



### JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

```
Year & Sem – B.Tech I year I Sem
Subject –Engg.Chemistry
Unit – II
Presented by – Ms.Rekha Vijay
Designation - Asst.Professor
Department - Chemistry
```

## VISSION OF INSTITUTE

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

## **MISSION OF INSTITUTE**

\*Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.

✤Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.

**\***Offer opportunities for interaction between academia and industry.

\*Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge in a range of profession.

## **Engineering Chemistry: Course Outcomes**

Students will be able to:

CO1: Explain the impurities of water (mainly hardness) and boiler troubles. CO2: Describe processing technologies of fuel with numerical aspects of combustion of fuel.

CO3: Describe the engineering material (cement, glass and lubricant) with respect to their manufacturing, composition, classification & properties. CO4: Explain corrosion with its controlling measures, organic reaction mechanism and synthesis of drugs (Aspirin & Paracetamol) with their properties and uses.

#### JECRC Department of Applied Sciences Lecture Plan (Session- 2020-2021)

#### **Course Name: Engineering Chemistry**

Course code: 1FY2-03

#### Year/Semester: 1st Year/ Semester- I

No. of Lecture Req. /(Avl.): /(40/44 )

#### Semester starting: 21 Sept. 2020

#### Semester Ending: 24 Dec. 2020

| Unit No./    | Topics                                                                                     | Lect. No. | Date<br>of Dolivory | Book     | Pg. |
|--------------|--------------------------------------------------------------------------------------------|-----------|---------------------|----------|-----|
| Req.         |                                                                                            |           | Of Delivery         | Referreu | NU. |
|              | Introduction to syllabus, Common natural impurities, hardness,<br>Degree of hardness,      | 1         |                     |          |     |
|              | Units of hardness, Determination of hardness by complexometric (EDTA method).              | 2         |                     |          |     |
|              | Municipal water supply, Requisite of drinking water, purification of water, Sedimentation, | 3         |                     |          |     |
| TT *4 T      | Filtration, disinfection, Breakpoint chlorination.                                         | 4         |                     |          |     |
| Unit-1<br>10 | Boiler troubles: Scale and Sludge formation, Internal treatment<br>Methods                 | 5         |                     |          |     |
|              | Priming and Foaming, Boiler corrosion and caustic embrittlement                            | 6         |                     |          |     |
|              | Water softening: Lime-Soda process                                                         | 7         |                     |          |     |
|              | Water softening: Zeolite (Permutit) process,<br>Demineralization process.                  | 8         |                     |          |     |
|              | Numerical problems based on Hardness, EDTA,                                                | 9         |                     |          |     |
|              | Numerical problems based on Lime-Soda and Zeolite process.                                 | 10        |                     |          |     |

|         | 2.Organic Fuels: Solids fuels: Coal, Classification of  | 11 |                |  |
|---------|---------------------------------------------------------|----|----------------|--|
|         | Coal, Proximate analyses of coal and its significance   |    |                |  |
|         | Ultimate analyses of coal and its significance,         | 12 |                |  |
|         | Gross and Net Calorific value,                          | 13 |                |  |
|         | Determination of Calorific value of coal by Bomb        |    |                |  |
|         | Calorimeter.                                            |    |                |  |
|         | Metallurgical coke, Carbonization processes; Otto-      | 14 |                |  |
|         | Hoffmann byproduct oven method.                         |    |                |  |
|         | Liquid fuels : Advantages of liquid fuels, Mining,      | 15 |                |  |
|         | Refining and                                            |    |                |  |
|         | Surphotic potrol Deforming Knocking Octobe              | 16 |                |  |
|         | number, Anti-knocking agents, Cetane number             | 10 |                |  |
|         | Gaseous fuels; Advantages, manufacturing,               | 17 |                |  |
| Unit-II | composition and Calorific value of coal gas and oil gas |    |                |  |
|         | Determination of calorific value of gaseous fuels by    | 18 |                |  |
| 10      | Junker's calorimeter, Numerical problems based on       |    |                |  |
| - •     | Junkers calorimeter                                     |    |                |  |
|         | Numerical problems based on determination of            | 19 | Engg.          |  |
|         | calorific value bomb calorimeter, /Dulongs formula,     |    | Chemistry      |  |
|         | bruttimate Analysis                                     |    | (New Age       |  |
|         | & utilinate Anarysis.                                   |    | international) |  |
|         |                                                         |    |                |  |
|         |                                                         |    |                |  |
|         | Numerical problems based on combustion of fuel.         | 20 | Engg.          |  |
|         |                                                         |    | Chemistry      |  |
|         |                                                         |    | (New Age       |  |
|         |                                                         |    | international) |  |
|         |                                                         |    |                |  |
|         |                                                         |    |                |  |

Rekha Vijay Asst .Prof. JECRC,Jaipur

| 3.Corrosion and its control: Definition<br>and significance of corrosion,<br>Mechanism of chemical (dry) corrosion                                     | 21 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Mechanism of electrochemical (wet)<br>corrosion, galvanic corrosion,<br>concentration corrosion and pitting<br>corrosion.                              | 22 |  |  |
| Protection from corrosion; protective<br>coatings-galvanization and<br>tinning, cathodic protection, sacrificial<br>anode and modifications in design. | 23 |  |  |

### Unit-III

3

|         | 4.Engineering Materials:<br>Portland Cement; Definition,<br>Manufacturing by Rotary kiln. | 24 |
|---------|-------------------------------------------------------------------------------------------|----|
|         | Chemistry of setting and hardening of cement. Role of Gypsum.                             | 25 |
| Unit-IV | Glass: Definition, Manufacturing by tank<br>furnace, significance of<br>Annealing         | 26 |
| 10      | Types and properties of soft glass, hard glass                                            | 27 |
|         | 28                                                                                        |    |
|         | 29                                                                                        |    |
|         | 30                                                                                        |    |
|         | 31                                                                                        |    |
|         | 32                                                                                        |    |
|         | Emulsification and steam emulsion number.                                                 | 33 |

| 5. Organic reaction mechanism and<br>introduction of drugs: Organic reaction<br>mechanism: Substitution; SN1, SN2. | 34 |  |  |
|--------------------------------------------------------------------------------------------------------------------|----|--|--|
| Electrophilic aromatic substitution in benzene,<br>free radical halogenations of alkanes,                          | 35 |  |  |
| Elimination: elimination in alkyl halides,<br>dehydration of<br>alcohols,                                          | 36 |  |  |
| Addition: electrophilic and free radical addition<br>in alkenes,<br>nucleophilic addition in aldehyde and ketones  | 37 |  |  |
| Rearrangement: Carbocation and free radical rearrangements                                                         | 38 |  |  |
| Drugs : Introduction, Synthesis, properties and uses of Aspirin                                                    | 39 |  |  |
| Drugs : Introduction, Synthesis, properties and uses of Paracetamol, Revision                                      | 40 |  |  |

7

### Lecture-19,20 (Unit-II FUEL)

## Numerical problems based on :

- Determination of calorific value:
- bomb calorimeter
- Dulongs formula
- proximate& ultimate Analysis.
- Numerical problems based on combustion of fuel.

# **Theory of Combustion**

(1) Combustion is a chemical reaction which occurs rapidly with evolution of heat and light. In this process the compound or an element reacts with oxygen, releasing energy. i.e. It is an exothermic reaction.

 $C(s) + O_2(g) \rightarrow CO_2(g) + energy$ 

#### The elementary principles applied in calculation of oxygen and air required for the con process are given as follows.

- . Air contains 21% oxygen by volume, and mass percent of oxygen is 23. ٠
- Molecular mass of air is taken as 28.94 g/ mol ٠
- Minimum oxygen required = Theoretical O, required O, present is the fuel. .
- Minimum O, required should be calculated on the basis of complete combustion. ٠
- The mass of dry flue gases formed should be calculated by balancing the carbon in the fuel and carbon in the flue gases. ٠ The mass of any gas can be converted into its volume using gas equation :

PV = nRT.

where P - pressure of gas in atm.

V - volume of gas in litres.

- n No. of moles of gas.
- T Temperature in kelvin.
- 22.4 litres of any gas at STP has a mass equal to its 1 mol. ٠

eg. 22.4 litres of CO2 at STP weighs 44 gm.

Substances always combine in proportion. For e.g. •

 $C + O2 \rightarrow CO2$  Mass proportion

12 32 44

So 12 gms of carbon combine with 32 gm of O, to form 44 gm of CO2.

 $2C0 + 02 \rightarrow 2C02$  Volume proportion 2

2 volume of CO reacts with 1 volume O, to form 2 volume of  $CO_2$ .

- The dry flue gas contains  $CO_2$ ,  $SO_2$ , CO,  $N_2$  and  $O_2$ ٠
- CO2, and N2, requires no oxygen, since it does not undergo any combustion reaction. The chemical equations expressing the combustion of some of the constituents are as follows •

 $C+O_2 \rightarrow CO_2$ 

$$\begin{array}{r} H_2 + 1/2O_2 \rightarrow H_2O \\ CO + 0 \rightarrow CO_2 \\ S + 0 _2 \rightarrow SO_2 \\ CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \\ C_2H_6 + 7/2 O_2 \rightarrow 2CO_2 + 3H_2O \\ C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O \end{array}$$

**Example 16.** The percentage composition of a coal sample is C = 80%, H = 4%, O = 3%, N = 3%, S = 2% and ash = 4.5%. Calculate the quantity of air required by weight, for the complete combustion of 1 kg of coal if 60% excess air is supplied.

[RTU Aug. 2010]

Solution:

| Constituents | Wt. in 1 kg<br>of coal | Combustion reaction                     | Wt. of O <sub>2</sub> (in kg.)              |
|--------------|------------------------|-----------------------------------------|---------------------------------------------|
| с            | 0.80                   | $C + O_2 \rightarrow CO_2$              | $0.80 \times \frac{32}{12} = 2.13$          |
| н            | 0.04                   | $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ | $0.04 \times \frac{16}{2} = 0.32$           |
| 0            | 0.03                   |                                         | -                                           |
| N            | 0.03                   | —                                       | -                                           |
| S            | 0.02                   | $S + O_2 \rightarrow SO_2$              | $0.02 \times \frac{32}{32} = 0.02$          |
|              |                        |                                         | Total $O_2 = 2.47$<br>$O_2$ in fuel = -0.03 |
|              |                        |                                         | Net $O_2 = 2.44$ kg.                        |

Total weight of air required for complete combustion of 1 kg of coal if 60% excess air is used

$$= 2.44 \times \frac{100}{23} \times \frac{160}{100}$$
$$= 16.97 \text{ kg.}$$

•

**Example 15.** A sample of coal was found to have the following percentage composition by weight C = 85%, H = 12%, O = 3% and ash = 7%. Calculate the weight of minimum air requirement for burning of 1 kg. of the fuel.

#### Solution:

| Constituents | Wt. in 1 kg.<br>of fuel | Combustion<br>reaction                  | Wt. of O <sub>2</sub> required<br>(in kg.) |
|--------------|-------------------------|-----------------------------------------|--------------------------------------------|
| C            | 0.85                    | $C + O_2 \rightarrow CO_2$              | $0.85 \times \frac{32}{2} - 2.26$          |
| н            | 0.12                    | $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ | $0.12 \times \frac{16}{12} = 0.96$         |
| 0            | 0.03                    | -                                       | 2                                          |
| ×            |                         |                                         | Total $O_2 = 3.22$                         |
|              |                         |                                         | $O_2$ in fuel = $-0.03$                    |
|              |                         |                                         | Net $O_2 = 3.19$ kg.                       |

Weight of air required for combustion of 1 kg. of fuel

$$= 3.19 \times \frac{100}{23}$$
$$= 13.86 \text{ kg.}$$

Example 30: A smaple of coal was found to have the following percentage composition by weight C = 70%, H = 5%, O = 12%, N = 5%, ash = 8%. Calculate the weight of air required h combustion of 1 kg of fuel, also calculate the percentage composition of dry gaseous products Solution :

| Consti- | wt in 1 kg<br>of fact | combustion<br>reaction                  | Wt of O2<br>required (in kg.)      | wt of dry products<br>(in kg.)                      |
|---------|-----------------------|-----------------------------------------|------------------------------------|-----------------------------------------------------|
| с       | 0,70                  | C+O; →CO;                               | $0.70 \times \frac{32}{12} = 1.86$ | $CO_2 = 0.7 \times \frac{44}{12} - 2.56$            |
| н       | 0.05                  | $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ | $0.05 < \frac{16}{2} = 0.4$        | —                                                   |
| 0       | 0.12                  |                                         |                                    |                                                     |
| N       | 0.05                  | -                                       |                                    | $N_2 = \frac{77}{100} \times 9.3 \pm 0.05$<br>= 7.2 |
|         |                       |                                         | Total O <sub>2</sub> = 2.26        | 1                                                   |
|         |                       |                                         | O2 in fuel = 0.12                  |                                                     |
|         |                       |                                         | Net () <sub>2</sub> = 2.14 kg.     |                                                     |

Weight of air required for combustion of 1 kg of fuel.

$$= 2.14 \times \frac{100}{23} = 9.3 \text{ kg}$$

Dry product analysis :

Total wt of dry products  

$$\begin{array}{l}
\text{CO}_2 = 2.56 \text{ kg} \\
\text{N}_2 = 7.21 \text{ kg} \\
= \text{CO}_2 + \text{N}_2 \\
= 9.77 \text{ kg} \\
\end{array}$$

$$\begin{array}{l}
\text{\%CO}_2 = \frac{2.56}{9.77} \times 100 = 26.2\% \\
\text{\%N}_2 = \frac{7.21}{9.77} \times 100 = 73.79\% \\
\end{array}$$

**Example 20.** A fuel is found to contain C = 80%. H = 5%.  $N_2 = 15\%$ . Calculate the weight of air required for combustion of 1 kg of fuel Also calculate the dry products by volume

Solution:

| Constituents | Weight<br>in 1 kg<br>of fuel | Combustion<br>reaction                      | Volume of O <sub>2</sub><br>required (m <sup>3</sup> ) | Volume of dry<br>product (m <sup>3</sup> )             |
|--------------|------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| СН           | 0.30                         | $CH_4 + 2O_2$<br>$\rightarrow CO_2 + 2H_2O$ | $0.30 \times 2 = 0.60$                                 | $CO_2 = 0.30 \times 1$<br>= 0.30                       |
| со           | 0.20                         | $CO + \frac{1}{2}O_2 \rightarrow CO_2$      | $0.2 \times \frac{1}{2} = 0.1$                         | $CO_2 = 0.20 \times 1$<br>= 0.20                       |
| 02           | 0.02                         | -                                           |                                                        | $\mathbf{O}_2 = \frac{20}{100} \times 0.68 \\ = 0.136$ |
| N2           | 0.48                         | -                                           | -                                                      | $N_2 = \frac{79}{100} \times 3.87 + 0.48 \\ = 3.53$    |
|              |                              |                                             | Total $O_2 = 0.70$<br>$O_2$ in fuel = -0.02            |                                                        |
|              |                              |                                             | Net $O_2$<br>= 0.68 m <sup>3</sup>                     |                                                        |

Volume of air required for combustion of 1 m<sup>3</sup> of fuel = 
$$0.68 \times \frac{100}{21} = 3.23 \text{ m}^3$$

Total volume of air (20% excess) = 
$$3.23 \times \frac{120}{100} = 3.87 \text{ m}^3$$

Weight of air required for combustion of

$$1 \text{ m}^3 \text{ of fuel} = 3.87 \times \frac{28.94}{22.4}$$
  
= 4.99 kg

Dry product analysis:

| Dry<br>products       | Volume of dry<br>products (m <sup>3</sup> ) | Wt. of dry products (kg)              | % of dry product                        |
|-----------------------|---------------------------------------------|---------------------------------------|-----------------------------------------|
| Total CO <sub>2</sub> | $0.5 m^3$                                   | $0.5 \times \frac{44}{22.4} = 0.98$   | $\frac{0.98}{5.57} \times 100 = 17.5\%$ |
| <b>O</b> <sub>2</sub> | 0.136                                       | $0.136 \times \frac{32}{22.4} = 0.19$ | $\frac{0.19}{5.57} \times 100 = 3.41\%$ |
| <b>N</b> 2            | 3.53                                        | $3.53 \times \frac{28}{22.4} = 4.4$   | $\frac{4.4}{5.57} \times 100 = 78.9\%$  |
|                       |                                             | Total wt = 5.57 kg                    |                                         |

Example 22. Calculate the amount of theoretical air required by weight and volume for complete combustion of 2 kg of coke. [RTU, June 2008]

### Solution:

| Constituent | Wt. of fuel | <b>Combustion</b> reaction | Wt. of O2 required (in kg)                 |
|-------------|-------------|----------------------------|--------------------------------------------|
| С           | 2 kg        | $C + O_2 \rightarrow O_2$  | $2 \times \frac{32}{12} = 5.33 \text{ kg}$ |

Weight of air required for combustion of

2 kg of coke = 
$$5.3 \times \frac{100}{23} = 23.173$$
 kg.

Volume of air required for combustion of

2 kg of coke = 
$$23.173 \times \frac{22.4}{28.94} = 17.93 \text{ m}^3$$

### Formula for calculation of HCV & LCV by Bomb calorimeter

$$HCV = (W + w) (t2 - t1)$$

$$x$$

$$LCV = HCV - (0.09 \text{ H} \times 587) \text{ Cal/g.}$$

$$H = \% \text{ of hydrogen present in the coal}$$

**Example 4.** The determination of calorific value of a coal sample gave the following data, weight of coal sample = 0.9 gm.

Water equivalent of calorimeter = 440 gm.

Weight of water = 2560 gm.

Rise in temperature =  $2.42^{\circ}$ C

Cooling correction =  $0.052^{\circ}C$ 

Fuse wire correction = 10.0 calories

Calculate HCV and LCV, if the coal contains 6%H and assume latent heat of steam is equal to 600 cals/gm.

#### Solution:

$$HCV = \frac{(W+w)(t_2 - t_1 + \text{cooling correction}) - (\text{Fuse wire correction})}{\text{Weight of coal sample}}$$
$$HCV = \frac{(2560 + 440)(2.42 + 0.052) - 10}{0.9}$$
$$HCV = 8228.9 \text{ cal/gm.}$$
$$LCV = 8228.9 \text{ cal/gm.}$$
$$LCV = HCV - 0.09 \times 6 \times 600$$
$$= 8228.9 - 0.09 \times 6 \times 600$$
$$= 7904.9 \text{ cal/gm.}$$

**Example 1.** A sample of coal contains 93% C, 5% H, and 6% ash. When this coal was tested for its calorific value in the bomb calorimeter, the following results were obtained: Weight of the coal burnt = 0.95 gm. Weight of water taken = 2000 gm. Water equivalent of bomb and calorimeter = 700 gm. Increase in temperature =  $2.48^{\circ}$ C Acid correction = 60.0 cal Cooling correction =  $0.02^{\circ}$ C Fuse wire correction = 10 cal Calculate the HCV and LCV of coal. Given latent heat of condensation of storm = 505

Calculate the HCV and LCV of coal. Given latent heat of condensation of steam = 587 cal/gm.

#### Solution:

$$HCV = \frac{[(W+w)(t_2 - t_1 + cooling \ correction)] - [Acid + Fuse \ wire \ correction]}{Mass \ of \ fuel(x)}$$
$$= \frac{(2000 + 700)(2.48 + 0.02) - (60 + 10)}{0.95}$$
$$= 7031.6 \ cal/gm.$$
$$LCV = HCV - 0.09H \times 587 \ cal/gm.$$
$$= 7031.6 - 0.09 \times 5 \times 587$$
$$= 6767.45 \ cal/gm.$$

Dulong's formula for calculating the calorific value is given as:

## Gross calorific Value (HCV) = $\frac{1}{100} [8080C + 34,500(H - \frac{O}{8}) + 2,240S]kcal/kg$

Net Calorific value (LCV) = $[HCV - \frac{9H}{100} \times 587]kcal/kg$ = $[HCV - 0.09H \times 587]kcal/kg$  **Example 7.** Calculate the higher and lower calorific value of a coal sample having the following composition:

$$C = 80\%$$
,  $H = 7\%$ ,  $S = 3.5\%$ ,  $N = 2.1\%$ ,  $O = 3\%$  and  $ash = 4.4\%$ 

C = 8080, H = 34500, S = 2240

Solution: According to Dulong's formulas:

\*\*

$$HCV = \frac{1}{100} \left[ 8080\%C + 34500 \left( \%H - \frac{\%O}{8} \right) + 2240\%S \right] cal/gm.$$
$$= \frac{1}{100} \left[ 8080 \times 80 + 34500 \left( 7 - \frac{3}{8} \right) + 2240 \times 3.5 \right] cal/gm.$$
$$HCV = 8828.025 \ cal/gm.$$
$$LC^{\chi} = HCV - 0.09\%H \times 587 \ cal/gm.$$
$$LC^{\chi} = 8828.025 - 0.09 \times 7 \times 587$$
$$LCV = 8458.215 \ cal/gm.$$

12

14 S

**Example 11.** A sample of coal contains 60% carbon, 33% oxygen, 6.0% hydrogen, 0.5% sulphur, 0.2% Nitrogen and 0.3% ash. Calculate HCV and LCV of coal. **Solution:** 

HCV = 
$$\frac{1}{100} \left[ 8080\%C + 34500 \left( \%H - \frac{\%O}{8} \right) + 2240\%S \right] cal/gm.$$
  
=  $\frac{1}{100} \left[ 8080 \times 60 + 34500 \left( 6 - \frac{33}{8} \right) + 2240 \times 0.5 \right]$   
HC<sup>\*\*</sup> = 5506.1 cal/gm  
LC  $\lor$  = HCV - 0.09%H × 587 cal/gm  
LCV = 5506.1 - 0.09 × 6 × 587  
= 5189.1 cal/gm

**Example 8.** The ultimate analysis of coal gives : carbon = 84%, sulphur = 1.5%, nitrogen = 0.6%, hydrogen = 5.5% and oxygen = 8.4%. Calculate the gross and net calorific values using Dulong's formula.

Solution : According to Dulong's formula

$$HCV = \frac{1}{100} \left[ 8080 \text{ C} + 34500 \left( \%\text{H} - \frac{\%\text{O}}{8} \right) + 2240 \text{S} \right]$$
$$= \frac{1}{100} \left[ 8080 \times 84 + 34500 \left( 5.5 - \frac{84}{8} \right) + 2240 \times 1.5 \right]$$
$$= 8356.05 \text{ Kcal/kg.}$$
Low calorific value (LCV) =  $\left( \text{HCV} - \frac{9\text{H}}{100} \times 587 \right) \text{ Kcal/kg}$ 
$$= \left( 8356.05 - \frac{9 \times 5.5}{100} \times 587 \right) \text{ Kcal/kg.}$$
$$= 8065.49 \text{ Kcal/kg.}$$

# **Proximate Analysis**

Example 9: A coal sample was analysed as follows: A 3.0 gm coal sample was weighed into silica crucible. After heating for 1 hour at 100°C, the residue weighed 2.7 gm. The crucible was then covered with a lid and strongly heated for seven minutes at  $950 \pm 20^{\circ}$ C. The residue weighed 1.8 gm. The crucible was then heated without cover untill a constant weight is obtained. The residue was found to weigh 0.5 gm. Calculate the percentage of moisture, volatile matter, ash contents and carbon in a coal sample and to which type of analysis does the above belongs.

Solution The above one is proximate analysis

% moisture =  $\frac{\text{Loss in weight}}{\text{Weight of coal taken}} \times 100$ 

$$= \frac{30 - 2.7}{3} \times 100$$

$$= 10\%$$
% of volatile matter = 
$$\frac{1 \text{ oss in weight due to}}{\text{removal of volatile matter}} \times 100$$
% of volatile matter = 
$$\frac{2.7 - 1.8}{3.0} \times 100$$

$$= 30\%$$
% Ash = 
$$\frac{\text{Weight of ash left}}{\text{Weight of coal taken}} \times 100$$

$$= \frac{0.5}{3} \times 100$$

$$= 16.6\%$$
% fixed carbon =  $100 - [\% \text{ moisture } + \% \text{ volatile matter } + \% \text{ ash}$ 

$$= 100 - [10 + 30 + 16.6]$$

$$= 100 - 56.6 = 43.4 \%$$

# **Ultimate Analysis**

Example 7: A 2.5 gm smaple of coal was heated in a Kjeldhal's flask with conc.  $H_2SO_4$  in presence of  $K_2SO_4$  and is then treated with excess of KOH. The liberated  $NH_3$  is absorbed in 40 ml of 0.2 N  $H_2SO_4$ . After the absorptions, the excess acid required 7 ml of 0.2 N NaOH for exact neutralization. Determine the percentage of nitrogen in given sample of coal.

Solution  
We Nitrogen = 
$$\frac{1.4 \times N_1 \times x}{W}$$
  
where,  
 $N_1 = 0.2 \text{ N}$   
 $x = (40 - 7) \text{ ml}$   
 $W = 2.5 \text{ gm}$   
 $= \frac{1.4 \times 0.2 \times (40 - 7)}{2.5}$   
 $= 3.696\%$ 

### **UNSOLVED PROBLEMS**

Q1. A sample of coal was found to have the following % composition by weight C = 70%, O = 14%, H = 6%, H = 6%, N = 5% and rest = ash. Calculate the gross and net calorific value of coal sample using Dulong's formula.

- Q2. A sample of coal was found to contain the following: C = 80%, H = 5%, O = 1%, N = 2% remaining being ash. Calculate the amount of minimum air required for complete combustion of 1 Kg of coal sample.
- Q3. A sample of coal was found to contain the following: C = 85%, H = 7%, O = 3%, N = 5% remaining being ash. Calculate the amount of minimum air required for complete combustion of 10 Kg of coal sample.
- Q4. A sample of coal was found to contain the following: C = 85%, H = 7%, O = 3%, N = 5% remaining being ash. Calculate the amount of minimum air required for complete combustion of 1 Kg of coal sample also calculate the percentage composition of dry products of combustion.
- Q5. A sample gaseous fuel was found to contain the following: C = 85%, H = 7%, O = 3%, N = 5% remaining being ash. Calculate the amount of minimum air required for complete combustion of 1 m<sup>3</sup> of fuel sample also calculate the percentage composition of dry products of combustion by volume.
- Q.6 Calculate the amount of oxygen and air required for complete combustion of 2 Kg of Coke.



### **JECRC** Foundation





Rekha Vijay Asst.Prof. JECRC, Jaipur