT] NULL
	value-1 IS NOT NULL
	NOT value-1 IS NULL

	Logical Operators
	predicate-1 AND predicate-2
	SELECT *
	WHERE sno='S3' AND qty < 500
	predicate-1 OR predicate-2
	SELECT * FROM s
	a OR b AND c
	a OR (b AND c)
	NOT predicate-1
	SELECT * (1)
	WHERE NOT sno = 'S3'
	ORDER BY column-1 [ASC|DESC] [column-2 [ASC|DESC]] ...
	SELECT * FROM sp ORDER BY 3 DESC
	SELECT * FROM sp ORDER BY qty DESC, sno

	Literals
	[ddd][[.]ddd][E[+|-]ddd]

	SQL Functions
	System Values
	SQL Special Constructs
	Expression Operators
	'ab' || 'cd' ==> 'abcd'
	(datetime-1 - datetime-2) interval-qualifier
	? interval-qualifier
	SELECT * FROM sp, p
	SELECT *
	WHERE sp.pno = p.pno
	SELECT name, qty, descr, color FROM s, sp, p

	Outer Joins
	table-1 { LEFT | RIGHT | FULL } OUTER JOIN table-2 ON predicate-1
	SELECT pno, descr, color, sno, qty

	Self Joins
	SELECT DISTINCT a.pno
	WHERE a.pno = b.pno AND a.sno <> b.sno

	Predicate Subqueries
	value-1 [NOT] IN (query-1)
	NOT value-1 IN (query-1)
	SELECT * FROM p
	SELECT DISTINCT pno
	WHERE pno IN (SELECT pno FROM sp b WHERE a.sno <> b.sno)
	value-1 {=|>|<|>=|<=|<>} {ANY|ALL|SOME} (query-1)
	SELECT * FROM p (1)
	SELECT *
	WHERE qty >ALL (SELECT qty FROM sp b WHERE a.pno = b.pno
	EXISTS(query-1)
	SELECT * FROM p (2)

	Scalar Subqueries
	SELECT pno, qty, (SELECT city FROM s WHERE s.sno = sp.sno) FROM sp
	WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)

	Table Subqueries
	SELECT p.*, qty FROM p, sp
	SELECT p.*, qty

	GROUP BY Clause
	GROUP BY column-1 [, column-2] ...
	SELECT pno FROM sp GROUP BY pno

	Set Functions
	SELECT pno, SUM(qty) FROM sp
	COUNT(*)
	SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT
	SELECT sno, COUNT(*) parts FROM sp

	HAVING Clause
	HAVING predicate
	SELECT sno, COUNT(*) parts FROM sp
	SELECT COUNT(DISTINCT pno) number_parts, SUM(qty) total_parts FROM sp
	SELECT
	WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0
	SELECT (1)
	WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1
	query-1 UNION [ALL] query-2

	Union-Compatible Queries
	SELECT CAST(' ' AS VARCHAR(5)), pno, CAST(0 AS INT)
	WHERE pno NOT IN (SELECT pno FROM sp)
	INSERT INTO table-1 [(column-list)] VALUES (value-list)
	INSERT INTO table-1 [(column-list)] (query-specification)

	VALUES Clause
	VALUES (value-1 [, value-2] ...)

	INSERT Examples
	INSERT INTO p (pno, color) VALUES ('P4', 'Brown') Before After
	INSERT INTO sp
	WHERE p.color='Green' AND s.city='London' Before After
	UPDATE table-1 SET set-list [WHERE predicate]

	SET Clause
	SET column-1 = value-1 [, column-2 = value-2] ...

	UPDATE Examples
	UPDATE sp SET qty = qty + 20
	UPDATE s
	Before After
	DELETE FROM table-1 [WHERE predicate]

	DELETE Examples
	DELETE FROM sp WHERE pno = 'P1'
	Before After

	Transaction Isolation
	SQL-Schema Statements in Transactions
	COMMIT [WORK]
	ROLLBACK [WORK]

	Tables
	Views
	Privileges
	column-name data-type [column-constraints]

	Constraints
	Data Type
	Interval Qualifier
	YEAR [(precision)] [TO MONTH] MONTH [(precision)]
	HOUR [(precision)] [TO MINUTE]

	Entity Integrity
	sno VARCHAR(5) NOT NULL PRIMARY KEY
	PRIMARY KEY (column-1 [, column-2] ...)
	PRIMARY KEY (sno, pno)

	Referential Integrity
	column-descr REFERENCES references-specification
	FOREIGN KEY (column-list) REFERENCES references-specification
	table-2 [(referenced-columns)]
	FOREIGN KEY (sno) REFERENCES s(sno)

	CREATE TABLE Examples
	CREATE TABLE s
	city VARCHAR(16)
	CREATE TABLE p
	color VARCHAR(8)
	CREATE TABLE sp
	qty INT,
)
	CREATE TABLE sp (1)
	PRIMARY KEY (sno, pno)
	CREATE VIEW view-name [(column-list)] AS query-1

	CREATE VIEW Examples
	CREATE VIEW supplied_parts AS SELECT *
	WHERE pno IN (SELECT pno FROM sp) WITH CHECK OPTION
	SELECT * FROM supplied_parts
	CREATE VIEW part_locations (part, quantity, location) AS SELECT pno, qty, city
	WHERE sp.sno = s.sno
	SELECT * FROM part_locations
	DROP TABLE table-name {CASCADE|RESTRICT}
	DROP VIEW view-name {CASCADE|RESTRICT}

