

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem. – B. Tech I year, Sem.-I Subject –Engineering Mathematics- I Syllabus and Course Plan

VISION OF INSTITUTE

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

MISSION OF INSTITUTE

*****Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.

*****Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.

*****Offer opportunities for interaction between academia and industry.

*****Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge in a range of profession.

Syllabus of Engineering Mathematics -I

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

Credit: 4 3L+1T+0P

Max. Marks: 200 (IA:40, ETE:160)

3L+:	1T+0P End Term Exam: 3	3 Hours
SN	CONTENTS	Hours
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.	8
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.	6
з	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.	6
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.	10
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.	10
	TOTAL	40

Course Outcome of Engineering Mathematics – I Semester I On completion of this course students will be expected to: CO1. Recognize odd, even and periodic function and express them in Fourier series using Euler's formulae.

CO2. Understand fundamental concepts of improper integrals, beta and gamma functions and their properties. Evaluation of Multiple Integrals in finding the areas, volume enclosed by **several curves after its tracing** and its application in proving certain theorems.

CO3. Understand the concept of limits, continuity and differentiability of functions of several variables. Analytical definition of partial derivative. **Maxima and minima of functions of one** and several variables. Define gradient, divergence and curl of scalar and vector functions.

CO4. Interpret the concept of a series as the sum of a sequence, and use the sequence of partial sums to determine convergence of a series. Understand derivatives of power, trigonometric, exponential, hyperbolic, logarithmic series.

CO-PO mapping

CO/P	РО	PO10	PO11	PO12								
0	1	2	3	4	5	6	7	8	9			
CO1	3	1	-	-	-	-	-	-	1	1	-	1
CO2	3	1	-	-	-	-	-	-	1	1	-	1
CO3	3	1	-	-	-	-	-	-	1	1	-	1
CO4	3	1	-	-	-	-	-	-	1	1	-	1

JECRC Course Plan Subject: Engineering Mathematics –I(2018-19) Semester-I

<i>S. No.</i>	Topic to be	Objective of	Outcome of	Book referred	From page to
	discussed	lecture	Lecture		
1	Improper integrals	To make students	Understand	Engg. Mathematics	6.29 to 6.46 and
	(Beta functions)	understand the	fundamental	for Sem I &II by	5.31 to 5.43
2	Properties	concept of improper	concepts of	C.B. Gupta, Mc.	
3	Improper integrals	integrals and some	improper integrals,	Graw Hill	
	(Beta and Gamma	special functions.	beta and gamma	Education,	
	functions)		functions and their	Chennai.	
4	Properties		properties.		
5	Relation Between		1 1		
	Beta and Gamma				
	Function, definite				
	integral				
6	Applications of	Enable students to	Finding the areas,		
	definite integrals to	learn to find	volume enclosed by		
	evaluate surface	surface area and	several curves after		
	areas	volume of solid of	its tracing .		
7	Applications of	revolutions using			
	definite integrals to	definite integrals.			
	evaluate surface				
	areas				
8	Applications of				
	definite integrals to				
	evaluate volume of				
	revolution.				

9	Convergence of sequence and series,	To make students understand sequence and series with their	Interpret the concept of a series as the sum of a sequence.	Advanced Engg. Mathematics by H.K. Das, S.C. Chand & Co.	10.13 to 1051	
10	Test For convergence:- Power series	sum and a convergence tests.	sum and and convergence tests. seq	and use the sequence of partial sums to	Company	
11	Test For convergence:- Series for exponential,		determine convergence of a series. Understand derivatives of			
12	Test For convergence:- Trigonometric functions	To introduce the properties of some special types of series.	power, trigonometric, exponential, hyperbolic, logarithmic			
13	Test For convergence:- logarithm functions.		series.			
14	Test For convergence:- Taylor's series,					

15	Periodic functions, Fourier series,	To enable students to learn the Expansion of	Recognize odd, even and periodic function and	Advanced Engg. Mathematics by ERWIN	526-541
16	Euler's formula	in the series of sines and cosines	express them in Fourier series using Euler's	KREYSZIG, John Wiley & Sons.	
17	Change of intervals	and their modifications according to the	formulae.		
18	Half range sine series	type of function and limits.			
19	Half range cosine series				
20	Parseval`s Theorem			Engg. Mathematics for Sem I &II by C.B. Gupta, Mc. Graw Hill Education , Chennai.	9.31 to 9.32

21 22	Defination of Limit, continuity Partial differentiation	To introduce students with the concept of limit and continuity of	Understand the concept of limits, continuity and differentiability of	Higher Engg. Mathematics by B.V. Ramanna	3.1 to 3.18
23 24	Total derivative Tangent plane and normal lines	two variables, solving equations for extreme points.	functions of several variables. Analytical definition of		
25	Directional derivative		partial derivative. Maxima and minima of	Higher Engg. Mathematics by	4.1 to 4.10
26	Maxima, minima and saddle points		functions of several variables	B.V. Ramanna	
27	Method of Lagrange multipliers				
28	Method of Lagrange multipliers				
29	Gradient	Introduce them to	Define gradient,	Higher Engg.	15.1 to 15.14
30	curl and divergence	vector space and the terms of gradient curl and divergence.	divergence and curl of scalar and vector functions.	Mathematics by B.V. Ramanna	

31	Multiple Integration: Double integrals (Cartesian)	To make students learn double and triple integrals with their applications in deriving	Evaluation of Multiple Integrals in finding the areas, volume enclosed by several curves and	Engg. Mathematics for Sem I &II by C.B. Gupta, Mc. Graw Hill Education , Chennai.	5.63 to 5.104 5.43 to 5.54
32	change of order of integration in double integrals	Gauss, Green's and Stoke's theorem.	its applications in line , surface and volume integral.		
33	Change of variables (Cartesian to polar)				
34	Applications: areas and volumes,				
35	Applications: Centre of mass and Gravity (constant and variable densities)				
36	Triple integrals (Cartesian)				
37	Simple applications involving cubes, sphere and rectangular parallelepipeds;				
38	Scalar line integrals, vector line integrals, scalar surface integrals			Advanced Engg. Mathematics by ERWIN KREYSZIG, John Wiley & Sons.	464 to 515
39	vector surface integrals, Theorems of Green				
40	Gauss and Stokes theoems.				

JECRC Foundation

